24.08.2013 Views

Small Hydro Development in Nayar river valley in Lesser ... - ESHA

Small Hydro Development in Nayar river valley in Lesser ... - ESHA

Small Hydro Development in Nayar river valley in Lesser ... - ESHA

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>Small</strong> <strong>Hydro</strong> <strong>Development</strong> <strong>in</strong> <strong>Nayar</strong> <strong>river</strong> <strong>valley</strong> <strong>in</strong><br />

<strong>Lesser</strong> Himalayas – A Case Study<br />

Devadutta Das<br />

Professor (<strong>Hydro</strong>-electric)<br />

Department of Water Resources <strong>Development</strong> & Management<br />

Indian Institute of Technology, Roorkee<br />

Uttarakhand, INDIA – 247667<br />

1


WHY SMALL HYDRO?<br />

As many of the economical sites got exhausted, a re-look<br />

was necessitated towards the abandoned sites as well as<br />

for new small hydro sites, as a Governmental thrust for<br />

exploit<strong>in</strong>g renewable energy, of which the hydro and<br />

notably small hydro are the most eligible candidates due<br />

to their negligible impact on the environment.


Project Area<br />

4


Bhagirathi River<br />

Dev Prayag<br />

2975 m<br />

NOTE: Distances shown are approximate<br />

25.30 Km<br />

SANTOODHAR - I SHP<br />

2 x 1000 KW<br />

POND LEVEL : 733.0 m EL<br />

TAIL WATER LEVEL : 702.6 m EL<br />

PAURI<br />

Alaknanda River<br />

WESTERN NAYAR RIVER<br />

44.50 Km<br />

15.60 Km<br />

SANTOODHAR - II SHP<br />

2 x 1000 KW<br />

POND LEVEL : 589.0 m EL<br />

TAIL WATER LEVEL : 566.2 m EL<br />

NAYAR RIVER<br />

3.60 Km<br />

˜ 6.0 Km 7.0 Km<br />

10.70 Km<br />

SCHEMATIC DIAGRAM SHOWING HYDRO-ELECTRIC PROJECTS UNDER CONSTRUCTION<br />

& UNDER PLANNING IN THE NAYAR RIVER VALLEY<br />

11.0 Km<br />

SATPULI<br />

EASTERN NAYAR RIVER<br />

67.70 Km<br />

KHATTAL GAD<br />

BYALIGAON SHP<br />

2 x 1125 KW<br />

LANSDOWNE<br />

3098 m<br />

POND LEVEL : 628.0 m EL<br />

TAIL WATER LEVEL : 606.0 m EL<br />

MARORA DAM<br />

NAYAR HEP 3 x 5666 KW<br />

POND LEVEL : 516.0 m EL<br />

TAIL WATER LEVEL : 458.5 m EL<br />

BAIJRO<br />

DUNAO SHP 2 x 750 KW<br />

(Under Construction by Uttarakhand<br />

Jal Vidyut Nigam Ltd.)<br />

POND LEVEL : 1095.5 m EL<br />

TAIL WATER LEVEL : 1032.5 m EL<br />

POWER HOUSE NEAR KHANDASAIN VILLAGE<br />

GANGA<br />

Vyas Ghat RISHIKESH<br />

HARDWAR<br />

5


VIEW OF THE DIVERSION DAM SITE FOR NAYAR SHP NEAR MARORA PALA VILLAGE


VIEW OF THE DIVERSION DAM SITE FOR BYALI GAON SHP<br />

7


VIEW OF THE DIVERSION DAM SITE FOR SANTOODHAR - I SHP<br />

8


VIEW OF THE DIVERSION DAM SITE FOR SANTOODHAR - II SHP<br />

9


River Discharge <strong>in</strong> cumec<br />

400<br />

350<br />

300<br />

250<br />

200<br />

150<br />

100<br />

50<br />

0<br />

FLOW DURATION CURVE FOR NAYAR RIVER DISHCRAGE<br />

GAUGED AT BUNGA GAUGING SITE<br />

0 10 20 30 40 50 60 70 80 90 100<br />

River Flows Available for the %Time of year (Equalled or<br />

Exceeded)<br />

FLOW DURATION CURVE FOR NAYAR RIVER<br />

DISCHARGE GUAGED AT BUNGA GAUGING SITE<br />

10 YEARS<br />

50% Dependable Year<br />

75% Dependable Year<br />

90% Dependable Year<br />

10


Characteristics<br />

Byaligaon<br />

SHP<br />

Santoodhar – I<br />

SHP<br />

Santoodhar – II<br />

SHP<br />

Maximum discharge (cumec*) 198.51 120.19 165.18<br />

M<strong>in</strong>imum discharge (cumec*) 1.02 0.62 0.85<br />

50% dependable discharge (cumec*) 6.47 3.91 5.30<br />

75% dependable discharge (cumec*) 4.35 2.63 3.61<br />

90% dependable discharge (cumec*) 3.10 1.86 2.56<br />

Maximum Flood (cumec*) for flood<br />

marks<br />

1010 325 785<br />

Maximum Flood (cumec*) (Dicken’s) 2402 1648 2092<br />

Dicken’s empirical formula is given <strong>in</strong> equation<br />

Q = C.A 0.75<br />

Where, Q = Flood discharge <strong>in</strong> cumec<br />

C = A constant vary<strong>in</strong>g between 11 and 14<br />

A = Catchment area <strong>in</strong> square kilometer<br />

For the Himalayan area, it has been found that a value of 14 for the constant C is<br />

appropriate, and hence adopted.<br />

11


SELECTION OF DIVERSION STRUCTURE<br />

The <strong>river</strong>s <strong>in</strong> Himalayas carry very heavy sediment load<br />

and bed load dur<strong>in</strong>g ra<strong>in</strong>y season.<br />

For small hydro power projects, the diversion<br />

arrangements may be one of the follow<strong>in</strong>g depend<strong>in</strong>g<br />

upon the site conditions and cost factors:<br />

Trench Weir<br />

Un-gated overflow type raised weir<br />

Gated weir<br />

Dam with gated spillway<br />

12


TRENCH WEIR<br />

Catches the bed load especially the sh<strong>in</strong>gles thereby<br />

removal of heavier material <strong>in</strong> the desilt<strong>in</strong>g tanks makes<br />

the latter larger <strong>in</strong> size and thus cost.<br />

With low gradient <strong>river</strong> slopes the sh<strong>in</strong>gles excluder<br />

length becomes very long thereby <strong>in</strong>creas<strong>in</strong>g the cost.<br />

13


UNGATED OVERFLOW TYPE WEIR<br />

Has the advantage over the trench weir as it lends to<br />

<strong>in</strong>crease <strong>in</strong> head appreciably <strong>in</strong>case of low and<br />

medium head projects thereby contribut<strong>in</strong>g to<br />

<strong>in</strong>creas<strong>in</strong>g power.<br />

Entry of bed load especially the sh<strong>in</strong>gles <strong>in</strong>to the water<br />

conductor system can be prevented at the <strong>in</strong>take by<br />

keep<strong>in</strong>g the sill level at a higher level than the bed level<br />

of the <strong>river</strong>.<br />

18


WEIR WITH GATES<br />

22


DIVERSION WEIR<br />

To be designed to pass the probable maximum flood<br />

through gates.<br />

With narrow diversion sites the cost of construct<strong>in</strong>g a<br />

weir with gates becomes higher due to excavation<br />

cost for widen<strong>in</strong>g the <strong>river</strong> section to provide enough<br />

section to pass the flood.<br />

For Santoodhar – II<br />

- Cost of ungated overflow weir Rs. 34.33 Million<br />

- Cost of gated weir Rs. 52.45 Million<br />

Hence, overflow type ungated weir<br />

with under sluice adopted.<br />

25


4 ROWS OF<br />

C.C.BLOCKS OF SIZE<br />

1500X1500X1000<br />

4 Rows of CC<br />

Blocks of Size<br />

1.5 m x 1.5 m and<br />

1.0 m height<br />

3000<br />

POND LEVEL<br />

FLOW<br />

5000<br />

597.0<br />

HFL 596.0<br />

FLOW<br />

RIVER BED<br />

582.0 m<br />

Firm Rock<br />

6000<br />

Stop<br />

Log<br />

582.0 m<br />

1000<br />

7500<br />

Gate<br />

7500<br />

2.5 : 1<br />

579.0<br />

D/S W<strong>in</strong>g 589.0<br />

30000<br />

SECTION: B-B' THROUGH UNDERSLUICE<br />

FLOW<br />

1500<br />

PLAN OF WEIR<br />

Reverse Slope<br />

5 : 1<br />

2500<br />

1000<br />

Chute blocks @<br />

1.60 m spac<strong>in</strong>g at<br />

end of slop<strong>in</strong>g<br />

glacis<br />

A A'<br />

B<br />

6000<br />

3100<br />

589.0<br />

R 6000<br />

1000<br />

DIVIDE WALL<br />

FLOW<br />

8000<br />

32000<br />

600 2000 600<br />

1000<br />

1000<br />

Friction Blocks<br />

12000<br />

20000<br />

2000<br />

600<br />

600<br />

600 1000<br />

600<br />

600<br />

Still<strong>in</strong>g<br />

Bas<strong>in</strong><br />

FLOW<br />

Slope L<strong>in</strong>ed with M20<br />

Two Rows of Friction<br />

Blocks of Size<br />

0.6 m x 0.6 m,<br />

staggered @ 1.5 c/c<br />

HFL 588.0<br />

6 ROWS OF<br />

C.C.BLOCKS OF SIZE<br />

1500X1500X1000 582.0<br />

9000<br />

FLOW<br />

4 ROWS OF C.C.BLOCKS<br />

OF SIZE 1500X1500X1000<br />

RIVER BED 582.0 m<br />

6 Rows of CC<br />

Blocks of Size<br />

1.5 m x 1.5 m and<br />

1.0 m height<br />

B'<br />

6000<br />

U/S HFL<br />

596.0<br />

POND LEVEL 589.0<br />

597.0<br />

SANTOODHAR – II SHP<br />

589.50<br />

RR STONE<br />

MASONRY 1:6<br />

1000<br />

2.5<br />

1<br />

ROCK SLOPE<br />

FACING WITH CC M20<br />

1000<br />

2000 7500 4000<br />

21250<br />

10250<br />

SECTION: A-A' THOURH OVER FLOW WEIR<br />

UNDER SLUICE & OVER FLOW WEIR<br />

2500<br />

1000<br />

581.0<br />

1000<br />

589.0 D/S W<strong>in</strong>g<br />

588.0 D/S HFL<br />

6 ROWS OF<br />

C.C.BLOCKS OF SIZE<br />

1500X1500X1000<br />

9000<br />

26<br />

3000


DE-SILTING BASIN<br />

The <strong>river</strong>s <strong>in</strong> the Himalayan region carry a heavy amount<br />

of sediment load predom<strong>in</strong>antly angular quartz particles.<br />

The recommended practice for elim<strong>in</strong>at<strong>in</strong>g the sediment<br />

load <strong>in</strong> India are as below:<br />

Low Head = 0.5 mm and above<br />

Medium and High Head = 0.2 mm and above<br />

27


SECTIONS INDICATED :<br />

- Stone Masonry<br />

POWER CHANNEL<br />

- Rectangular Re<strong>in</strong>forced Cement Concrete<br />

- Trapezoidal Cement Concrete L<strong>in</strong>ed Sections<br />

30


Stone Masonry<br />

POWER CHANNEL<br />

Larger Sections – Cost saved <strong>in</strong> channel l<strong>in</strong><strong>in</strong>g is more<br />

than offset by higher excavation cost<br />

RCC Channels<br />

Channel on hill slopes <strong>in</strong> Himalayas are prone to frequent<br />

damage due to fall<strong>in</strong>g rocks and under cutt<strong>in</strong>g due to ra<strong>in</strong><br />

water seep<strong>in</strong>g between the channel bed.<br />

L<strong>in</strong>ed trapezoidal section<br />

Hydraulically the best and cost effective<br />

31


Comparative Physical Features and Costs of Rectangular<br />

RCC Section & Trapezoidal l<strong>in</strong>ed section<br />

Channel Geometry<br />

Base<br />

width<br />

meter<br />

Depth<br />

meter<br />

Velocity<br />

m/sec<br />

Discharge<br />

cumec<br />

Cost<br />

Rs.<br />

Million<br />

Trapezoidal section- cement<br />

concrete l<strong>in</strong>ed 2.50 2.50 1.89 13.26 39.27<br />

Rectangular- RCC 2.75 2.75 2.15 13.15 57.60<br />

As the cement concrete l<strong>in</strong>ed trapezoidal section is cheaper by<br />

about 32%, the same has been adopted.<br />

34


FOREBAY<br />

Forebay’s Active Volume made equal to 30 sec water<br />

requirement of the power plant at rated load.<br />

PENSTOCK<br />

As length of penstock is less, two separate penstocks<br />

used feed<strong>in</strong>g its turb<strong>in</strong>e<br />

35


FIXATION OF INSTALLED CAPACITY<br />

The <strong>in</strong>stalled capacity of each of these projects has been<br />

determ<strong>in</strong>ed consider<strong>in</strong>g the follow<strong>in</strong>g factors:<br />

Maximum, M<strong>in</strong>imum and 50% dependable discharge<br />

available,<br />

Net Head availability,<br />

Normative plant load factor for recovery of full fixed<br />

charges fixed by the Uttarakhand Electricity<br />

Regulatory Commission ,<br />

Difficulty <strong>in</strong> construction of large sized open channels<br />

<strong>in</strong> the hilly areas, and<br />

Operation and Ma<strong>in</strong>tenance expenses.<br />

37


FIXATION OF INSTALLED CAPACITY<br />

Consider<strong>in</strong>g difficulty <strong>in</strong> construct<strong>in</strong>g large width<br />

channel <strong>in</strong> unstable hill slopes. Maximum 15 cumec<br />

discharge adopted.<br />

Bed slope of 1 <strong>in</strong> 700 adopted to assist <strong>in</strong> self<br />

clean<strong>in</strong>g.<br />

Normative Plant Load Factor for small hydro permitted<br />

by Uttarakhand Electricity Regulatory Commission is<br />

45%.<br />

Installed capacity of 2000 KW for Santoodhar – II<br />

fulfilled the above criteria.<br />

38


TURBINE & GENERATOR<br />

The average net head available for the three SHPs are as under:<br />

Byaligaon<br />

SHP<br />

Santoodhar – I<br />

SHP<br />

Santoodhar – II<br />

SHP<br />

Average Net Head 16.80 m 26.40 m 18.80 m<br />

Maximum Net Head 18.00 m 27.00 m 19.60 m<br />

M<strong>in</strong>imum Net Head 16.40 m 26.00 m 18.30 m<br />

Type of turb<strong>in</strong>e proposed<br />

Kaplan<br />

(Horizontal)<br />

Francis<br />

(Horizontal)<br />

Kaplan<br />

(Horizontal)<br />

39


TURBINE PARAMETERS AND SETTING<br />

With horizontal shaft alignment leakage from turb<strong>in</strong>e<br />

seal is excessive if turb<strong>in</strong>e is set below tail water<br />

level.<br />

Dur<strong>in</strong>g ma<strong>in</strong>tenance, risk of flood<strong>in</strong>g of turb<strong>in</strong>e<br />

floor likely if turb<strong>in</strong>e is set below tail water level.<br />

Therefore, specific speed of turb<strong>in</strong>e so selected as to<br />

have positive suction head or at least a small negative<br />

suction head.<br />

40


Byaligaon<br />

SHP<br />

Santoodhar – I<br />

SHP<br />

Santoodhar – II<br />

SHP<br />

No. of units & unit output 2 x 1225 KW 2 x 1000 KW 2 x 1000 KW<br />

Turb<strong>in</strong>e rotational speed,<br />

rpm<br />

Specific speed, rpm (<strong>in</strong><br />

kW-m units)<br />

Turb<strong>in</strong>e Parameters and Sett<strong>in</strong>g<br />

500 500 500<br />

506 271 425.5<br />

Runner Diameter (mm) 1150 860 1100<br />

Suction Head, m (-) 0.92 (+) 3.72 (+) 1.06<br />

41


F.S.L.<br />

Trash<br />

Rack<br />

GATE<br />

Motor operated slide gate<br />

586.20<br />

585.20<br />

FLOW<br />

577.38<br />

1000<br />

50000<br />

1800 500<br />

C/L OF PENSTOCK<br />

569.50<br />

CONTROL<br />

ROOM<br />

CABLE<br />

ROOM<br />

1800<br />

500<br />

1100<br />

ROOF TRUSS<br />

L-SECTION OF POWER HOUSE<br />

SANTOODHAR – II SHP<br />

CROSS – SECTION OF POWER HOUSE<br />

12000<br />

SERVICE BAY FLOOR 566.0<br />

2750 3000 1350<br />

4 6 5<br />

1000<br />

1<br />

7<br />

8<br />

2:1<br />

R.C.C.M-20<br />

OVER 150 THICK<br />

P.C.C. M-10<br />

11<br />

9 12 13<br />

576.50<br />

575.0<br />

561.30<br />

1750<br />

558.05<br />

500<br />

559.05<br />

556.90<br />

1000<br />

2000<br />

3000<br />

500<br />

574.50<br />

566.00<br />

DRAFT TUBE GATE<br />

563.40 MIN. TWL<br />

562.30<br />

TOP OF WING WALL<br />

C.C.BLOCKS<br />

INTERCONNECTED<br />

1000X1000X500<br />

5<br />

1<br />

564.70 MAX. TWL<br />

600 mm THICK<br />

INVERTED FILTER<br />

12000<br />

562.5<br />

1000<br />

1000<br />

565.20<br />

500<br />

150<br />

44<br />

350


PROJECTED FINANCIAL PERFORMANCE<br />

PARAMETERS:<br />

Debt to equity ratio : 70:30<br />

Return on equity : 14%<br />

Construction Period : 2 years<br />

Licens<strong>in</strong>g Period : 40 years<br />

Average annual energy production with 95%<br />

availability<br />

45


PROJECTED FINANCIAL PERFORMANCE<br />

Characteristics<br />

Average Annual Energy,<br />

kWhr<br />

Net Energy available for<br />

sale, kWhr<br />

Byaligaon<br />

SHP<br />

Santoodhar – I<br />

SHP<br />

Santoodhar – II<br />

SHP<br />

9.9 x 10 6 9.1 x 10 6 8.9 x 10 6<br />

9.75 8.95 8.79<br />

Plant Load Factor 50.23 51.84 50.92<br />

Estimated project cost,<br />

Rs. Million<br />

205.79 180.92 176.92<br />

Sale price, Rs./kWhr 3.47 3.37 3.29<br />

Levelised sale price,<br />

Rs./kWhr<br />

3.00 2.89 2.85<br />

46


CONCLUSIONS<br />

Sale Price competitive with sale price from other<br />

hydro sources.<br />

Contribute to <strong>in</strong>creased energy availability <strong>in</strong> the local<br />

rural network.<br />

Improvement <strong>in</strong> voltage profile<br />

Boost to Cottage, Horticultural and Agro Industries<br />

Energy for light<strong>in</strong>g homes<br />

Contribute to Socio – Economic <strong>Development</strong><br />

47

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!