25.08.2013 Views

JRA2 Progress report on IR multispectral imaging - Eu-ARTECH

JRA2 Progress report on IR multispectral imaging - Eu-ARTECH

JRA2 Progress report on IR multispectral imaging - Eu-ARTECH

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

TH<strong>IR</strong>D ANNUAL REPORT - DELIVERABLE N. 27<br />

<str<strong>on</strong>g>JRA2</str<strong>on</strong>g> – New methods in diagnostics: Imaging and<br />

spectroscopy<br />

<str<strong>on</strong>g>Progress</str<strong>on</strong>g> <str<strong>on</strong>g>report</str<strong>on</strong>g> <strong>on</strong> <strong>IR</strong> <strong>multispectral</strong> <strong>imaging</strong> - <strong>IR</strong><br />

transparency and system assembling<br />

<strong>Eu</strong>-<strong>ARTECH</strong><br />

Access, Research and Technology for the c<strong>on</strong>servati<strong>on</strong><br />

of the <strong>Eu</strong>ropean Cultural Heritage<br />

Integrating Activity<br />

implemented as<br />

Integrated Infrastructure Initiative<br />

C<strong>on</strong>tract number: RII3-CT-2004-506171<br />

Project Co-ordinator: Prof. Brunetto Giovanni Brunetti<br />

Reporting period: from June 1 st 2005 to May 31 st 2006<br />

Project funded by the <strong>Eu</strong>ropean Community<br />

under the “Structuring the <strong>Eu</strong>ropean Research Area”<br />

Specific ProgrammeResearch Infrastructures acti<strong>on</strong><br />

1


DELIVERABLE n.27<br />

<str<strong>on</strong>g>JRA2</str<strong>on</strong>g>- <str<strong>on</strong>g>Progress</str<strong>on</strong>g> <str<strong>on</strong>g>report</str<strong>on</strong>g> <strong>on</strong> <strong>IR</strong> <strong>multispectral</strong> <strong>imaging</strong> - <strong>IR</strong> transparency and system<br />

assembling<br />

Subtask 2.3- Assembling of n<strong>IR</strong> <strong>imaging</strong> equipments - Development of two new<br />

complementary N<strong>IR</strong> <strong>imaging</strong> spectroscopy methods.<br />

Subtask 2.4 Evaluati<strong>on</strong> of the device<br />

Resp. : OADC<br />

During this <str<strong>on</strong>g>report</str<strong>on</strong>g>ing period, the set-up of the prototypical form of the spectrograph (already<br />

developed and described in the previous <str<strong>on</strong>g>report</str<strong>on</strong>g>s) c<strong>on</strong>tinued with adjustments of the<br />

alignments of the various optical comp<strong>on</strong>ents. The performances were improved.<br />

The measurements <strong>on</strong> the various samples, already developed in the previous periods, also<br />

c<strong>on</strong>tinued.<br />

In Appendix 2 of the present Annex 14, are <str<strong>on</strong>g>report</str<strong>on</strong>g>ed most of the spectra that have been<br />

recorded during the last six m<strong>on</strong>ths.<br />

Subtask 2.1 - Preparati<strong>on</strong> and characterisati<strong>on</strong> of standards of layered painting materials<br />

and Subtask 2.2- Transmissi<strong>on</strong> and reflecti<strong>on</strong> of <strong>IR</strong> radiati<strong>on</strong> <strong>on</strong> layered standards<br />

Within the period between the 12 th and the 24 th m<strong>on</strong>th special reference samples were<br />

developed <strong>on</strong> wooden panels of gradually higher paint layer thickness in order to<br />

study the transmissi<strong>on</strong> and reflecti<strong>on</strong> of the <strong>IR</strong> radiati<strong>on</strong> through them. The way that<br />

these reference samples are created is displayed in figure 1.1a. Multi-spectral spectra<br />

of these samples will be acquired in the visible, near infrared (n<strong>IR</strong>) and mid infrared<br />

(m<strong>IR</strong>) area of the spectrum (up to 4500nm).<br />

Figure 1.1a: Reference sample (way of fabricati<strong>on</strong> of gradually higher thickness )<br />

The reference samples are painted <strong>on</strong> a comm<strong>on</strong> white ground and with the same binding medium in<br />

order to minimize the uncertainty to our applied algorithms during the tests.<br />

Ground : CaCO3 + animal glue<br />

Binding Medium : Egg yolk<br />

In appendix 1 all the first testing measurements <strong>on</strong> the panels are provided. For the<br />

time being the Perkin ELMER lambda 900 spectrophotometer was used in the<br />

wavelength range of 200nm-2400nm. These measurements will serve as a reference<br />

2


for the testing of the device under development. Within the next m<strong>on</strong>ths and after the<br />

first assembly of the device, the measurements will be performed using the new device<br />

and the new developed method will be tested in the extensive wavelength range<br />

between 800nm and 4500nm.<br />

Materials and methodology of creati<strong>on</strong> of the reference panels (standards)<br />

Samples of pigments in paint layers of gradually higher thickness.<br />

The panels with samples of different (gradually higher) thickness were prepared in successive<br />

steps, as follows: first, all eight parts of <strong>on</strong>e pigment sample were painted at <strong>on</strong>ce in 2 or 3<br />

layers of paint, then <strong>on</strong>e part was masked out and the remaining seven layers were painted<br />

again in 2 or 3 layers. Then two parts were masked and the remaining six were painted, and so<br />

forth. Between each step, the paint was allowed to dry satisfactorily. The panels were setaside<br />

for a m<strong>on</strong>th to dry well before the first measurements are taken.<br />

The panels for the samples of different thickness were prepared by lightly scoring rectangles,<br />

separated in 8 parts each of 2x5cm. These were then split in two lengthwise, <strong>on</strong>e half painted<br />

in 3 layers of carb<strong>on</strong> black with egg as a binding medium and the other scored in pencil with<br />

diag<strong>on</strong>al lines, again <strong>on</strong> half of its area.<br />

Figure 1.1.2a: Samples of 10 pigments in paint layers of gradually higher thickness.<br />

3


Subtask 2.3: Assembling of n<strong>IR</strong> spectroscopic <strong>imaging</strong> equipment<br />

Descripti<strong>on</strong> of the overall developed system<br />

The system will be capable of acquiring spectra in diffuse reflectance mode from<br />

800nm up to 4500nm. This is a wavelength area that is not examined extensively up<br />

to now in the field of artworks materials identificati<strong>on</strong> using <strong>IR</strong> radiati<strong>on</strong> (<strong>imaging</strong> or<br />

spectroscopy in diffuse reflectance mode).<br />

The aim is the generati<strong>on</strong> of mapping images of a Regi<strong>on</strong> Of Interest (ROI) or the<br />

whole painting as far as the materials distributi<strong>on</strong> is c<strong>on</strong>cerned. The UV –Vis -n<strong>IR</strong><br />

spectral area is extensively examined. Using the device that will be assembled, the<br />

spectral area of examinati<strong>on</strong> will extended up to 4500nm. The basic idea of the<br />

interferometer that is widely used in the available FT<strong>IR</strong> systems will be used in order<br />

to send m<strong>on</strong>ochromatic radiati<strong>on</strong> to the measurement point. The range of the<br />

excitati<strong>on</strong> system is 680nm up to 4800nm. The overall diagram of the system is<br />

provided in fig. 1.2.1a<br />

Figure 1.2.1a: overall diagram of the system<br />

The radiati<strong>on</strong> is produced in the spectrometer using the source and the interferometer<br />

and the beam splitter. Then the beam is inserted in the fiber optic bundle. After the<br />

fiber optic bundle the beam is c<strong>on</strong>densed to the measurement area using the lens<br />

system installed <strong>on</strong> the external integrati<strong>on</strong> sphere (fig. 1.2.1.3d). The diffuse<br />

4


eflected light is collected to the detector which is also installed <strong>on</strong> the integrati<strong>on</strong><br />

shpere (fig. 1.2.1.4a)<br />

The basic characteristics of the assembled device are provided in table 3.2.2a<br />

Table 3.2.2a:<br />

Parameter Value<br />

1. Wavelength range :<br />

800-4500 nm<br />

2. Measurement Spot Size: 2-4 mm diameter depending <strong>on</strong><br />

the wavelength range<br />

3. Time of measurement (spectra 4-10 sec<br />

acquisiti<strong>on</strong> in all the wavelength range)<br />

4. Wavelength resoluti<strong>on</strong> 0,1-6,4 nm (variable)<br />

5. Parts to be assembled (brochures with<br />

technical specs)<br />

5.1. MCT HgCdTe detector TE 800-4500nm<br />

cooled (Not Liquid Nitrogen)<br />

5.2 Matched Pre-Amplifiers<br />

5.3 Fiber optics 650nm to 5000 nm<br />

Heavy Metal Fluoride glass<br />

fibers (SG TM fiber)<br />

5.4 Integrati<strong>on</strong> Sphere (diffuse<br />

reflectance measurement)<br />

6. Drivers of the system, libraries in<br />

Visual Studio (C++ or Basic)<br />

5<br />

Remote gold integrating sphere<br />

(for diffuse reflectance<br />

measurement)<br />

Will be developed with the<br />

assembly of the system<br />

Use of a standard interferometer for a basic spectrometer:<br />

A basic N<strong>IR</strong>-m<strong>IR</strong> spectrometer; from the commercial spectrometer available either<br />

the PE Spectrum One NTS or a Nicolet N<strong>IR</strong> or a Bruker spectrometer are the<br />

preferred systems in terms of energy throughput; the M<strong>IR</strong> scanner from Oriel is very<br />

limited in energy to meet the overall goals; The PE system is finally preferred for<br />

price /performance reas<strong>on</strong>s;<br />

External Integrati<strong>on</strong> Sphere:<br />

An external integrati<strong>on</strong> sphere is the much best approach as far as wl range and<br />

signal/noise are c<strong>on</strong>cerned in order to provide the possibility to the user to perform in<br />

situ measurements. The integrati<strong>on</strong> sphere is gold coated in order to reflect the<br />

radiati<strong>on</strong> within the wavelength range of 800nm up to 4500nm.<br />

n<strong>IR</strong>-m<strong>IR</strong> fibers:<br />

The soluti<strong>on</strong>s are:<br />

1. gold coated lightpipes which are subject to low energy throughout and very high<br />

senistivity to mechanical movement,<br />

2. chalcogenide (CaF2) fibers are critical in mechanical movement and tend to break,<br />

transmissi<strong>on</strong> characteristics. They are superior to gold coated light pipes,


3. heavy metal fluorides (e.g. Zr) seem to be the most promising soluti<strong>on</strong>, as they are<br />

mechanically stable with high energy throuput, price may be a criterium;<br />

Detector:<br />

The possibilities compatible with he soluti<strong>on</strong> of the PE spectrometer were: 1. DTGS<br />

and MCT:<br />

The MCT detector shows about a 100 fold higher sensitivity than the standard DTGS<br />

detector; they are available with Peltier thermostatting without liquid nitrogen<br />

coutercooling at a justifiable price.<br />

Part of the used spectrophotometer<br />

The interferometer and the beam splitter of the Perkin Elmer Spectrum One NTS is<br />

used in order to produce the radiati<strong>on</strong> which radiates the object (fig. 1.2.1.1).<br />

Figure 1.2.1.1: The interferometer and the beam splitter of PE Spectrum One NTS<br />

that is used.<br />

6


Fiber optic bundle<br />

The <strong>IR</strong> fiber bundle optic that is used has an attenuati<strong>on</strong> curve provided in figure<br />

1.2.1.2. The material of the fiber optic is finally heavy metal Zr fluoride.<br />

Figure 1.2.1.2: Attenuati<strong>on</strong> curve of the fiber optic that is used for the<br />

n<strong>IR</strong>-m<strong>IR</strong> <strong>multispectral</strong> mapping <strong>imaging</strong> device.<br />

Integrati<strong>on</strong> sphere design and assembly<br />

The probe for in situ measurement is assembled using an integrati<strong>on</strong> sphere of<br />

gold surface in order to have the possibility to integrate the radiati<strong>on</strong> in the<br />

specified wavelengths up to 4500nm. The spot size of the probe is a circle<br />

with a diameter of 2mm approximately. This is changing while the excitati<strong>on</strong><br />

wavelength is changing. The final spot size in relati<strong>on</strong> with the wavelength is<br />

subjected to further study.<br />

The design of the integrati<strong>on</strong> sphere is displayed in Fig 1.2.1.3a-b and the final<br />

developed sphere in fig. 1.2.1.3c<br />

Figure 1.2.1.3a: Integrati<strong>on</strong> sphere that s developed and used for diffused<br />

reflectance measurements from 800nm up to 4500nm the dimensi<strong>on</strong>s are in<br />

INCHES.<br />

7


C<strong>on</strong>densing lens<br />

Figure 1.2.1.3b: Integrati<strong>on</strong> sphere that is developed and used for diffused<br />

reflectance measurements from 800nm up to 4500nm the dimensi<strong>on</strong>s are in<br />

INCHES.<br />

Figure 1.2.1.3c: Integrati<strong>on</strong> sphere that will be used for diffused reflectance<br />

measurements from 800nm up to 4500nm.<br />

Detector<br />

The diffused reflected radiati<strong>on</strong> from the measuring area will be guided to the<br />

receiving detector which is an (HgCdTe) Mercury Cadmium Telluride (MCT)<br />

detector (800nm – 4500nm) mounted <strong>on</strong> a 3-stage cooler, in a TO-3 housing<br />

<strong>on</strong> the integrati<strong>on</strong> sphere (fig. 1.2.1.4a). In figure 1.2.1.4b and c the MCT<br />

sensors technical informati<strong>on</strong> is provided (The way that the sensor is<br />

c<strong>on</strong>structed (b) and the electr<strong>on</strong>ic circuit used to calculate the amplifiers that<br />

will be used for the amplificati<strong>on</strong> of the received signal (c)). The detectivity<br />

curve of the sensor is provided in figure 1.2.1.4c (MCT-5-TE).<br />

8<br />

collimating lens


9<br />

MCT-Detector<br />

Figure 1.2.1.4a: The detector and the way that is mounted <strong>on</strong> the integrati<strong>on</strong><br />

sphere<br />

Figure 1.2.1.4b: The detector (way that the<br />

detector is c<strong>on</strong>structed<br />

Figure 1.2.1.4b: the electr<strong>on</strong>ic circuit used<br />

to calculate the matched amplifiers that will<br />

be used for the amplificati<strong>on</strong> of the received<br />

signal)<br />

Figure 1.2.1.4c: The detector sensitivity curve (800nm – 4500nm)


The sensor is interc<strong>on</strong>nected with the suitable electr<strong>on</strong>ic pre-amplifier because<br />

the sufficiency of the received power is critical (figure 1.2.1.4d).<br />

Figure 1.2.1.4d: preamplifier for the detector<br />

Initial evaluati<strong>on</strong> of the system<br />

Measurements were acquired from the already developed reference samples in order<br />

to justify the penetrati<strong>on</strong> of the radiati<strong>on</strong> to the paint layers of the artworks. The<br />

measurements were applied to the reference panel with the pigments that are painted<br />

with gradually increasing thickness (fig. 1.1.2a). The spectra that are acquired with<br />

the developed device are the same with the previous spectra acquired with the Perkin<br />

Elmer lambda 900 (provided in Appendix 1) in the overlapping area 800-2500nm.<br />

This fact ensures that the device works efficiently.<br />

The radiati<strong>on</strong> penetrates even the thickest layers since the spectra have lower<br />

reflectivity over the white background while the thickness increases. In the case of the<br />

black background the reflectivity increases while the thickness of the layer increase.<br />

These measurements are shown in appendix 2. A golden sample is also measured in<br />

order to validate the operati<strong>on</strong> of the system. The result is shown in fig. 1.2.1.5. As<br />

expected the gold has a reflectivity of almost 100% in the specific wavelength area<br />

(800nm-4500nm).<br />

In the N<strong>IR</strong> spectral regi<strong>on</strong> (800-2500 nm) overt<strong>on</strong>e and combinati<strong>on</strong> vibrati<strong>on</strong>al<br />

modes are active, whereas in the 2500-4200 nm regi<strong>on</strong> some fundamental vibrati<strong>on</strong>s<br />

can be observed. Almost all the absorpti<strong>on</strong> bands observed in the N<strong>IR</strong> arise from<br />

overt<strong>on</strong>es of functi<strong>on</strong>al groups c<strong>on</strong>taining hydrogen atoms (C-H, N-H, O-H) or<br />

combinati<strong>on</strong>s involving stretching and bending modes of vibrati<strong>on</strong> of such groups. A<br />

great degree of complexity characterizes the spectra acquired in this regi<strong>on</strong>. As a<br />

result, spectral assignments to specific vibrati<strong>on</strong>al modes are not always possible.<br />

10


Figure 1.2.1.5 Gold sample measurement (90% reflectivity)<br />

(800nm – 4500nm)<br />

11


APPENDIX 1<br />

Vertical axis (Reflectivity R%) - Horiz<strong>on</strong>tal axis Wavelengths (200-2400nm)<br />

Lead White<br />

(over Black)<br />

100<br />

90<br />

80<br />

70<br />

60<br />

50<br />

40<br />

30<br />

20<br />

10<br />

0<br />

0 500 1000 1500 2000 2500<br />

Yellow Ochre<br />

(over Black)<br />

60<br />

50<br />

40<br />

30<br />

20<br />

10<br />

0<br />

0 500 1000 1500 2000 2500<br />

Warm Ochre<br />

(over Black)<br />

50<br />

45<br />

40<br />

35<br />

30<br />

25<br />

20<br />

15<br />

10<br />

5<br />

0<br />

0 500 1000 1500 2000 2500<br />

12<br />

(over White)<br />

90<br />

80<br />

70<br />

60<br />

50<br />

40<br />

30<br />

20<br />

10<br />

0 500 1000 1500 2000 2500<br />

(over White)<br />

70<br />

60<br />

50<br />

40<br />

30<br />

20<br />

10<br />

0<br />

0 500 1000 1500 2000 2500<br />

80<br />

70<br />

60<br />

50<br />

40<br />

30<br />

20<br />

10<br />

(over White)<br />

0<br />

0 500 1000 1500 2000 2500


Red Ochre<br />

(over Black)<br />

35<br />

30<br />

25<br />

20<br />

15<br />

10<br />

5<br />

0<br />

0 500 1000 1500 2000 2500<br />

Sienna Burnt<br />

(over Black)<br />

30<br />

25<br />

20<br />

15<br />

10<br />

5<br />

0<br />

0 500 1000 1500 2000 2500<br />

Hematite<br />

(over Black)<br />

40<br />

35<br />

30<br />

25<br />

20<br />

15<br />

10<br />

5<br />

0<br />

0 500 1000 1500 2000 2500<br />

13<br />

70<br />

60<br />

50<br />

40<br />

30<br />

20<br />

10<br />

(over White)<br />

0<br />

0 500 1000 1500 2000 2500<br />

(over White)<br />

70<br />

60<br />

50<br />

40<br />

30<br />

20<br />

10<br />

0<br />

0 500 1000 1500 2000 2500<br />

60<br />

50<br />

40<br />

30<br />

20<br />

10<br />

(over White)<br />

0<br />

0 500 1000 1500 2000 2500


Caput Mortuum<br />

(over Black)<br />

70<br />

60<br />

50<br />

40<br />

30<br />

20<br />

10<br />

0<br />

0 500 1000 1500 2000 2500<br />

Umber Raw(over Black)<br />

50<br />

45<br />

40<br />

35<br />

30<br />

25<br />

20<br />

15<br />

10<br />

5<br />

0<br />

0 500 1000 1500 2000 2500<br />

Cinnabar<br />

(over Black)<br />

70<br />

60<br />

50<br />

40<br />

30<br />

20<br />

10<br />

0<br />

0 500 1000 1500 2000 2500<br />

14<br />

0.8<br />

0.7<br />

0.6<br />

0.5<br />

0.4<br />

0.3<br />

0.2<br />

0.1<br />

(over White)<br />

0<br />

0 500 1000 1500 2000 2500<br />

60<br />

50<br />

40<br />

30<br />

20<br />

10<br />

0<br />

(over White)<br />

-10<br />

0 500 1000 1500 2000 2500<br />

70<br />

60<br />

50<br />

40<br />

30<br />

20<br />

10<br />

(over White)<br />

0<br />

0 500 1000 1500 2000 2500


Minium<br />

(over Black)<br />

90<br />

80<br />

70<br />

60<br />

50<br />

40<br />

30<br />

20<br />

10<br />

0<br />

0 500 1000 1500 2000 2500<br />

Green Earth<br />

(over Black)<br />

30<br />

25<br />

20<br />

15<br />

10<br />

5<br />

0<br />

-5<br />

-10<br />

-15<br />

0 500 1000 1500 2000 2500<br />

Malachite<br />

(over Black)<br />

40<br />

30<br />

20<br />

10<br />

0<br />

-10<br />

-20<br />

0 500 1000 1500 2000 2500<br />

15<br />

0.35<br />

0.3<br />

0.25<br />

0.2<br />

0.15<br />

0.1<br />

0.05<br />

-0.05<br />

-0.1<br />

140<br />

120<br />

100<br />

0<br />

80<br />

60<br />

40<br />

20<br />

(over White)<br />

0<br />

0 500 1000 1500 2000 2500<br />

(over White)<br />

-0.15<br />

0 500 1000 1500 2000 2500<br />

60<br />

50<br />

40<br />

30<br />

20<br />

10<br />

0<br />

-10<br />

(over White)<br />

-20<br />

0 500 1000 1500 2000 2500


Azzurite<br />

(over Black)<br />

40<br />

35<br />

30<br />

25<br />

20<br />

15<br />

10<br />

5<br />

0<br />

0 500 1000 1500 2000 2500<br />

Ultramarine<br />

(over Black)<br />

25<br />

20<br />

15<br />

10<br />

5<br />

0<br />

-5<br />

-10<br />

0 500 1000 1500 2000 2500<br />

Indigo<br />

(over Black)<br />

25<br />

20<br />

15<br />

10<br />

5<br />

0<br />

-5<br />

0 500 1000 1500 2000 2500<br />

16<br />

80<br />

70<br />

60<br />

50<br />

40<br />

30<br />

20<br />

10<br />

0<br />

(over White)<br />

-10<br />

0 500 1000 1500 2000 2500<br />

80<br />

70<br />

60<br />

50<br />

40<br />

30<br />

20<br />

10<br />

(over White)<br />

0<br />

0 500 1000 1500 2000 2500<br />

100<br />

90<br />

80<br />

70<br />

60<br />

50<br />

40<br />

30<br />

20<br />

10<br />

(over White)<br />

0<br />

0 500 1000 1500 2000 2500


Cobalt Blue(over Black)<br />

60<br />

50<br />

40<br />

30<br />

20<br />

10<br />

0<br />

-10<br />

0 500 1000 1500 2000 2500<br />

17<br />

(over White)<br />

70<br />

60<br />

50<br />

40<br />

30<br />

20<br />

10<br />

0<br />

0 500 1000 1500 2000 2500


APPENDIX 2<br />

Vertical axis (Reflectivity R%) - Horiz<strong>on</strong>tal axis Wavelengths (800-4500nm)<br />

% Reflectance<br />

30<br />

25<br />

20<br />

15<br />

10<br />

5<br />

0<br />

800 1200 1600 2000 2400 2800 3200 3600 4000<br />

% Reflectance<br />

80<br />

70<br />

60<br />

50<br />

40<br />

30<br />

20<br />

10<br />

Wavelength nm<br />

Azurite b1<br />

Azurite b2<br />

Azurite b3<br />

Azurite b4<br />

Azurite b5<br />

Azurite b6<br />

Azurite b7<br />

Azurite b8<br />

0<br />

800 1200 1600 2000 2400 2800 3200 3600 4000<br />

Wavelength nm<br />

Azurite <strong>on</strong> black and white<br />

Caput Mortuum <strong>on</strong> black and white<br />

Caput Mortuum b1<br />

Caput Mortuum b2<br />

Caput Mortuum b3<br />

Caput Mortuum b4<br />

Caput Mortuum b5<br />

Caput Mortuum b6<br />

Caput Mortuum b7<br />

Caput Mortuum b8<br />

% Reflectance<br />

100<br />

90<br />

80<br />

70<br />

60<br />

50<br />

40<br />

30<br />

20<br />

10<br />

% Reflectance<br />

100<br />

80<br />

60<br />

40<br />

20<br />

0<br />

800 1200 1600 2000 2400 2800 3200 3600 4000<br />

Wavelength nm<br />

Azurite w1<br />

Azurite w2<br />

Azurite w3<br />

Azurite w4<br />

Azurite w5<br />

Azurite w6<br />

Azurite w7<br />

Azurite w8<br />

Caput Mortuum w1<br />

Caput Mortuum w2<br />

Caput Mortuum w3<br />

Caput Mortuum w4<br />

Caput Mortuum w5<br />

Caput Mortuum w6<br />

Caput Mortuum w7<br />

Caput Mortuum w8<br />

0<br />

800 1200 1600 2000 2400 2800 3200 3600 4000<br />

Wavelength nm<br />

18


% Reflectance<br />

100<br />

90<br />

80<br />

70<br />

60<br />

50<br />

40<br />

30<br />

20<br />

10<br />

0<br />

800 1200 1600 2000 2400 2800 3200 3600 4000<br />

% Reflectance<br />

40<br />

30<br />

20<br />

10<br />

Wavelength nm<br />

Cinnabar <strong>on</strong> black and white<br />

Cinnabar b1<br />

Cinnabar b2<br />

Cinnabar b3<br />

Cinnabar b4<br />

Cinnabar b5<br />

Cinnabar b6<br />

Cinnabar b7<br />

Cinnabar b8<br />

0<br />

800 1200 1600 2000 2400 2800 3200 3600 4000<br />

Wavelength nm<br />

% Reflectance<br />

100<br />

Green Earth <strong>on</strong> black and white<br />

Green Earth b1<br />

Green Earth b2<br />

Green Earth b3<br />

Green Earth b4<br />

Green Earth b5<br />

Green Earth b6<br />

Green Earth b7<br />

Green Earth b8<br />

% Reflectance<br />

60<br />

50<br />

40<br />

30<br />

20<br />

10<br />

90<br />

80<br />

70<br />

60<br />

50<br />

40<br />

30<br />

20<br />

10<br />

Cinnabar w1<br />

Cinnabar w2<br />

Cinnabar w3<br />

Cinnabar w4<br />

Cinnabar w5<br />

Cinnabar w6<br />

Cinnabar w7<br />

Cinnabar w8<br />

0<br />

800 1200 1600 2000 2400 2800 3200 3600 4000<br />

Wavelength nm<br />

Green Earth w1<br />

Green Earth w2<br />

Green Earth w3<br />

Green Earth w4<br />

Green Earth w5<br />

Green Earth w6<br />

Green Earth w7<br />

Green Earth w8<br />

0<br />

800 1200 1600 2000 2400 2800 3200 3600 4000<br />

Wavelength nm<br />

19


Hematite <strong>on</strong> black and white<br />

80<br />

40<br />

Hematite w1<br />

Hematite w2<br />

Hematite w3<br />

Hematite w4<br />

Hematite w5<br />

Hematite w6<br />

Hematite w7<br />

Hematite w8<br />

70<br />

60<br />

30<br />

50<br />

40<br />

Hematite b1<br />

Hematite b2<br />

Hematite b3<br />

Hematite b4<br />

Hematite b5<br />

Hematite b6<br />

Hematite b7<br />

Hematite b8<br />

20<br />

30<br />

% Reflectance<br />

% Reflectance<br />

20<br />

10<br />

10<br />

800 1200 1600 2000 2400 2800 3200 3600 4000<br />

0<br />

800 1200 1600 2000 2400 2800 3200 3600 4000<br />

0<br />

Wavelength nm<br />

Wavelength nm<br />

Indigo <strong>on</strong> black and white<br />

10<br />

100<br />

90<br />

Indigo w1<br />

Indigo w2<br />

Indigo w3<br />

Indigo w4<br />

Indigo w5<br />

Indigo w6<br />

Indigo w7<br />

Indigo w8<br />

80<br />

8<br />

70<br />

60<br />

Indigo b1<br />

Indigo b2<br />

Indigo b3<br />

Indigo b4<br />

Indigo b5<br />

Indigo b6<br />

Indigo b7<br />

Indigo b8<br />

6<br />

50<br />

40<br />

% Reflectance<br />

% Reflectance<br />

30<br />

4<br />

20<br />

10<br />

0<br />

800 1200 1600 2000 2400 2800 3200 3600 4000<br />

Wavelength nm<br />

800 1200 1600 2000 2400 2800 3200 3600 4000<br />

2<br />

Wavelength nm<br />

20


% Reflectance<br />

90<br />

80<br />

70<br />

60<br />

50<br />

40<br />

30<br />

20<br />

10<br />

0<br />

800 1200 1600 2000 2400 2800 3200 3600 4000<br />

% Reflectance<br />

50<br />

40<br />

30<br />

20<br />

10<br />

Wavenumber nm<br />

Lead White b1<br />

Lead White b2<br />

Lead White b3<br />

Lead White b4<br />

Lead White b5<br />

Lead White b6<br />

Lead White b7<br />

Lead White b8<br />

0<br />

800 1200 1600 2000 2400 2800 3200 3600 4000<br />

Wavelength nm<br />

Lead White <strong>on</strong> black and white<br />

% Reflectance<br />

100<br />

Malachite <strong>on</strong> black and white<br />

Malachite b1<br />

Malachite b2<br />

Malachite b3<br />

Malachite b4<br />

Malachite b5<br />

Malachite b6<br />

Malachite b7<br />

Malachite b8<br />

% Reflectance<br />

80<br />

70<br />

60<br />

50<br />

40<br />

30<br />

20<br />

10<br />

90<br />

80<br />

70<br />

60<br />

50<br />

40<br />

30<br />

20<br />

10<br />

Lead White w1<br />

Lead White w2<br />

Lead White w3<br />

Lead White w4<br />

Lead White w5<br />

Lead White w6<br />

Lead White w7<br />

Lead White w8<br />

0<br />

800 1200 1600 2000 2400 2800 3200 3600 4000<br />

Wavenumber nm<br />

Malachite w1<br />

Malachite w2<br />

Malachite w3<br />

Malachite w4<br />

Malachite w5<br />

Malachite w6<br />

Malachite w7<br />

Malachite w8<br />

0<br />

800 1200 1600 2000 2400 2800 3200 3600 4000<br />

Wavelength nm<br />

21


% Reflectance<br />

100<br />

90<br />

80<br />

70<br />

60<br />

50<br />

40<br />

30<br />

20<br />

10<br />

0<br />

800 1200 1600 2000 2400 2800 3200 3600 4000<br />

% Reflectance<br />

40<br />

35<br />

30<br />

25<br />

20<br />

15<br />

10<br />

5<br />

Wavelength nm<br />

Minium <strong>on</strong> black and white<br />

Minium b1<br />

Minium b2<br />

Minium b3<br />

Minium b4<br />

Minium b5<br />

Minium b6<br />

Minium b7<br />

Minium b8<br />

0<br />

800 1200 1600 2000 2400 2800 3200 3600 4000<br />

Wavelength nm<br />

% Reflectance<br />

120<br />

110<br />

100<br />

Red Ochre <strong>on</strong> black and white<br />

Red Ochre b1<br />

Red Ochre b2<br />

Red Ochre b3<br />

Red Ochre b4<br />

Red Ochre b5<br />

Red Ochre b6<br />

Red Ochre b7<br />

Red Ochre b8<br />

% Reflectance<br />

90<br />

80<br />

70<br />

60<br />

50<br />

40<br />

30<br />

20<br />

10<br />

90<br />

80<br />

70<br />

60<br />

50<br />

40<br />

30<br />

20<br />

10<br />

Minium w1<br />

Minium w2<br />

Minium w3<br />

Minium w4<br />

Minium w5<br />

Minium w6<br />

Minium w7<br />

Minium w8<br />

0<br />

800 1200 1600 2000 2400 2800 3200 3600 4000<br />

Wavelength nm<br />

0<br />

800 1200 1600 2000 2400 2800 3200 3600 4000<br />

Wavelength nm<br />

Red Ochre w1<br />

Red Ochre w2<br />

Red Ochre w3<br />

Red Ochre w4<br />

Red Ochre w5<br />

Red Ochre w6<br />

Red Ochre w7<br />

Red Ochre w8<br />

22


% Reflectance<br />

40<br />

35<br />

30<br />

25<br />

20<br />

15<br />

10<br />

5<br />

0<br />

800 1200 1600 2000 2400 2800 3200 3600 4000<br />

% Reflectance<br />

16<br />

14<br />

12<br />

10<br />

8<br />

6<br />

4<br />

Wavelength nm<br />

Sienna Burnt <strong>on</strong> black and white<br />

Sienna Burnt b1<br />

Sienna Burnt b2<br />

Sienna Burnt b3<br />

Sienna Burnt b4<br />

Sienna Burnt b5<br />

Sienna Burnt b6<br />

Sienna Burnt b7<br />

Sienna Burnt b8<br />

2<br />

800 1200 1600 2000 2400 2800 3200 3600 4000<br />

Wavelength nm<br />

% Reflectance<br />

Ultramarine <strong>on</strong> black and white<br />

Ultramarine b1<br />

Ultramarine b2<br />

Ultramarine b3<br />

Ultramarine b4<br />

Ultramarine b5<br />

Ultramarine b6<br />

Ultramarine b7<br />

Ultramarine b8<br />

% Reflectance<br />

90<br />

80<br />

70<br />

60<br />

50<br />

40<br />

30<br />

20<br />

10<br />

Sienna Burnt w1<br />

Sienna Burnt w2<br />

Sienna Burnt w3<br />

Sienna Burnt w4<br />

Sienna Burnt w5<br />

Sienna Burnt w6<br />

Sienna Burnt w7<br />

Sienna Burnt w8<br />

0<br />

800 1200 1600 2000 2400 2800 3200 3600 4000<br />

100<br />

90<br />

80<br />

70<br />

60<br />

50<br />

40<br />

30<br />

20<br />

10<br />

Wavelength nm<br />

Ultramarine w1<br />

Ultramarine w2<br />

Ultramarine w3<br />

Ultramarine w4<br />

Ultramarine w5<br />

Ultramarine w6<br />

Ultramarine w7<br />

Ultramarine w8<br />

0<br />

800 1200 1600 2000 2400 2800 3200 3600 4000<br />

Wavelength nm<br />

23


% Reflectance<br />

16<br />

14<br />

12<br />

10<br />

8<br />

6<br />

4<br />

2<br />

800 1200 1600 2000 2400 2800 3200 3600 4000<br />

% Reflectance<br />

50<br />

40<br />

30<br />

20<br />

10<br />

Wavelength nm<br />

Umber Raw <strong>on</strong> black and white<br />

Umber Raw b1<br />

Umber Raw b2<br />

Umber Raw b3<br />

Umber Raw b4<br />

Umber Raw b5<br />

Umber Raw b6<br />

Umber Raw b7<br />

Umber Raw b8<br />

0<br />

800 1200 1600 2000 2400 2800 3200 3600 4000<br />

Wavelength nm<br />

% Reflectance<br />

Warm Ochre <strong>on</strong> black and white<br />

Warm Ochre b1<br />

Warm Ochre b2<br />

Warm Ochre b3<br />

Warm Ochre b4<br />

Warm Ochre b5<br />

Warm Ochre b6<br />

Warm Ochre b7<br />

Warm Ochre b8<br />

% Reflectance<br />

70<br />

60<br />

50<br />

40<br />

30<br />

20<br />

10<br />

Umber Raw w1<br />

Umber Raw w2<br />

Umber Raw w3<br />

Umber Raw w4<br />

Umber Raw w5<br />

Umber Raw w6<br />

Umber Raw w7<br />

Umber Raw w8<br />

0<br />

800 1200 1600 2000 2400 2800 3200 3600 4000<br />

100<br />

90<br />

80<br />

70<br />

60<br />

50<br />

40<br />

30<br />

20<br />

10<br />

Wavelength nm<br />

Warm Ochre w1<br />

Warm Ochre w2<br />

Warm Ochre w3<br />

Warm Ochre w4<br />

Warm Ochre w5<br />

Warm Ochre w6<br />

Warm Ochre w7<br />

Warm Ochre w8<br />

0<br />

800 1200 1600 2000 2400 2800 3200 3600 4000<br />

Wavelength nm<br />

24


% Reflectance<br />

80<br />

70<br />

60<br />

50<br />

40<br />

30<br />

20<br />

10<br />

0<br />

800 1200 1600 2000 2400 2800 3200 3600 4000<br />

Wavelength nm<br />

Yellow Ochre <strong>on</strong> black and white<br />

Yellow Ochre b1<br />

Yellow Ochre b2<br />

Yellow Ochre b3<br />

Yellow Ochre b4<br />

Yellow Ochre b5<br />

Yellow Ochre b6<br />

Yellow Ochre b7<br />

Yellow Ochre b8<br />

% Reflectance<br />

80<br />

70<br />

60<br />

50<br />

40<br />

30<br />

20<br />

10<br />

Yellow Ochre w1<br />

Yellow Ochre w2<br />

Yellow Ochre w3<br />

Yellow Ochre w4<br />

Yellow Ochre w5<br />

Yellow Ochre w6<br />

Yellow Ochre w7<br />

Yellow Ochre w8<br />

0<br />

800 1200 1600 2000 2400 2800 3200 3600 4000<br />

Wavelength nm<br />

25


<str<strong>on</strong>g>JRA2</str<strong>on</strong>g>-Task 3 - System assembling of the CNR-INOA new device.<br />

(Resp. CNR-INOA)<br />

During the first semester of the third year of the project the following activities have been carried out:<br />

1. Improvement of the filter holders<br />

2. Realizati<strong>on</strong> of a better bundle prototype<br />

3. System assembling<br />

4. First test of the system (14 images at different <strong>IR</strong> wavelength)<br />

As menti<strong>on</strong>ed in previous <str<strong>on</strong>g>report</str<strong>on</strong>g>s, the detecti<strong>on</strong> system is made of 14 photodiodes to cover the spectral regi<strong>on</strong><br />

from 800 nm to 2400 nm. Each sensor is equipped with an interferential filter. The first 3 channels are equipped<br />

with Si photodiodes; from 4 to 11 channel InGaAs photodiodes are used and, finally for channels 12 to 14 preamplified<br />

thermoelettrically cooled photodiodes are used. The 14 identified photodiodes are resumed in Table 1.<br />

The central wavelength and bandwidth of the corresp<strong>on</strong>ding filter is indicated.<br />

Table 1. Sensors identified for the detecti<strong>on</strong> system.<br />

CHANNEL PHOTOTDIODE λfilter [nm] Δλfilter [nm]<br />

1 Hamamatsu S2386 5K 800 10<br />

2 Hamamatsu S2386 5K 850 67<br />

3 Hamamatsu S2386 5K 952 67<br />

4 Hamamatsu G8370-01 1030 55<br />

5 Hamamatsu G8370-01 1112 66<br />

6 Hamamatsu G8370-01 1200 66<br />

7 Hamamatsu G8370-01 1300 90<br />

8 Hamamatsu G8370-01 1400 90<br />

9 Hamamatsu G8370-01 1500 90<br />

10 Hamamatsu G8370-01 1600 90<br />

11 Hamamatsu G8371-01 1700 90<br />

12 Hamamatsu G6122 1820 100<br />

13 Hamamatsu G6122 1930 112<br />

14 Hamamatsu G6122-03 2265 590<br />

26


Fiber Bundle<br />

After the final improvement of the filter holders, efforts have been put in:<br />

-Optimising the fiber bundle<br />

-Channel gain equalisati<strong>on</strong><br />

-Calibrati<strong>on</strong><br />

Figure 1. Microscope images of the bundle secti<strong>on</strong>.<br />

Several attempts have been carried out to realize a compact and ordered fiber bundle. Best “hand made” soluti<strong>on</strong><br />

obtained, error 30μm. The best soluti<strong>on</strong> is shown in Figure 1, where two microscope images are <str<strong>on</strong>g>report</str<strong>on</strong>g>ed.<br />

Although an error of 30 μm is acceptable, it is important to be reproducible in making of the bundle. Thereore,<br />

efforts are currently carried out in order to:<br />

study a method for producing aligned fiber bundles with error < 3 μm<br />

use acustom mechanical masks for the fiber alignment (see figure 2).<br />

Figure 2. Drawing of a possible mechanical mask for fiber alignement<br />

27


A first test of the system was carried out, operating with a single fiber, properly filtered with the 14 devices<br />

described above.<br />

The mechanical system of the scanner with the arrangement of the fiber-filter is shown in Figure 3a. In Figure 3<br />

b, the regi<strong>on</strong> of the sample painting explored by the scanner is shown.<br />

a)<br />

b)<br />

Figure 3 – a) Mechanical scanning system; b) Selected area for the scanning<br />

In Figure 4 is <str<strong>on</strong>g>report</str<strong>on</strong>g>ed the first ensemble of 14 images taken at different <strong>IR</strong> wavelength. The images are excellent<br />

and represent (at least for the moment) the best ever obtained <strong>IR</strong> mutispectral images in terms of coupling of<br />

spatial resoluti<strong>on</strong> and <strong>IR</strong> wavelength range.<br />

14 N<strong>IR</strong><br />

bands<br />

Figure 4 – First <strong>IR</strong> <strong>multispectral</strong> images taken with the newly assembled <strong>IR</strong>-scanner device.<br />

28

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!