26.08.2013 Views

spiders (araneae) of the fishpond eulittoral zone - European Society ...

spiders (araneae) of the fishpond eulittoral zone - European Society ...

spiders (araneae) of the fishpond eulittoral zone - European Society ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Ekológia (Bratislava) Vol. 19, Supplement 4, 51-54, 2000<br />

SPIDERS (ARANEAE) OF THE FISHPOND<br />

EULITTORAL ZONE<br />

MICHAL HOLEC<br />

University <strong>of</strong> South Bohemia, Faculty <strong>of</strong> Biological Sciences, Na sádkách 7, 37005 České Budějovice, Czech<br />

Republic; Institute <strong>of</strong> Soil Biology, Academy <strong>of</strong> Sciences <strong>of</strong> <strong>the</strong> Czech Republic, Na sádkách 7, 37005 České<br />

Budějovice, Czech Republic. E-mail: mh@tix.bf.jcu.cz<br />

Introduction<br />

Abstract<br />

HOLEC M.: Spiders (Araneae) <strong>of</strong> <strong>the</strong> <strong>fishpond</strong> <strong>eulittoral</strong> <strong>zone</strong>. In GAJDOŠ P., PEKÁR S. (eds): Proceedings<br />

<strong>of</strong> <strong>the</strong> 18th <strong>European</strong> Colloquium <strong>of</strong> Arachnology, Stará Lesná, 1999. Ekológia (Bratislava),<br />

Vol. 19, Supplement 4/2000, p. 51-54.<br />

A study was made <strong>of</strong> <strong>spiders</strong> living in vegetation (Phragmites australis, Typha angustifolia and<br />

Carex) <strong>of</strong> <strong>the</strong> <strong>eulittoral</strong> <strong>zone</strong> <strong>of</strong> ponds in <strong>the</strong> Czech Republic. Specimens were collected from<br />

floating pitfall traps, by beating vegetation and by hand collection. In total, 38 spider species<br />

were recorded, and ten <strong>of</strong> <strong>the</strong>se are considered to be specialised inhabitants <strong>of</strong> <strong>the</strong> <strong>eulittoral</strong> <strong>zone</strong>.<br />

The spider assemblage <strong>of</strong> tall sedge vegetation exhibited <strong>the</strong> highest abundance and species diversity.<br />

Various types <strong>of</strong> wetlands have been studied in <strong>the</strong> Czech Republic. Bogs were studied<br />

intensively by KŮRKA (e.g. 1990, 1995) and (MILLER, 1951), wet meadows by RŮŽIČKA (1987).<br />

MILLER, OBRTEL (1975) investigated <strong>the</strong> terrestrial <strong>zone</strong> <strong>of</strong> <strong>fishpond</strong> reed marshes. The<br />

arachn<strong>of</strong>auna <strong>of</strong> <strong>the</strong> <strong>eulittoral</strong> <strong>zone</strong> <strong>of</strong> <strong>fishpond</strong> vegetation has not been studied previously<br />

in <strong>the</strong> Czech Republic.<br />

SZINETÁR (1993) summarised <strong>the</strong> literature on <strong>spiders</strong> <strong>of</strong> moorlands in Hungary. SZINETÁR<br />

(1995) published interesting faunistic data for <strong>the</strong> reed beds <strong>of</strong> Lake Balaton. RENNER,<br />

BELLMAN (1995) investigated <strong>the</strong> spider fauna <strong>of</strong> <strong>the</strong> lake ,,Schmiechener See“. Spider communities<br />

<strong>of</strong> <strong>the</strong> Danube Delta were investigated by WEISS et al. (1998). The distribution<br />

pattern <strong>of</strong> hygrophilous species <strong>of</strong> <strong>the</strong> genus Pirata was described by RENNER (1986) and<br />

that <strong>of</strong> Tetragnatha species in <strong>the</strong> Danube Delta by UHL et al. (1992). Data on <strong>the</strong> ecology<br />

and distribution <strong>of</strong> species <strong>of</strong> <strong>the</strong> genus Dolomedes were summarised by HELSDINGEN (1993)<br />

and DUFFEY (1995).<br />

51


T a b l e 1. List <strong>of</strong> spider species recorded in vegetation<br />

stands <strong>of</strong> Cx -Carex, Ta- Typha angustifolia, Pa-<br />

Phragmites australis. – A: in small numbers and locally<br />

distributed, B: in small numbers and widespread, C:<br />

abundant and locally distributed, D: abundant and<br />

widespread. * eulitoral specialists.<br />

Cx Ta Pa<br />

Araeoncus crassiceps (WEST.) A<br />

Antistea elegans (BL.) B B B<br />

Aphileta misera (O. P.-C.) A<br />

Bathyphantes approximatus (O. P.-C.) D B B<br />

Bathyphantes gracilis (BL.) D B B<br />

*Clubiona juvenis SIMON A A<br />

Clubiona phragmitis C. L. K. B D D<br />

Dismodicus bifrons (BL.) A<br />

Dolomedes fimbriatus (CL.) A<br />

*Dolomedes plantarius (CL.) D<br />

*Donacochara speciosa (TH.) B D D<br />

Enoplognatha caricis (FICK.) A<br />

Gnathonarium dentatum (WIDER) B B B<br />

Gongylidiellum murcidum SIMON A A A<br />

Hypomma bituberculatum (WIDER) D B B<br />

Kaestneria pullata (O. P.-C.) A A A<br />

Larinioides folium (SCH.) B B B<br />

Lophomma punctatum (BL.) A A<br />

*Marpissa radiata (GRUBE) B A A<br />

*Microlinyphia impigra (O. P.-C.) B B B<br />

Neriene clathrata (SUND.) D B B<br />

Pachygnatha clercki SUND. D B B<br />

Pardosa prativaga (L. K.) B B B<br />

Pardosa sphagnicola (F. D.) A<br />

Pirata piraticus (CL.) D D D<br />

Pirata piscatorius (CL.) B B<br />

Pirata tenuitarsis SIMON C C C<br />

Porrhomma pygmaeum (BL.) A A A<br />

*Rugathodes instabilis (O. P.-C.) C C A<br />

Silometopus elegans (O. P.-C.) A A<br />

Sitticus floricola (C. L. K.) B A A<br />

Taranucnus setosus (O. P.-C.) A<br />

Tetragnatha extensa (L.) D B B<br />

*Tetragnatha shoshone LEVI A C C<br />

*Tetragnatha striata L. K. C C C<br />

*Theridion hemerobius SIMON A D A<br />

*Theridiosoma gemmosum (L. K.) B B B<br />

Tibellus maritimus (MENGE) A A A<br />

52<br />

total number <strong>of</strong> species 37 28 29<br />

I studied <strong>spiders</strong> in three different<br />

types <strong>of</strong> littoral vegetation. Selected<br />

faunistic data were published<br />

by RŮŽIČKA, HOLEC (1998).<br />

Material and methods<br />

Spiders were collected from <strong>the</strong><br />

vegetation by hand, and by beating <strong>the</strong><br />

vegetation. Floating pitfall traps (RŮŽIČKA,<br />

1982; RENNER, 1986) were used in order to<br />

collect <strong>spiders</strong> walking on <strong>the</strong> water<br />

surface. Spiders were collected from <strong>the</strong><br />

end <strong>of</strong> April to July in 1996 and 1997. 702<br />

determinable individuals representing 38<br />

species were collected. Thirteen stands <strong>of</strong><br />

vegetation in eight ponds in different parts<br />

<strong>of</strong> <strong>the</strong> Czech Republic were investigated.<br />

Spiders were collected from three types <strong>of</strong><br />

littoral vegetation - Phragmites australis<br />

(five plots), Typha angustifolia (three plots)<br />

and stands with Carex (three plots<br />

vegetated by Carex acutiformis and two by<br />

Carex elata).<br />

Abundance data were treated semiquantitatively,<br />

and coded as follows; - A:<br />

species in small numbers and locally<br />

distributed, B: in small numbers and<br />

widespread, C: abundant and locally<br />

distributed, D: abundant and widespread.<br />

This classification is based on our own data<br />

and on <strong>the</strong> literature (BUCHAR, 1989).<br />

Results and discussion<br />

38 species were recorded (Table<br />

1). 10 <strong>of</strong> <strong>the</strong>se have not been recorded<br />

before in terrestrial habitats<br />

or in wetlands in <strong>the</strong> Czech Republic.<br />

These species are considered<br />

to be specialists <strong>of</strong> <strong>the</strong> <strong>eulittoral</strong><br />

<strong>zone</strong> (<strong>the</strong>se species are marked by<br />

an asterisk in Table 1).<br />

Tetragnatha shoshone LEVI and<br />

Tetragnatha striata L. KOCH were


collected predominantly at <strong>the</strong> water’s edge near reed and cattail stands. Donacochara<br />

speciosa (THORELL), Clubiona juvenis SIMON were associated mainly with reed and dense<br />

cattail stands. Theridion hemerobius SIMON was collected in highest numbers in <strong>the</strong> canopy<br />

layers <strong>of</strong> cattail. Marpissa radiata (GRUBE) prefers sedge, although it seems to be more<br />

terrestrial than <strong>the</strong> o<strong>the</strong>r species. HOLEC (unpubl.) observed several females with cocoons in<br />

a pea field surrounding large reed marshes. BÍLEK (in BUCHAR, 1989) collected this species<br />

from oak seedlings near a pond. Records <strong>of</strong> M. radiata from <strong>the</strong> Czech Republic are rare,<br />

its occurrence in sedge is relatively common, and I consider this species to be a specialist<br />

<strong>of</strong> <strong>the</strong> <strong>eulittoral</strong> <strong>zone</strong>. Theridiosoma gemmosum (L. KOCH) is a widespread species, but<br />

usually very time-consuming to find. Although I searched intensively in reed, sedge and<br />

cattail stands, I never found large numbers <strong>of</strong> specimens. T. gemmosum was recorded in<br />

higher numbers (about 50 subadult males in five minutes) in grass overhanging <strong>the</strong> banks <strong>of</strong><br />

channels (HOLEC, RŮŽIČKA,1998). Similarly, BOGGILD (BOGGILD, CROCKER, 1971) collected it<br />

in higher numbers (40 specimens in half an hour), although none were found in <strong>the</strong> first half<br />

hour. Dolomedes plantarius (CLERCK) was recorded only among sedges along eutrophic<br />

<strong>fishpond</strong>s or among water lilies, surrounded by sedge stands. Our results correspond with<br />

DUFFEY (1995), who showed that D. plantarius is a species <strong>of</strong> mesotrophic/eutrophic wetlands.<br />

There is no firm evidence for D. plantarius coexisting with D. fimbriatus (CLERCK)<br />

anywhere in Europe (DUFFEY, 1995). Three localities were recorded where both species<br />

were caught toge<strong>the</strong>r at <strong>the</strong> same site and in <strong>the</strong> same habitat (flooded sedge) in <strong>the</strong> Czech<br />

Republic. Two records were from South Bohemia (1 ex. D. plantarius and 1 ex. D. fimbriatus,<br />

Potěšil pond, lgt. Růžička; 1 ex. D. plantarius and 1 ex D. fimbriatus, Velký Tisý pond, lgt.<br />

Holec) and two were from North Bohemia (1 ex. D. plantarius and 1 ex. D. fimbratus,<br />

Břehyně ponds, lgt. Holec; 4 ex. D. plantarius and 2 ex. D. fimbriatus, Hradčanské rybníky<br />

ponds, lgt. Holec). KŮRKA (1997) investigated pine bogs surrounding both North Bohemian<br />

ponds mentioned and recorded only D. fimbriatus.<br />

Coexistence <strong>of</strong> both species at ponds can probably be common at localities where <strong>the</strong><br />

bog habitat <strong>of</strong> D. fimbriatus shows a gradual transition to <strong>the</strong> pond habitat <strong>of</strong> D. plantarius.<br />

RENNER, BELLMAN (1995) described two main factors influencing <strong>the</strong> spider fauna at<br />

Schmiechener See in Sou<strong>the</strong>rn Germany. The first factor is <strong>the</strong> presence <strong>of</strong> extensive stands<br />

<strong>of</strong> Carex elata and <strong>the</strong> second is an extreme fluctuation <strong>of</strong> water level. Despite methodological<br />

problems with data collection, it seems that permanently flooded sedge tussock<br />

stands are unique habitats for retaining species diversity. Thirty seven species were recorded<br />

here and <strong>the</strong> abundance <strong>of</strong> most species also seemed to be higher.<br />

Similarly, LUFF (1966), BOSSENBROEK et al. (1977), KESSLER et al. (1988) and DENIS et al.<br />

(1998) found that grass or sedge tussock can harbour ra<strong>the</strong>r large numbers <strong>of</strong> invertebrates<br />

under adverse wea<strong>the</strong>r conditions. Tussocks <strong>of</strong> Carex elata and C. acutiformes are typical<br />

<strong>of</strong> permanently high water and sedges provide relative stable biotopes. The high degree <strong>of</strong><br />

spatial variability <strong>of</strong> sedge tussocks is evident. Most <strong>spiders</strong> are associated with <strong>the</strong> <strong>zone</strong> <strong>of</strong><br />

overhanging old leaves.<br />

The <strong>eulittoral</strong> <strong>zone</strong> <strong>of</strong> reed vegetation is a relatively homogeneous habitat without much<br />

spatial variability. High water level can be much more important here than in <strong>the</strong> case <strong>of</strong><br />

sedge tussocks. The water level determines <strong>the</strong> spatial variability <strong>of</strong> <strong>the</strong> ground <strong>zone</strong> where<br />

53


<strong>the</strong>re is reed litter. Narrow-leaved cattail grows in permanently deeper water. Its lowest<br />

layer is thin and only rarely emerges from <strong>the</strong> deep water. Most <strong>of</strong> its diversity is associated<br />

with higher leaf canopy layers.<br />

I can confirm <strong>the</strong> importance <strong>of</strong> both factors. More detailed studies on <strong>the</strong> structure <strong>of</strong><br />

pond vegetation and faunistics studies are needed to understand its diversity.<br />

References<br />

BOSENBROEK, P., KESSLER, A., LIEM, A.S.N., VLIJM, L., 1977: The significance <strong>of</strong> plant growth –forms as shelter<br />

for terrestrial animals. J. Zool. Lond., 182, p. 1-6.<br />

BØGGILD, O., CROCKER, J., 1971: Notes on <strong>the</strong> habitat <strong>of</strong> Theridiosoma gemmosum (L. Koch). Newsl. Br. Arachnol.<br />

Soc., 2, p. 6.<br />

BUCHAR, J., 1989: The knowledge <strong>of</strong> <strong>the</strong> present Bohemian arachn<strong>of</strong>auna and its improvement to evaluation <strong>of</strong><br />

natural conditions. Thesis, Charles University, Praha. (In Czech)<br />

DENIS, P.Y., GORDON, I.J., 1998: Distribution and abundance <strong>of</strong> small Insects and Arachnids in Relation to Structural<br />

Heterogenity <strong>of</strong> grazed, indigenous Grasslands. Ecol. Entomol., 23, 3, p. 253-264.<br />

DUFFEY, E., 1995: The distribution, status and habitat <strong>of</strong> Dolomedes fimbriatus (Clerck) and D. plantarius in<br />

Europe. In RŮŽIČKA, V. (ed.): Proceedings <strong>of</strong> <strong>the</strong> 15 th <strong>European</strong> Colloquium <strong>of</strong> Arachnology, České Budějovice,<br />

1994, p. 54-65.<br />

VAN HELSDINGEN, P.J., 1993: Ecology and distribution <strong>of</strong> Dolomedes in Europe (Araneida: Dolomedidae). Boll.<br />

Acc. Gioenia Sci. Nat., 26, 345, p. 181-187.<br />

KESSLER, A., VERMEULEN, J.W.C., WAPENAAR, P., 1984: Partitioning <strong>of</strong> <strong>the</strong> space in tussock <strong>of</strong> <strong>the</strong> sedge, Carex<br />

distans, during winter, by spider community. J. Zool. Lond., 204, p. 259-269.<br />

KŮRKA, A., 1990: The arachn<strong>of</strong>auna Bohemian peat bogs. Spiders <strong>of</strong> <strong>the</strong> State Nature Reserve Mrtvý Luh.<br />

Šumava Mts. Acta Mus. Nat. Pragae. Ser. B, 46, p. 37-77.<br />

KŮRKA, A., 1995: Some rare and remarkable <strong>spiders</strong> species from peat bogs <strong>of</strong> <strong>the</strong> Czech Republic. Čes. Nár.<br />

Muz., Řada přírodověd., 164, p. 77-86.<br />

KŮRKA, A., 1997: The spider fauna (Araneida) <strong>of</strong> <strong>the</strong> military area Ralsko. Bezděz, 5, p. 237-268. (In Czech)<br />

LUFF, M.L., 1966: The abundance and diversity <strong>of</strong> <strong>the</strong> beetle fauna <strong>of</strong> grass tussock. J. Anim. Ecol., 35, p. 189-208.<br />

MILLER, F., 1951: Araneous-Fauna <strong>of</strong> <strong>the</strong> Peat-Bogs near Rejvíz (High Jeseník). Přírodovědecký sborník ostravského<br />

kraje, 12, p. 202-247. (In Czech)<br />

MILLER, F., OBRTEL, R., 1975: Soil surface <strong>spiders</strong> (Araneida) in terrestrial reed swamp in sou<strong>the</strong>rn Moravia<br />

(Czechoslovakia). Acta Entomol. Bohemoslov., 72, p. 272-285.<br />

RENNER, F., 1986: Zur Nischendiffer enzierung bei Pirata-Arten (Araneida, Lycosidae). Verh. naturwiss. Ver.<br />

Hamburg (NF), 28, p. 75-90.<br />

RENNER, F., BELLMANN, H., 1995: Zur Spinnenfauna des Naturschutzgebietes ,,Schmiechener See“. Beih. Veröff.<br />

Naturschutz Landschaftspflege Bad.- Württ., 78, p. 403-410.<br />

RŮŽIČKA, V., 1982: Modification to improve <strong>the</strong> efficiency <strong>of</strong> pitfall traps. Newsl. Br. Arachnol. Soc., 34, p. 2-4.<br />

RŮŽIČKA, V., 1987: An analysis <strong>of</strong> spider communities in <strong>the</strong> meadows <strong>of</strong> <strong>the</strong> Třeboň basin. Acta Sc. Nat., Brno,<br />

21, 5, p. 1-39.<br />

RŮŽIČKA, V., HOLEC, M., 1998: New records <strong>of</strong> <strong>spiders</strong> from pond littoral in <strong>the</strong> Czech Republic. Arachnol. Mitt.,<br />

16, p. 1-7.<br />

SZINETÁR, C., 1993: The spider <strong>of</strong> reed marshlands in Hungary. Folia ent. hungarica, 54, p. 155-162. (In Hungarian)<br />

SZINETÁR, C., 1995: Some data on <strong>the</strong> spider fauna <strong>of</strong> reeds in Hungaria. I. Interesting faunistic data from <strong>the</strong><br />

reeds <strong>of</strong> Lake Balaton. Folia ent. hung, 56, p. 205-209.<br />

UHL, G., SACHER P., WEISS I., KRAUS, O., 1992: Europaische Vorkomen von Tetragnatha shoshone (Arachnida,<br />

Araneae, Tetragnathidae). Verh. naturwiss. Ver. Hamburg (NF), 33, p. 247-261.<br />

WEISS, I., SCHNEIDER, E., ANDRIESCU, I., 1998: Die Spinnen des Biosphärenreservats Donau-Delta, Rumanien<br />

(Arachnida, Araneae). Linzer biol.Beitr., 30, 1, p. 263-275.<br />

54


Ekológia (Bratislava) Vol. 19, Supplement 4, 55-64, 2000<br />

LONG TERM CHANGES IN SPIDER (ARANEAE)<br />

COMMUNITIES IN NATURAL AND DRAINED FENS<br />

IN THE BIEBRZA RIVER VALLEY<br />

ANNA KAJAK 1 , JANUSZ KUPRYJANOWICZ 2 , PETER PETROV 1<br />

1 Institute <strong>of</strong> Ecology PAS, 05-092 Łomianki, Poland. E-mail: ekolog@warman.com.pl<br />

2 University in Bialystok, Institute <strong>of</strong> Biology, Swierkowa 20B, 15-950 Bialystok, Poland. E-mail:<br />

kuprzool@cksr.ac.bialystok.pl<br />

Introduction<br />

Abstract<br />

Kajak A., Kupryjanowicz J., Petrov P.: Long term changes in spider (Araneae) communities in<br />

natural and drained fens in <strong>the</strong> Biebrza River Valley. In Gajdoš P., Pekár S. (eds): Proceedings <strong>of</strong><br />

<strong>the</strong> 18th <strong>European</strong> Colloquium <strong>of</strong> Arachnology, Stará Lesná, 1999. Ekológia (Bratislava), Vol.<br />

19, Supplement 4/2000, p. 55-64.<br />

The density and diversity <strong>of</strong> <strong>spiders</strong> were compared in three periods: I – 1955, II – 1978-1983, III-<br />

1996-1998. The quadrat method was applied to estimate <strong>the</strong> density <strong>of</strong> <strong>spiders</strong>, and <strong>the</strong> Shannon-<br />

Wiener index was used to calculate species diversity. A decrease in spider species diversity, through<br />

time, was detected in managed grasslands. It was accompanied by a decrease in <strong>the</strong> number <strong>of</strong><br />

families. This tendency was not found in natural fens. Spider density was similar in <strong>the</strong> compared<br />

periods. In period III, spider diversity and total density were positively correlated with soil moisture,<br />

abundance <strong>of</strong> microhabitats in an area and landscape heterogeneity, measured by <strong>the</strong> distance to<br />

shrubs. A negative correlation was found between <strong>the</strong> density <strong>of</strong> <strong>spiders</strong> and <strong>the</strong> intensity <strong>of</strong> management<br />

practice (mowing by heavy machines and grazing by cattle), and <strong>the</strong> bulk density <strong>of</strong> <strong>the</strong> soil.<br />

Plant diversity (H‘ based on <strong>the</strong> proportion <strong>of</strong> <strong>the</strong> area covered by each plant species) did not<br />

influence <strong>the</strong> diversity <strong>of</strong> <strong>spiders</strong>. The proportion <strong>of</strong> species connected exclusively with <strong>the</strong> field<br />

layer decreased with time. The effect <strong>of</strong> management on spider mobility was positive.<br />

The objective <strong>of</strong> our study was to analyse changes in spider species diversity and density in<br />

fens, over time and over environmental gradients. Impoverishment <strong>of</strong> a community is considered<br />

an indicator <strong>of</strong> <strong>the</strong> deterioration <strong>of</strong> habitat quality. Spider communities are a reliable<br />

source <strong>of</strong> information concerning <strong>the</strong> condition <strong>of</strong> habitats, because <strong>of</strong> <strong>the</strong>ir sensitivity to<br />

environmental conditions, <strong>the</strong>ir high number <strong>of</strong> species, and <strong>the</strong>ir tendency to occur abundantly<br />

in various ecosystems (DUFFEY, 1978; MAELFAIT et al., 1997; HÄNGGI et al., 1995). This<br />

problem is especially relevant to peatlands, which are endangered habitats, due to <strong>the</strong>ir dimin-<br />

55


T a b l e 1. Number <strong>of</strong> study sites in natural and<br />

managed grasslands, on soil formed from sedge<br />

moss (A), tall sedge (B), or alder (C) type <strong>of</strong> peat,<br />

analysed for three periods.<br />

Period Sites<br />

(Years) Natural Managed<br />

A B A B C<br />

I 1955 – 2 2 – –<br />

IIa 1978-1979 1 2 1 3 1<br />

IIb 1982-1983 1 2 1 3 2<br />

III 1996-1998 1 2 2 2 2<br />

T a b l e 2. Characteristics <strong>of</strong> study sites in natural (N) grasslands in<br />

period III. Data after SZUNIEWICZ, CHRZANOWSKI (in press),<br />

KAMIŃSKI (in press).<br />

Parameter A B<br />

Peat origin sedge-moss Sedge<br />

Mean soil moisture (% by volume) 85.0 83.9-87.6<br />

Soil bulk density (g.cm -3 ) 0.154 0.151-0.160<br />

Thickness <strong>of</strong> peat deposit (cm) 150 70-170<br />

Yield (g.dwt.m -3 ) 350 200-250<br />

T a b l e 3. Characteristics <strong>of</strong> study sites in managed grasslands, analysed in period III. Data after<br />

PASTERNAK-KUŚMIERSKA et al.1997, SZUNIEWICZ, CHRZANOWSKI (in press), KAMIŃSKI (in press).<br />

Parameter A B C<br />

Peat origin sedge-moss sedge alder<br />

Mean soil moisture (% by volume) 78-82 68-79 59-71<br />

Soil bulk density (g cm -3 ) 0.198-0.209 0.229-0.371 0.256-0.332<br />

Thickness <strong>of</strong> peat deposit (cm) 400 140-400 80-265<br />

Yield (g d.wt m -2 ) 460 350 - 395 264 - 900<br />

T a b l e 4. Spider species diversity and mean density (ind.m -2 ) in natural and managed peat grasslands.<br />

Period Natural grasslands Managed grasslands P<br />

Density H’ Density H’<br />

1 3 2 4 1-2 3-4<br />

I 19.0 ±1.0 4.42 - 4.54 12.6 ± 0.7 3.90 – 4.45


for use as hay meadows and pastures. O<strong>the</strong>r parts were included in <strong>the</strong> Biebrza National<br />

Park and left without human interference. We tried to analyse how spider communities<br />

changed in both natural (N) and managed (M) grasslands by comparing (1) species diversity,<br />

(2) total density, and (3) community structure, from three sampling periods (Table 1).<br />

Material and methods<br />

All study sites were located on peat soils originating from <strong>the</strong> three plant communities, which are most<br />

common in <strong>the</strong> valley. These were: A. sedge-moss communities (Caricetum limoso-diandrae) in <strong>the</strong> emersion<br />

<strong>zone</strong> <strong>of</strong> <strong>the</strong> valley, B. tall sedge communities (Caricetum elatae and Peucedano-Caricetum paradoxae), in<br />

immersion, flooded <strong>zone</strong>, or C. alder carr (Carici elongatae –Alnetum), which border <strong>the</strong> valley (Table 1).<br />

The soil properties, such as soil moisture content, decomposition rate <strong>of</strong> peat deposits, and soil texture, depend<br />

considerably on <strong>the</strong> origin <strong>of</strong> peat (Table 2 and 3). Soils formed from <strong>the</strong> sedge-moss community were<br />

characterised by a well-developed moss layer, <strong>the</strong> highest water-holding capacity <strong>of</strong> <strong>the</strong> soil and relatively<br />

stable moisture level throughout <strong>the</strong> year, in natural and drained grasslands (Table 2 and 3). The lowest moisture<br />

content was found in soils originating from alder peat (C). They were mineralised at <strong>the</strong> highest rate after<br />

drainage. Soils formed from tall sedge peat were intermediate in respect to water content and decomposition<br />

rate <strong>of</strong> peat deposits (Table 2 and 3).<br />

In most cases managed grasslands (M) were mown 2-3 times a year by heavy machines, and <strong>the</strong> hay was<br />

immediately removed. The drainage system was extended for hundreds <strong>of</strong> hectares between period I and II.<br />

Presently drained grasslands accounted for 62% <strong>of</strong> <strong>the</strong> area <strong>of</strong> organic soils in <strong>the</strong> valleys (OKRUSZKO, 1990).<br />

In period I small patches <strong>of</strong> cultivated grasslands were surrounded by extensive areas <strong>of</strong> natural fens (N). In<br />

Period II management was intensified. The drainage induced rapid mineralization <strong>of</strong> organic matter accumulated<br />

in peat, and <strong>the</strong> thickness <strong>of</strong> peat deposits declined gradually. A characteristic feature <strong>of</strong> drained fens is high<br />

variability <strong>of</strong> soil properties and <strong>of</strong> plant and animal communities. The system is subjected to secondary<br />

succession. More information about <strong>the</strong> grasslands studied is given in KAJAK (1962), KACZMAREK (1991),<br />

STEPA,PAŁCZYŃSKI (1991).<br />

In all periods compared, <strong>the</strong> quadrat method was applied to assess spider density. The effectiveness <strong>of</strong><br />

collecting <strong>spiders</strong> improved with time. In period I, <strong>spiders</strong> were hand-collected from large frames (0.25 m 2 in<br />

area). 16 samples were taken per site on each sampling date. In <strong>the</strong> next two periods (II and III) <strong>spiders</strong> were<br />

collected from smaller frames (0.0625 m 2 ), 10 samples per site were taken. Starting in 1982 (Period II b),<br />

samples were cut out <strong>of</strong> grassland turf and shaken several times over a plastic sheet until no more <strong>spiders</strong><br />

could be seen. In each period samples were taken from May until October (190 –250 per site in period I, 40 –<br />

190 in period II, 60 in period III).<br />

Species diversity was calculated by using <strong>the</strong> Shannon-Wiener diversity index H‘, <strong>the</strong> t-test was applied to<br />

estimate significance <strong>of</strong> differences between <strong>the</strong> values obtained. The number <strong>of</strong> specimens used in calculations<br />

ranged from 150 to 850 from particular sites and periods. In calculating <strong>the</strong> diversity index (H‘) for plants, <strong>the</strong><br />

per cent <strong>of</strong> area covered by each plant species was used. The data after KOTOWSKA et al.(1998) and KAMIŃSKI (in<br />

press) were used in calculations.<br />

The Wilcoxon signed rank test was applied to compare differences in diversity between periods in pooled<br />

spider data, and <strong>the</strong> Mann-Whitney U test to compare differences between natural and managed grasslands. The<br />

Kendall rank correlation coefficient was used to analyse <strong>the</strong> correlation between spider diversity and habitat<br />

properties (soil moisture, plant species diversity, plant complexity and distance to <strong>the</strong> nearest shrubs) in period<br />

III. An analysis <strong>of</strong> covariance was applied to estimate density response to <strong>the</strong> same environmental factors. In <strong>the</strong><br />

ranking <strong>of</strong> <strong>the</strong> grasslands studied with respect to plant complexity (number <strong>of</strong> microsites per area), <strong>the</strong> highest<br />

rank was given to grassland with a thick layer <strong>of</strong> mosses and litter and a multi-layered sward, formed by sedges<br />

and grasses with an admixture <strong>of</strong> forbes. The lowest rank was assigned to a grassland with low vegetation and<br />

patches <strong>of</strong> bare ground. The distance to <strong>the</strong> nearest shrubs was treated as a measure <strong>of</strong> landscape heterogeneity.<br />

This distance ranged from several meters to hundreds <strong>of</strong> meters in particular sites.<br />

57


T a b l e 5. Correlation coefficients (Kendall tau) between<br />

spider species diversity index (H`) and environmental factors<br />

(Period III).<br />

Variable tau N P<br />

Soil moisture 0.64 12 0.002<br />

Plant species diversity 0.11 16 0.27<br />

Number <strong>of</strong> microhabitats 0.68 16 0.0003<br />

Intensity <strong>of</strong> management –0.71 8 0.007<br />

Landscape heterogeneity 0.78 8 0.0012<br />

T a b l e 6. Number <strong>of</strong> <strong>spiders</strong> belonging to various families as a percentage <strong>of</strong> <strong>the</strong> total number <strong>of</strong> <strong>spiders</strong><br />

during three periods in natural peat grasslands. *Symbols <strong>of</strong> sites: N – natural fen, A- grassland located on<br />

sedge-moss peat, B- grassland located on tall sedge peat.<br />

Family<br />

I<br />

Periods<br />

II<br />

Study sites*<br />

III<br />

NB1 NB2 NA NB3 NA NB3<br />

Araneidae 11.5 22.1 0.3 0.1 0.1 0.8<br />

Linyphiidae 10.1 11.6 68.0 70.6 69.3 57.8<br />

Lycosidae 37.1 29.1 13.5 2.0 19.6 23.4<br />

Tetragnathidae 10.1 4.4 0.6 0.2 1.4 0.4<br />

Thomisidae 0.85 3.8 4.0 4.5 2.1 5.3<br />

Philodromidae 7.5 11.0 0.4 0.4 0.2 1.4<br />

Salticidae 4.2 3.8 10.7 18.4 0 1.3<br />

Clubionidae 4.7 5.1 2.1 3.6 1.1 3.3<br />

Gnaphosidae 4.5 2.0 0 0 0 0.2<br />

Theridiidae 1.8 0.4 0.2 0.2 1.3 1.5<br />

Hahnidae 9.8 2.15 0 0 3.6 1.8<br />

Dictynidae 2.4 1.2 0.2 0 0.7 1.3<br />

Zoridae 0.2 1.7 0 0 0.2 1.0<br />

Liocranidae 0 0.1 0 0 0.4 0.3<br />

Pisauridae 0 2.0 0 0 0 0<br />

Mimetidae 0 0 0 0 0 0.2<br />

No. <strong>of</strong> families 13 15 10 9 12 15<br />

Results and discussion<br />

Species diversity and composition<br />

Species diversity ranged from 2.95 to 4.72 for <strong>the</strong> periods and sites compared (Table 4).<br />

Species diversity was significantly higher in natural fens than in managed grasslands (P


T a b l e 7. Number <strong>of</strong> <strong>spiders</strong> belonging to various families as a percentage <strong>of</strong> <strong>the</strong> total number <strong>of</strong> <strong>spiders</strong> in<br />

three periods in managed grasslands. *Site symbols: M – managed grassland site, A- soil formed from sedgemoss<br />

peat, B –soil formed from tall sedge peat.<br />

Family<br />

I<br />

Periods<br />

II a<br />

Study sites*<br />

III<br />

MA1 MA2 MB1 MA1 MB1 MA1<br />

Araneidae 25.9 15.0 0 0 0.6 0.7<br />

Linyphiidae 16.5 24.5 59.1 71.4 36.3 73.1<br />

Lycosidae 6.4 9.3 21.3 2.8 35.6 5.2<br />

Tetragnathidae 39.8 32.4 13.6 25.8 13.0 3.2<br />

Thomisidae 6.4 7.0 3.3 0 13.2 12.4<br />

Philodromidae 1.9 1.9 0 0 0 0<br />

Salticidae 0.4 0.4 1.3 0 0 0<br />

Clubionidae 0.4 5.1 0 0 0 0<br />

Gnaphosidae 0.4 5.7 0 0 0 0<br />

Theridiidae 1.9 3.2 0.7 0 0.6 5.4<br />

Hahnidae 0 0.2 0.7 0 0.4 0<br />

Dictynidae 0 0.2 0 0 0.3 0<br />

Zoridae 0 0.2 0 0 0 0<br />

No. <strong>of</strong> families 10 13 7 3 8 6<br />

Mann-Whitney U test). The trend <strong>of</strong> decreasing diversity with respect to time was found for<br />

managed grasslands only. In managed sites compared in successive periods, lower index values<br />

were found in <strong>the</strong> later period (P80% <strong>of</strong> all specimens collected on both natural and managed grasslands. According to <strong>the</strong><br />

estimations for period I, <strong>the</strong>se families accounted for 50% <strong>of</strong> <strong>the</strong> spider community in natural<br />

grasslands and for about 60% in managed grasslands (Table 6 and 7). The changes in<br />

methods <strong>of</strong> spider collecting may have influenced and exaggerated <strong>the</strong>se differences between<br />

periods, but similar values were noted also in period II a, when <strong>the</strong> method <strong>of</strong> spider<br />

collecting was similar to that used during period I. A decrease in <strong>the</strong> proportion <strong>of</strong> <strong>spiders</strong><br />

59


T a b l e 8. Correlation coefficients (r) (analysis <strong>of</strong> covariance)<br />

between total spider density and environmental factors (Period<br />

III).<br />

Variable r F P<br />

Soil moisture 0.337 67.292


which can determine spider abundance and community composition (DE KEER et al., 1989;<br />

RUSHTON, EYRE, 1992; MAELFAIT et al., 1997; MERKENS, 1997). The o<strong>the</strong>r important factors<br />

influencing spider density are management practice (DUFFEY, 1978; DE KEER et al., 1989;<br />

DECLEER, 1990; RUSHTON, EYRE, 1992; MAELFAIT et al., 1997; MERKENS, 1997) and plant<br />

complexity (DUFFEY, 1978). Authors have shown that certain species prefer managed or<br />

unmanaged patches. In our data, <strong>the</strong> negative effect <strong>of</strong> mowing and grazing, on total spider<br />

density and species richness is very clear. According to <strong>the</strong> results <strong>of</strong> this paper, plant species<br />

diversity is less important for <strong>the</strong> diversity <strong>of</strong> <strong>spiders</strong>, than is plant complexity (abundance<br />

<strong>of</strong> microhabitats in an area). This result is in an agreement with UETZ (1979), who<br />

showed, experimentally, <strong>the</strong> relationship between spider density and litter thickness. He<br />

considered litter complexity to be <strong>the</strong> primary factor influencing <strong>the</strong> structure <strong>of</strong> spider<br />

communities. We observed a similar importance <strong>of</strong> <strong>the</strong> moss and litter layer in <strong>the</strong> range <strong>of</strong><br />

grasslands analysed in this paper.<br />

Properties <strong>of</strong> dominant species<br />

In all <strong>the</strong> grasslands compared, <strong>the</strong> family Linyphiidae was <strong>of</strong> greatest significance. Different<br />

members <strong>of</strong> this family dominated in natural and managed grasslands, and <strong>the</strong>re were<br />

only a few common species (Appendix 1). Those dominating in managed grasslands can be<br />

characterised according to HÄNGGI et al.(1995), as an eurytopic species. They are abundant<br />

in arable fields, urban areas, fens, shrubs, permanent meadows and leys. The species dominant<br />

in natural grasslands were categorised by HÄNGGI et al. (1995) as occurring in raised<br />

bogs, fens, wet meadows and <strong>the</strong> shores <strong>of</strong> inland waters. Among <strong>the</strong>m some endangered<br />

species were found.<br />

Mobility index<br />

6<br />

5<br />

4<br />

3<br />

2<br />

1<br />

0<br />

0,2<br />

NB3<br />

1<br />

0,3<br />

NA<br />

2<br />

0,52<br />

NB1<br />

3<br />

0,92<br />

MB1<br />

4<br />

1,09<br />

MA1<br />

5<br />

Intensity <strong>of</strong> management<br />

4,28<br />

MC3<br />

6<br />

3,32<br />

MB2<br />

7<br />

5,29<br />

MC1<br />

8<br />

Fig. 1. Relationship between<br />

mobility index (ratio <strong>of</strong> number<br />

<strong>of</strong> ind. captured per pitfall trap<br />

per 10 days to number <strong>of</strong> ind. per<br />

m 2 ) and intensity <strong>of</strong> grassland<br />

management. 1-8 – study sites;<br />

symbols A,B,C denote peat origin<br />

(explained in table 1), N –<br />

natural grasslands, M – managed<br />

grasslands.<br />

61


A p p e n d i x 1. Species composition. Dd – dominant species in drained fens; Dn – dominant species in<br />

natural fens; R – rare species<br />

MIMETIDAE Meioneta affinis (KULC.)<br />

Ero cambridgei KULC. R Meioneta rurestris (C.L. K.) Dd<br />

THERIDIIDAE Meioneta tenera (MENGE)<br />

Crustulina guttata (WIDER) Metopobactrus prominulus (O. P.-C.)<br />

Enoplognatha ovata (CL.) Micrargus subaequalis (WEST.)<br />

Euryopis flavomaculata (C. L. K.) Microlinyphia pusilla (SUND.)<br />

Robertus arundineti (O. P.-C.) Microneta viaria (BL.)<br />

Robertus insignis O. P.-C. R Notioscopus sarcinatus (O. P.-C.)<br />

Robertus neglectus (O. P.-C.) Oedothorax apicatus (BL.)<br />

Theridion bimaculatum (L.) Oedothorax fuscus (BL.)<br />

Theridion sisyphium (CL.) Oedothorax gibbosus (BL.) Dn<br />

LINYPHIIDAE Oedothorax retusus (WEST.)<br />

Agyneta decora (O. P.-C.) R Pelecopsis parallela (WIDER)<br />

Allomengea vidua (L. K.) Pocadicnemis juncea LOCK. ET MILL.<br />

Aphileta misera (O. P.-C.) Pocadicnemis pumila (BL.)<br />

Araeoncus crassiceps (WEST.) R Porrhomma pygmaeum (BL.) Dn<br />

Araeoncus humilis (BL.) Savignya frontata BL. Dn<br />

Baryphyma gowerense (LOCK.) R Silometopus elegans (O. P.-C.)<br />

Baryphyma trifrons (O. P.-C.) R Silometopus reussi (TH.)<br />

Bathyphantes approximatus (O. P.-C.) Tallusia experta (O. P.-C.)<br />

Bathyphantes gracilis (BL.) Dn Taranucnus setosus (O. P.-C.)<br />

Bathyphantes parvulus (WEST.) Tiso vagans (BL.) Dd<br />

Bathyphantes setiger O. P.-C. Walckenaeria kochi (O. P.-C.)<br />

Bolyphantes luteolus (BL.) Walckenaeria nodosa O. P.-C.<br />

Carorita limnaea (CROS. ET BISH.) R Walckenaeria nudipalpis (WEST.)<br />

Centromerita bicolor (BL.) Walckenaeria unicornis O. P.-C.<br />

Centromerus incilium (L. K.) Walckenaeria vigilax (BL.)<br />

Centromerus semiater (L. K.) TETRAGNATHIDAE<br />

Centromerus sylvaticus (BL.) Pachygnatha clercki SUND.<br />

Ceraticelus sibiricus ESKOV R Pachygnatha degeeri SUND. Dd<br />

Ceratinella brevipes (WEST.) Tetragnatha extensa (L.)<br />

Ceratinopsis stativa (SIMON) ARANEIDAE<br />

Dicymbium nigrum (BL.) Dd Araneus quadratus CL.<br />

Entelecara omissa O. P.-C. R Hypsosinga heri (HAHN)<br />

Erigone atra BL. Dd Hypsosinga pygmaea (SUND.)<br />

Erigone dentipalpis (WIDER) Dd Larinioides cornutus (CL.)<br />

Erigone longipalpis (SUND.) Mangora acalypha (WALC.)<br />

Glyphesis cottonae (LA TOUCHE) R Neoscona adianta (WALC.)<br />

Gnathonarium dentatum (WIDER) Singa hamata (CL.)<br />

Gongylidiellum murcidum SIMON Dn LYCOSIDAE<br />

Hypomma bituberculatum (WIDER) Dn Alopecosa cuneata (CL.)<br />

Kaestneria pullata (O. P.-C.) Alopecosa pulverulenta (CL.)<br />

Lophomma punctatum (BL.) Arctosa leopardus (SUND.)<br />

Maso gallicus SIMON R Hygrolycosa rubr<strong>of</strong>asciata (OHLE.)<br />

62


A p p e n d i x 1.<br />

Pardosa amentata (CL.) CLUBIONIDAE<br />

Pardosa lugubris (WALC.) Clubiona diversa O. P.-C.<br />

Pardosa maisa HIPPA ET MANN. R Clubiona rosserae LOCK. R<br />

Pardosa paludicola (CL.) Clubiona stagnatilis KULC.<br />

Pardosa palustris (L.) Dd Clubiona subtilis L. K.<br />

Pardosa prativaga (L. K.) GNAPHOSIDAE<br />

Pardosa pullata (CL.) Drassodes lapidosus (WALC.)<br />

Pardosa sphagnicola DAHL Zelotes electus (C. L. K.)<br />

Pirata latitans (BL.) Dn Zelotes latreillei (SIMON)<br />

Pirata piraticus (CL.) Dn ZORIDAE<br />

Pirata piscatorius (CL.) Zora armillata SIMON R<br />

Pirata tenuitarsis SIMON Zora spinimana (SUND.)<br />

Pirata uliginosus (TH.) Dn PHILODROMIDAE<br />

Trochosa ruricola (DE GEER) Thanatus striatus C. L. K.<br />

Trochosa spinipalpis (F. O. P.-C.) Tibellus maritimus (MENGE)<br />

Xerolycosa miniata (C.L. K.) THOMISIDAE<br />

PISAURIDAE Ozyptila gertschi KURA. R<br />

Dolomedes fimbriatus (CL.) Ozyptila trux (BL.)<br />

HAHNIIDAE Xysticus cristatus (CL.)<br />

Antistea elegans (BL.) Dn Xysticus erraticus (BL.)<br />

Hahnia pusilla C.L. K. Xysticus kochi TH.<br />

DICTYNIDAE Xysticus ulmi (HAHN)<br />

Argenna albopunctata (MENGE) R SALTICIDAE<br />

Argenna subnigra (O. P.-C.) Evarcha falcata (CL.)<br />

Dictyna arundinacea (L.) Heliophanus flavipes (HAHN)<br />

Dictyna uncinata TH. Neon reticulatus (BL.)<br />

LIOCRANIDAE Neon valentulus FALC. R<br />

Agraecina striata (KULC.) Phlegra fasciata (HAHN)<br />

Agroeca dentigera KULC. R Sitticus caricis (WEST.)<br />

Sitticus floricola (C.L. K.)<br />

Spiders occurring in natural fens are less mobile than those from managed grasslands.<br />

Mobility index values are


The diversity and density <strong>of</strong> <strong>spiders</strong> increase with soil moisture, and abundance <strong>of</strong> microhabitats<br />

in <strong>the</strong> ecosystem. They decrease with intensity <strong>of</strong> management, soil compactness, and<br />

increasing distance to shrubs. The diversity <strong>of</strong> <strong>spiders</strong> is hardly affected by plant species diversity.<br />

Diversity and density <strong>of</strong> spider communities can be improved by leaving grassland margins<br />

uncut and by increasing <strong>the</strong> heterogeneity <strong>of</strong> <strong>the</strong> landscape.<br />

References<br />

ANDRZEJEWSKA, L., 1991: Formation <strong>of</strong> Auchenorrhyncha communities in diversified structures <strong>of</strong> agricultural<br />

landscape? Pol. Ecol. Stud., 17, p. 267-287.<br />

DECLEER, K., 1990: Experimental cutting <strong>of</strong> remarsh vegetation and its influence on <strong>the</strong> spider (Araneae) fauna<br />

in <strong>the</strong> Blankaart Nature Reserve, Belgium. Biol. Conserv., 52., p. 161-185.<br />

De KEER, R., ALDERWEIRELDT, M., DECLEER, K., SEGERS, H., DESENDER, K., MAELFAIT, J.-P., 1989: Horizontal<br />

distrbution <strong>of</strong> <strong>the</strong> spider fauna <strong>of</strong> intensively grazed pastures under <strong>the</strong> influence <strong>of</strong> diurnal activity and grass<br />

height. J. Appl. Ent., 107, p. 455-473.<br />

DUFFEY, E. 1978: Ecological strategies in <strong>spiders</strong> including some characteristics <strong>of</strong> <strong>spiders</strong> in pioneer and mature<br />

habitats. Symp.zool. Soc. Lond., 42, p. 109-123.<br />

HÄNGGI, A., STÖCKLI, E., NENTWIG, W., 1995: Lebensräume mitteleuropäischer Spinnen – Habitats <strong>of</strong> Central<br />

<strong>European</strong> <strong>spiders</strong>. Misc. Faun. Helvet., 4, p. 1-459.<br />

KACZMAREK, M., 1991: Characteristics <strong>of</strong> <strong>the</strong> studied habitats in <strong>the</strong> Biebrza and Narew Old River Valleys. Pol.<br />

ecol Stud., 17, p.7-18.<br />

KAJAK, A., 1960: Changes in <strong>the</strong> abundance <strong>of</strong> <strong>spiders</strong> in several meadows. Ekol. pol., Ser.A, 9, p. 1-30.<br />

KAJAK, A., 1962: Comparison <strong>of</strong> spider fauna in artificial and natural meadows. Ekol. pol., Ser.A, 1, p. 1-20.<br />

KAJAK, A., 1987: Long term changes in <strong>the</strong> composition <strong>of</strong> grassland <strong>spiders</strong> and attempt to estimate role <strong>of</strong><br />

epigeic species. Zpravodaj ochrany prirody mesta Ostravy, p. 45-59. (In Polish)<br />

KAJAK, A.,1993: Long-term changes in spider communities <strong>of</strong> drained fens. In FŰRST, P.-A., MULHAUSER, G. (eds):<br />

XIIe Colloque Européen d’Arachnologie (116), Fascicule 1, p.125-131.<br />

KAJAK, A., KACZMAREK, M., 1994: Could wetland soil fauna be restored after restoration <strong>of</strong> fen habitats? In JANKOW-<br />

SKA-HUFLEJT, H., GOLUBIEWSKA, E. (eds): Proc. Int. Symposium Conservation and management <strong>of</strong> fens, p. 428-436.<br />

KAMIŃSKI, J.: Assessment <strong>of</strong> long tern changes in plant communities in natural and cultivated peat grasslands in<br />

<strong>the</strong> Biebrza Valley. Pol. J. Ecol. (in press)<br />

KOTOWSKA, J., PASTERNAK-KUŚMIERSKA, D., WILPISZEWSKA, I., 1998: Comparative analysis <strong>of</strong> hay-growing meadows<br />

on peat muck soils. Pol. ecol. Stud., 22, p. 141-159.<br />

MALEFAIT, J.-P., BAERT, L., DESENDER, K., 1997: Effects <strong>of</strong> groundwater catchment and grassland management on<br />

<strong>the</strong> spider fauna <strong>of</strong> <strong>the</strong> dune Nature Reserve ’De Westhoek’ (Belgium). In ŻABKA, M. (ed.): Proc.16 th Europ.<br />

Coll. Arachnol., Siedlce, 1996, p. 221-236<br />

MERKENS, S., 1997: Influence <strong>of</strong> environmental factors on <strong>the</strong> community structure <strong>of</strong> <strong>spiders</strong> in a humidity<br />

gradient <strong>of</strong> extensively managed, moist pastures. In ŻABKA, M. (ed.): Proc.16 th Europ. Coll. Arachnol., Siedlce,<br />

1996, p. 237-248.<br />

OKRUSZKO, H., 1990: Wetlands <strong>of</strong> <strong>the</strong> Biebrza Valley <strong>the</strong>ir value and future management. PAS, Warszawa, 107 pp.<br />

PASTERNAK-KUŚMIERSKA, D., WILPISZEWSKA, I., CIEŚLEWICZ, M., 1997: Structure and dynamics <strong>of</strong> plant biomass on<br />

drained peatlands <strong>of</strong> different peat origin (Inc. marginal valley <strong>of</strong> Biebrza River – Poland). Ekol. pol., 45, p.<br />

395-422.<br />

RUSHTON, S.P., EYRE, M.D., 1992: Grassland spider habitats in north-east England. Journal <strong>of</strong> Biogeography, 19,<br />

p. 99-108.<br />

STEPA, T., PAŁCZYŃSKI, A.1991: Effect <strong>of</strong> ecological zonation on diversification <strong>of</strong> soil conditions at various plant<br />

associations in <strong>the</strong> Biebrza Valley. Pol. ecol. Stud., 17, p.19-33.<br />

SZUNIEWICZ, J., CHRZANOWSKI, S.: Assessment <strong>of</strong> changes in moisture content in peat soils <strong>of</strong> natural and drained<br />

grasslands in <strong>the</strong> Biebrza Valley. Pol. J. Ecol. (in press)<br />

UETZ, G.W., 1979: The influence <strong>of</strong> variation in litter habitats on spider communities. Oecologia (Berlin), 40, p.<br />

29-42.<br />

64


Ekológia (Bratislava) Vol. 19, Supplement 4, 65-77, 2000<br />

HARVESTMEN AND SPIDERS IN THE AUSTRIAN<br />

WETLAND “HÖRFELD-MOOR”<br />

(ARACHNIDA: OPILIONES, ARANEAE)<br />

CHRISTIAN KOMPOSCH<br />

Ökoteam - Institute <strong>of</strong> Faunistics and Animal Ecology, Bergmanngasse 22, 8010 Graz, Austria.<br />

Introduction<br />

Abstract<br />

Komposch C.: Harvestmen and <strong>spiders</strong> in <strong>the</strong> Austrian wetland “Hörfeld-Moor” (Arachnida:<br />

Opiliones, Araneae). In GAJDOŠ P., PEKÁR S. (eds): Proceedings <strong>of</strong> <strong>the</strong> 18th <strong>European</strong> Colloquium<br />

<strong>of</strong> Arachnology, Stará Lesná, 1999. Ekológia (Bratislava), Vol. 19, Supplement 4/2000, p. 65-77.<br />

Aspects <strong>of</strong> <strong>the</strong> fauna <strong>of</strong> <strong>the</strong> montane wetland „Hörfeld-Moor“ were investigated with regard to<br />

taking an inventory <strong>of</strong> <strong>the</strong> nature reserve and determining its conservation value. The harvestmen<br />

and spider fauna was studied by means <strong>of</strong> pitfall traps, light-traps, soil-sifter and hand-collecting<br />

in nine sample areas representing typical biotope types within <strong>the</strong> wetland: alder forest, willow<br />

shrub, hay meadow, moist meadow, sedge swamp, reed bed, meadowsweet fen, floating mat and<br />

raised bog. The following noteworthy arachnids were found: Nemastoma schuelleri, Opilio dinaricus,<br />

Platybunus pinetorum, Enoplognatha caricis, Diplocephalus helleri, Drepanotylus uncatus,<br />

Maro lepidus, Pardosa fulvipes, Pirata tenuitarsis, Clubiona germanica and Gnaphosa nigerrima.<br />

19 <strong>of</strong> <strong>the</strong> spider species found are new to Carinthia. An interesting result is <strong>the</strong><br />

attractiveness <strong>of</strong> light-traps for particular harvestmen and spider species.<br />

The percentage <strong>of</strong> endangered arachnid species was not related to ei<strong>the</strong>r <strong>the</strong> diversity and evenness<br />

indices <strong>of</strong> <strong>the</strong> investigated biotope types or with <strong>the</strong> percentage <strong>of</strong> endangered plant species.<br />

Fur<strong>the</strong>rmore, <strong>the</strong> present analysis is a useful approach for applying zoological results obtained in<br />

particular places to an entire area.<br />

Fens belong to <strong>the</strong> most endangered biotope types <strong>of</strong> Central Europe. The Hörfeld-Moor<br />

is one <strong>of</strong> <strong>the</strong> largest near-natural fens <strong>of</strong> Austria. It has carried <strong>the</strong> status <strong>of</strong> a nature reserve<br />

since 1984 (Carinthia) and 1987 (Styria) respectively. In 1996 it became a Ramsar-area and<br />

it has been suggested as a Natura 2000-area.<br />

The arachnid fauna from Austrian wetlands is still poorly known; moreover only few<br />

data are available from wetlands above 900 metres altitude. The results are part <strong>of</strong> an integrated<br />

monitoring programme <strong>of</strong> <strong>the</strong> development <strong>of</strong> <strong>the</strong> ecosystem, including fauna and<br />

vegetation. Faunistical investigations have been carried out on Opiliones, Araneae, Odonata,<br />

65


T a b l e 1. Floral characterisation <strong>of</strong> <strong>the</strong> investigated biotope-types.<br />

no abbr. biotope type characterisation<br />

Auchenorrhyncha, Heteroptera (FRIESS, 1998), Coleoptera (Carabidae, Staphylinoidea) and<br />

Lepidoptera (HUEMER, WIESER, 1997) and vertebrates. The aim <strong>of</strong> <strong>the</strong> project is to prepare<br />

an inventory and evaluation <strong>of</strong> <strong>the</strong> nature reserve to derive recommendations for biotope<br />

management.<br />

Study area<br />

The area <strong>of</strong> investigation is <strong>the</strong> wetland „Hörfeld-Moor“ which extends over 133 hectares<br />

at a height <strong>of</strong> 930 metres in <strong>the</strong> Gurktaler Alps, a sou<strong>the</strong>rn part <strong>of</strong> <strong>the</strong> Central Alps (S<br />

Mühlen, N Hüttenberg, Carinthian and Styrian border, Austria; 47°00‘N, 14°30-31‘E).<br />

Material and methods<br />

The arachnid fauna was studied by means <strong>of</strong> pitfall traps, light-traps, soil-sifter and hand-collecting in <strong>the</strong><br />

vegetation period <strong>of</strong> 1996. Four pitfall traps in each biotope type were exposed from May until October: Data for<br />

harvestmen come from <strong>the</strong> whole period, but spider material was determined only from May/June (1.05.-<br />

13.06.1996)., because <strong>of</strong> <strong>the</strong> large amount <strong>of</strong> effort needed to process <strong>the</strong> samples. Faunistical investigations<br />

were carried out in nine representative biotope types (Table 1).<br />

66<br />

1 Alnus Alder forest<br />

Alnus incana dominates <strong>the</strong> tree layer, Scirpus sylvaticus, Caltha<br />

palustris, Filipendula ulmaria<br />

A late stage <strong>of</strong> succession <strong>of</strong> a former hay meadow: Salix cinerea, S.<br />

2 Salix Willow shrub repens, Betula pendula, B. pubescens beside a species spectrum similar<br />

to <strong>the</strong> moist meadow (4)<br />

3<br />

smead<br />

Hay meadow<br />

Typical species <strong>of</strong> fresh meadows: Holcus lanatus, Scirpus sylvaticus,<br />

Ranunculus acris, Juncus effusus, Leucan<strong>the</strong>mum vulgare, Cirsium<br />

palustre<br />

4 m-<br />

The cultivation <strong>of</strong> this oligotrophic meadow with a high species richness<br />

mead<br />

Moist meadow<br />

ended a few years ago: Carex acutiformis, C. paniculata, C. rostrata,<br />

Molinia coerulea, Menyan<strong>the</strong>s trifoliata, Persicaria bistorta, Briza<br />

media, Potentilla erecta, Succisa pratensis<br />

5 Carex Sedge swamp<br />

Formed as a floating mat on an acidic and oligotrophic substrate: Carex<br />

rostrata in high dominance, partly with hillocks <strong>of</strong> Carex elata<br />

6 Phrag Reed bed<br />

Large reed beds (Phragmites australis) with Carex elata-hillocks in<br />

between<br />

7 fen Meadowsweet fen Dominated by Filipendula ulmaria<br />

8 float Floating mat<br />

Dominated by Menyan<strong>the</strong>s trifoliata, Potentilla palustris, Carex<br />

paniculata, Carex rostrata, Caltha palustris<br />

A very small hummock area with mire spruces (Picea abies),<br />

9 bog Raised bog Eriophorum vaginatum, Vaccinium oxycoccos, Drosera rotundifolia,<br />

Andromeda polifolia, Vaccinium vitis-idaea


Beside biotopes and vegetation, parameters like soil type, water budget, distance from <strong>the</strong> ground water,<br />

cover <strong>of</strong> <strong>the</strong> herb-, shrub- and tree layer, thickness <strong>of</strong> <strong>the</strong> litter etc. were mapped in <strong>the</strong> whole area. The present<br />

analysis includes, in total, 13 harvestmen (209 specimens) and 111 spider species (2150 specimens).<br />

Results<br />

Method comparison<br />

It is a well-known fact, that <strong>the</strong> use <strong>of</strong> pitfall traps, soil-sifter and hand-collecting leads to<br />

a distinct species-spectrum; consequently every zoological inventory <strong>of</strong> a richly-structured area<br />

requires <strong>the</strong> application <strong>of</strong> different sampling-methods. The attractiveness <strong>of</strong> light-traps for<br />

particular harvestmen and spider species results in an interesting and characteristic coenosis <strong>of</strong><br />

phalangiids, <strong>the</strong>ridiids, linyphiids, tetragnathids, araneids, pisaurids, gnaphosids and clubionids.<br />

10 to 25% <strong>of</strong> <strong>the</strong> harvestmen and spider species <strong>of</strong> <strong>the</strong> Hörfeld-area were caught exclusively by<br />

light-traps (<strong>the</strong> low intensity <strong>of</strong> hand collecting must be mentioned). In <strong>the</strong> present case lighttraps<br />

caught rarely-collected arachnids such as Opilio dinaricus ŠILHAVÝ, Enoplognatha caricis<br />

(FICKERT), Cheiracanthium punctorium (VILLERS) and Clubiona germanica THORELL.<br />

Species assemblages<br />

Regarding <strong>the</strong> harvestmen-coenosis <strong>the</strong> dominance <strong>of</strong> Nemastoma schuelleri GRUBER ET M.<br />

in <strong>the</strong> litter <strong>of</strong> <strong>the</strong> alder forests and <strong>of</strong> Mitopus morio (FABRICIUS) in <strong>the</strong> raised bog is noteworthy;<br />

this phalangiid is a very common species in montane and alpine <strong>zone</strong>s above 1 500 metres but<br />

ra<strong>the</strong>r sporadic in lower regions <strong>of</strong> <strong>the</strong> Eastern Alps. The phenotype <strong>of</strong> M. morio (with its white<br />

stripe on <strong>the</strong> opisthosoma) from <strong>the</strong> cold bog – <strong>the</strong> temperature figure sensu ELLENBERG (1979)<br />

T = 3, – is similar to those <strong>of</strong> specimens <strong>of</strong> altitudes above 1 500/2 000 metres.<br />

The spider assemblages are characterised by <strong>the</strong> occurrence <strong>of</strong> hygro- and hydrophilous<br />

lycosids and linyphiids. The most frequent species in this area is Pirata hygrophilus THORELL,<br />

and <strong>the</strong> floating mat seems to be <strong>the</strong> optimal habitat for Pirata piscatorius (CLERCK). The<br />

sympatric occurrence <strong>of</strong> Trochosa terricola THORELL and Trochosa spinipalpis (F. O. P.-<br />

CAMBRIDGE) forms <strong>the</strong> spider-coenosis <strong>of</strong> <strong>the</strong> raised bog.<br />

Cluster analysis<br />

The hierarchical cluster analysis <strong>of</strong> harvestmen-coenoses based on species and dominance<br />

identity show both <strong>the</strong> isolated position <strong>of</strong> <strong>the</strong> raised bog (9) and a similarity between<br />

alder forests (1) and meadowsweet fens (7). Analysis <strong>of</strong> spider-coenoses led to a similar<br />

picture regarding <strong>the</strong> status <strong>of</strong> <strong>the</strong> raised bog. Concerning species identity a cluster <strong>of</strong> all<br />

wet biotope types is noticeable (Fig. 2); <strong>the</strong> dendrogram based on <strong>the</strong> dominance identity<br />

accentuates <strong>the</strong> high- and low vegetation associations willow shrub (2) - meadowsweet fen<br />

(7) and sedge swamp (5) - floating mat (8) respectively.<br />

67


40 40% -20% 20 0% 0 %<br />

20% 20<br />

40% 40 60% 60 80% 80 100 100%<br />

68<br />

pitfall traps<br />

light traps<br />

soil-sift. &<br />

hand-coll.<br />

similarity<br />

0<br />

10<br />

20<br />

30<br />

40<br />

50<br />

60<br />

70<br />

80<br />

90<br />

100<br />

5<br />

8<br />

9<br />

3<br />

2<br />

1<br />

1/ 31<br />

3/ 12<br />

1/ 28<br />

O piliones Araneae<br />

% 7<br />

fen<br />

8<br />

float<br />

5<br />

Carex<br />

6<br />

Phrag<br />

19<br />

35<br />

2<br />

Salix<br />

39<br />

3<br />

s-mead<br />

exclusiv.<br />

rest<br />

Fig. 1. Comparison <strong>of</strong> sampling methods: percentage <strong>of</strong> species recorded exclusively by pitfall traps, light-traps,<br />

soil-sifter and hand-collecting.<br />

4<br />

m-mead<br />

1<br />

Alnus<br />

Fig. 2. Hierarchical cluster analysis <strong>of</strong> spider-coenoses based on species identity. Dendrogram using Average<br />

Linkage (between groups) and Sörensen´s quotient <strong>of</strong> similarity.<br />

9<br />

bog


The majority <strong>of</strong> harvestmen recorded are eurytopic species; <strong>the</strong> single record <strong>of</strong> <strong>the</strong><br />

forest-inhabiting phalangiid Platybunus pinetorum (C. L. KOCH) in <strong>the</strong> hay meadow (3) can<br />

be regarded as an artefact. A richness <strong>of</strong> spider species in combination with a high percentage<br />

(58-73%) <strong>of</strong> endangered species is demonstrated for <strong>the</strong> biotope types floating mat (8),<br />

reed bed (6), meadowsweet fen (7) and sedge swamp (5) (Fig. 3); low values are presented<br />

for <strong>the</strong> moist meadow (4) and <strong>the</strong> small raised bog (9).<br />

High values concerning <strong>the</strong> evenness <strong>of</strong> <strong>the</strong> spider-communities show <strong>the</strong> alder forests<br />

(1), sedge swamps (5) and floating mats (8); <strong>the</strong> low value <strong>of</strong> <strong>the</strong> meadowsweet fen (7) is<br />

caused by <strong>the</strong> dominance <strong>of</strong> P. hygrophilus (51%).<br />

number <strong>of</strong> species<br />

40<br />

30<br />

20<br />

10<br />

0<br />

1<br />

Alnus<br />

2<br />

Salix<br />

3 4<br />

s-mead m-mead<br />

Aspects <strong>of</strong> nature conservation value<br />

5<br />

Carex<br />

6<br />

Phrag<br />

The percentage <strong>of</strong> endangered arachnid species (Table 5, 6, Fig. 3) shows no relationship<br />

with <strong>the</strong> diversity and evenness indices <strong>of</strong> <strong>the</strong> investigated biotope types (Table 5, 6) or<br />

with <strong>the</strong> percentage <strong>of</strong> endangered plant species (Fig. 4). Fig. 4 shows high divergences in<br />

<strong>the</strong> percentage <strong>of</strong> endangered species within one sample area between floristic and faunistic<br />

aspects, between zoophagous and phytophagous taxa (e.g. Araneae - Auchenorrhyncha)<br />

and even within zoophagous groups (e.g. Araneae - Carabidae). Striking differences between<br />

zoological and botanical results are obvious if we look at reed beds (6) and <strong>the</strong> raised<br />

bog (9). The Phragmites australis - “monoculture” contains a high diversity <strong>of</strong> carnivorous<br />

arthropods, <strong>the</strong> floristically interesting bog presents a contrary picture. The lack <strong>of</strong> endan-<br />

7<br />

fen<br />

rest (n=71)<br />

red data-list species (n=40)<br />

Fig. 3. Number <strong>of</strong> endangered spider species and total number <strong>of</strong> species <strong>of</strong> each sample area/biotope type.<br />

8<br />

float<br />

9<br />

bog<br />

69


T a b l e 2. Ecological characterisation <strong>of</strong> western Central Europe with regard to distinct environmental<br />

factors (ELLENBERG, 1979) and total number <strong>of</strong> plant species in <strong>the</strong> specific sample areas.<br />

70<br />

1<br />

Alnus<br />

2<br />

Salix<br />

3<br />

s-mead<br />

4<br />

m-mead<br />

5<br />

Carex<br />

6<br />

Phrag<br />

7<br />

fen<br />

8<br />

float<br />

Light value (L) 5.6 7.1 6.8 6.8 8.1 6.7 6.6 7.3 8.1<br />

Temperature value (T) 4 3.4 5 3.8 4 4.8 5 5 3<br />

Continentality value (K) 4.4 5.1 3.8 4 * 3.5 4.5 4.5 5.3<br />

Moisture value (F) 7.2 8.3 6.5 7.5 9.8 8.8 7.7 8.7 6.9<br />

Reaction value (R) 6.6 4.5 5.7 5.7 4 6.3 6 6 1.2<br />

Nitrogen value (S) 4.9 3.7 4.7 3.8 4.1 5.4 5.5 4.1 1.1<br />

number <strong>of</strong> plant species 20 14 24 31 4 10 14 13 11<br />

T a b l e 3. List <strong>of</strong> collected harvestmen species. The number <strong>of</strong> specimens in each biotope type is given. The<br />

total number <strong>of</strong> specimens and number caught by different collecting methods (pt: pitfall trap, ss: soil-sifter,<br />

hc: hand-collecting, lt: light-trap) are also given. Systematics after MARTENS (1978).<br />

Alnus<br />

Salix<br />

s-mead<br />

m-mead<br />

Carex<br />

Phrag<br />

fen<br />

float<br />

bog<br />

method<br />

family / species 1 2 3 4 5 6 7 8 9 total pt ss hc lt<br />

NEMASTOMATIDAE<br />

Nemastoma schuelleri GR. ET M. 29 1 30 12 16 2<br />

Nemastoma triste (C. L. K.) 3 3 3<br />

Paranemastoma<br />

quadripunctatum (PANZ.)<br />

PHALANGIIDAE<br />

4 1 1 2 9 17 10 4 3<br />

Amilenus aurantiacus (SIMON) 12 12 12<br />

Lacinius ephippiatus (C. L. K.) 4 4 3 1<br />

Lophopilio palpinalis (HERB.) 4 1 2 1 8 4 1 2 1<br />

Mitopus morio (FABR.) 1 39 40 4 36<br />

Nelima semproni SZAL. 1 1 1<br />

Oligolophus tridens (C. L. K.) 28 1 1 3 5 3 41 11 11 16 3<br />

Opilio dinaricus ŠILH. 3 3 3<br />

Phalangium opilio L. 4 7 2 2 1 11 27 14 3 10<br />

Platybunus pinetorum (C. L. K.) 1 1 1<br />

Rilaena triangularis (HERB.) 7 5 2 5 2 1 22 7 5 7 3<br />

Total 76 9 12 3 5 5 15 16 68 209 62 41 37 69<br />

gered arachnids and insects in <strong>the</strong> raised bog could be caused by <strong>the</strong> very low size and<br />

isolation <strong>of</strong> this area. NEET (1996) shows a significant correlation between <strong>the</strong> number <strong>of</strong><br />

tyrphobiont spider species influenced by habitat-size.<br />

9<br />

bog


percentage <strong>of</strong> endangered species<br />

80<br />

70<br />

60<br />

50<br />

40<br />

30<br />

20<br />

10<br />

0<br />

Opiliones<br />

Araneae<br />

Carabidae<br />

Auchenorrhyncha<br />

Spermatophyta<br />

1<br />

Alnus<br />

2<br />

Salix<br />

3<br />

s-mead<br />

4<br />

m-mead<br />

5<br />

Carex<br />

Low-scale mapping versus high-scale evaluation?<br />

6<br />

Phrag<br />

Fig. 4. Percentage <strong>of</strong> endangered species <strong>of</strong> Carinthia <strong>of</strong> each sample area/biotope type: Opiliones, Araneae,<br />

Carabidae, Auchenorrhyncha, Spermatophyta.<br />

Fig. 5. Potential map <strong>of</strong> distribution <strong>of</strong> Nemastoma schuelleri (dark areas), a litter inhabiting harvestman <strong>of</strong><br />

alder forests in <strong>the</strong> “Hörfeld-Moor”.<br />

Due to <strong>the</strong> large amount <strong>of</strong> time and effort involved, faunistical data concerning<br />

arthropods in general are derived from point sampling. A detailed zoological and botanical<br />

analysis <strong>of</strong> representative biotope types combined with mapping <strong>of</strong> biotopes<br />

7<br />

fen<br />

8<br />

float<br />

9<br />

bog<br />

71


and relevant structural parameters for <strong>the</strong> whole area can be calculated by modern s<strong>of</strong>tware<br />

(GIS) to map <strong>the</strong> potential distribution <strong>of</strong> selected stenotopic and sensitive<br />

bioindicators (Fig. 5). This method should be regarded as an instrument <strong>of</strong> estimating<br />

distribution and apparent abundance as well as evaluating divisions and biotopes <strong>of</strong><br />

large areas.<br />

Fur<strong>the</strong>r investigations would be worthwhile to check <strong>the</strong> similarities between potential<br />

maps <strong>of</strong> distribution <strong>of</strong> <strong>the</strong> particular species with <strong>the</strong> actual one.<br />

Notes on selected species<br />

Nemastoma schuelleri - This endemic species <strong>of</strong> <strong>the</strong> Eastern Alps is very numerous in<br />

alder forests.<br />

Opilio dinaricus - This rarely collected phalangiid shows that crepuscular and not epigeic<br />

animals seem to be under-represented in <strong>the</strong> majority <strong>of</strong> arachnological studies; <strong>the</strong>re are<br />

multiple records from Carinthia by means <strong>of</strong> light-traps.<br />

Platybunus pinetorum - This forest inhabiting species is one <strong>of</strong> <strong>the</strong> rarest harvestmen <strong>of</strong><br />

sou<strong>the</strong>rn Austria (KOMPOSCH, 1999) whereas in <strong>the</strong> Bavarian Alps it is much more common<br />

(MUSTER, in litt.).<br />

Enoplognatha caricis - The third record for Austria (KOMPOSCH, 1995a; ROTH, 1999: sub<br />

E. tecta) <strong>of</strong> this endangered <strong>the</strong>ridiid was made (using a light-trap ) on <strong>the</strong> 10 th June with<br />

one male in <strong>the</strong> sedge swamp. The nomenclature follows RŮŽIČKA, HOLEC (1998).<br />

Diplocephalus helleri (L. KOCH) - Constant occurrence in <strong>the</strong> high-alpine and nival <strong>zone</strong><br />

(THALER, 1992; THALER, KNOFLACH, 1997); <strong>the</strong> author knows <strong>of</strong> two fur<strong>the</strong>r records on <strong>the</strong><br />

Styrian rivers Enns and Teigitsch between 520 and 635 m. In <strong>the</strong> Hörfeld-Moor one male<br />

was found in <strong>the</strong> litter <strong>of</strong> <strong>the</strong> alder forest.<br />

Drepanotylus uncatus (O. P.-CAMBRIDGE) and Maro lepidus CASEMIR - Tyrphobiont species<br />

<strong>of</strong> <strong>the</strong> alder forest and reed bed (compare NEET, 1996).<br />

Pardosa fulvipes (COLLET) - „Perhaps fulvipes has in some degree been overlooked within<br />

its area <strong>of</strong> distribution“ (HOLM, KRONESTEDT, 1970: 423). This seems to be confirmed by<br />

ano<strong>the</strong>r record in Carinthia west <strong>of</strong> Spittal a.d. Drau (STEINBERGER, in litt.).<br />

Pirata tenuitarsis SIMON - The few records from Austria (Nor<strong>the</strong>rn Tyrol, Vorarlberg,<br />

Styria) are probably due to confusion with <strong>the</strong> sibling species P. piraticus (BUCHAR, THALER,<br />

1997).<br />

Clubiona germanica - A rare (collected ?) clubionid with an Eurosiberian distribution<br />

(MIKHAILOV, 1992).<br />

Gnaphosa nigerrima L. KOCH - In <strong>the</strong> Hörfeld-Moor this endangered species shows a high<br />

habitat preference for <strong>the</strong> Menyan<strong>the</strong>s - floating mat. A recent record in <strong>the</strong> Wörschacher<br />

Moor in Styria/Austria shows it occurs on hummocks in a former peat cutting area (RUPP,<br />

1999).<br />

72


Discussion<br />

The species spectrum <strong>of</strong> <strong>the</strong> Hörfeld-Moor is far from a complete inventory, but it could<br />

be regarded as a representative survey <strong>of</strong> <strong>the</strong> arachnocoenoses <strong>of</strong> this area. In comparison<br />

THALER (in LÖSER et al., 1982) published 158 spider species from <strong>the</strong> Bavarian nature reserve<br />

„Murnauer Moos“, RUPP (1999) recorded 119 spider species from <strong>the</strong> Styrian bog<br />

area “Wörschacher Moor” in Eastern Austria. 19 species are new to Carinthia (see Table 4)<br />

- so <strong>the</strong> total number <strong>of</strong> currently known species <strong>of</strong> this sou<strong>the</strong>rn federal country <strong>of</strong> Austria<br />

is 610 (KOMPOSCH, STEINBERGER, 1999). This high number <strong>of</strong> first recorded species is due to<br />

<strong>the</strong> insufficient knowledge about sou<strong>the</strong>rn Austrian wetlands - <strong>the</strong> Hörfeld-Moor is <strong>the</strong> third<br />

investigated wetland <strong>of</strong> Carinthia after <strong>the</strong> Sablatnigmoor (KOMPOSCH, 1995b) and <strong>the</strong><br />

Bleistätter Moor/Ossiacher See (KOMPOSCH, unpubl.) - as well as to <strong>the</strong> location <strong>of</strong> species<br />

rare all over Central Europe.<br />

Modern conservation work needs both stenotopic and sensitive bioindicators as conservation<br />

tools and striking flagship species, which may even become symbols and leading<br />

elements <strong>of</strong> entire conservation campaigns (compare MILASOWSZKY, ZULKA, 1998). Potential<br />

flagship species <strong>of</strong> <strong>the</strong> Hörfeld area are <strong>the</strong> <strong>spiders</strong> Araneus alsine (WALCKENAER), Pirata<br />

piscatorius, Dolomedes fimbriatus (CLERCK) and Gnaphosa nigerrima. Close cooperation<br />

between botanists and zoologists seems to be a basic requirement for effective nature conservation<br />

work. Inventories <strong>of</strong> selected arthropod groups lead to precise and detailed statements<br />

on small-scale areas in general. Connected with results <strong>of</strong> vertebrate investigations,<br />

geological, botanical, vegetational and structural mappings, a comprehensive picture and<br />

conservation value for <strong>the</strong> whole area can be given. A conservation value and derived recommendations<br />

for biotope management taking <strong>the</strong> complexity and patch connectivity <strong>of</strong><br />

ecosystems into consideration has to be based on adequate data <strong>of</strong> a representative spectrum<br />

<strong>of</strong> investigated taxa - both zoophagous and phytophagous indicator groups.<br />

Acknowledgements<br />

I am grateful to Dr K. Thaler for help with identification, Dr W. E. Holzinger for discussion and <strong>the</strong><br />

“Naturschutzverein Hörfeld-Moor”, especially mayor R. Schratter and Mag K. Krainer for <strong>the</strong>ir interest and<br />

financial assistance. Dr G. Egger and Mag M. Jungmeier kindly made <strong>the</strong> botanical data and maps <strong>of</strong> potential<br />

distribution available, Dr J. Dunlop helped to improve <strong>the</strong> English <strong>of</strong> <strong>the</strong> manuscript. Thanks to Mag T. Friess,<br />

Mag B. Komposch, Dr L. Neuhäuser-Happe, Mag W. Paill and Dr C. Wieser, who provided me with arachnid<br />

material.<br />

73


T a b l e 4. List <strong>of</strong> collected spider species. An asterisk (*) denotes species which are new to <strong>the</strong> fauna <strong>of</strong> Carinthia. The number <strong>of</strong> specimens in each<br />

biotope type is given. The total number <strong>of</strong> specimens and number caught by different collecting methods (pt: pitfall trap, ss: soil-sifter, hc: handcollecting,<br />

lt: light-trap) are also given. Systematics after KOMPOSCH, STEINBERGER (1999).<br />

74<br />

Alnus<br />

Salix<br />

s-mead<br />

m-mead<br />

Carex<br />

Phrag<br />

fen<br />

float<br />

bog<br />

method<br />

family / species 1 2 3 4 5 6 7 8 9 total pt ss hc lt<br />

THERIDIIDAE<br />

Crustulina guttata (WIDER) 1 1 1<br />

Enoplognatha ovata (CL.) 1 2 3 3<br />

Enoplognatha caricis (FICK.) 1 1 1<br />

Episinus angulatus (BL.) 1 1 1<br />

Euryopis flavomaculata (C. L. K.) 2 2 1 1<br />

Robertus lividus (BL.) 1 1 1<br />

Robertus scoticus JACK. 6 6 6<br />

Robertus truncorum (L. K.) 1 1 1<br />

Theridion sisyphium (CL.) 1 1 1<br />

LINYPHIIDAE<br />

Agyneta cauta (O. P.-C.) 2 1 1 1 5 4 1<br />

Araeoncus crassiceps (WEST.)* 1 25 1 6 38 71 71<br />

Bathyphantes approximatus (O. P.-C.)* 1 1 4 3 2 2 13 4 2 7<br />

Bathyphantes nigrinus (WEST.) 11 1 1 3 16 7 7 2<br />

Bathyphantes gracilis (BL.) 1 1 1<br />

Bolyphantes alticeps (SUND.) 1 1 1<br />

Centromerus arcanus (O.P.-C.)* 4 4 2 2<br />

Centromerus levitarsis (SIMON)* 1 1 1 1 1 1 6 4 2<br />

Centromerus pabulator (O. P.-C.) 1 1 1<br />

Centromerus sylvaticus (BL.) 1 1 2 2<br />

Ceratinella brevipes (WEST.) 4 1 5 5<br />

Ceratinella brevis (WIDER) 1 1 1<br />

Cnephalocotes obscurus (BL.)* 1 1 1<br />

Dicymbium brevisetosum LOCK. 1 1 1<br />

Diplocephalus helleri (L. K.) 1 1 1<br />

Diplocephalus latifrons (O. P.-C.) 2 2 2<br />

Diplostyla concolor (WIDER) 2 2 1 1<br />

Dismodicus bifrons (BL.) 1 1 2 1 1<br />

Drepanotylus uncatus (O. P.-C.)* 2 7 9 1 5 3<br />

Entelecara congenera (O. P.-C.) 1 1 1<br />

Erigone atra BL. 3 3 3<br />

Erigone dentipalpis (WIDER) 5 4 9 9<br />

Erigonella hiemalis (BL.) 1 1 1<br />

Erigonella ignobilis (O. P.-C.)* 1 9 8 18 18<br />

Floronia bucculenta (CL.) 1 1 2 1 1<br />

Gnathonarium dentatum (WIDER)* 5 5 2 2 1<br />

Helophora insignis (BL.) 16 16 4 5 7<br />

Hypomma bituberculatum (WIDER) 1 1 9 11 8 3<br />

Linyphia triangularis (CL.) 4 9 13 9 4<br />

Lophomma punctatum (BL.)* 2 4 7 4 17 9 8<br />

Maro lepidus CASE.* 2 2 2<br />

Maso sundevalli (WEST.) 1 1 1<br />

Neriene clathrata (SUND.) 1 1 1<br />

Oedothorax apicatus (BL.) 1 1 1<br />

Oedothorax fuscus (BL.) 1 1 1<br />

Oedothorax gibbosus (BL.) 21 28 43 15 107 106 1<br />

Oedothorax retusus (WEST.) 1 1 1<br />

Pelecopsis elongata (WIDER) 5 5 5<br />

Pocadicnemis pumila (BL.) 2 2 2<br />

Porrhomma oblitum (O. P.-C.)* 1 1 1<br />

Silometopus elegans (O. P.-C.)* 1 2 2 3 44 52 52<br />

Tallusia experta (O. P.-C.)* 1 1 2 4 2 2<br />

Tapinocyba insecta (L. K.) 4 4 4<br />

Walckenaeria alticeps (DENIS) 4 4 4<br />

Walckenaeria atrotibialis (O. P.-C.) 1 1 1<br />

Walckenaeria kochi (O. P.-C.) 1 1 8 2 12 10 2<br />

Walckenaeria nudipalpis (WEST.)* 1 2 3 2 1<br />

TETRAGNATHIDAE<br />

Metellina segmentata (CL.) 2 2 2<br />

Pachygnatha clercki SUND. 8 2 1 44 2 2 59 17 1 5 36<br />

Pachygnatha degeeri SUND. 37 37 37<br />

Pachygnatha listeri SUND. 4 21 1 26 21 2 3


T a b l e 4./Cont.<br />

Alnus<br />

Salix<br />

s-mead<br />

m-mead<br />

Carex<br />

Phrag<br />

fen<br />

float<br />

bog<br />

method<br />

family / species 1 2 3 4 5 6 7 8 9 total pt ss hc lt<br />

Tetragnatha extensa (L.) 3 2 2 1 3 11 5 6<br />

Tetragnatha montana SIMON 1 1 1 3 1 1 1<br />

Tetragnatha pinicola L. K. 1 1 1<br />

ARANEIDAE<br />

Aculepeira ceropegia (WALC.) 1 1 1<br />

Araneus alsine (WALC.) 1 1 2 1 1<br />

Araneus diadematus CL. 1 1 1<br />

Araneus marmoreus CL. 1 1 1<br />

Araneus quadratus CL. 1 2 1 4 1 9 5 4<br />

Araneus sturmi (HAHN) 1 1 1<br />

Hypsosinga heri (HAHN) 3 1 1 5 4 1<br />

Hypsosinga pygmaea (SUND.) 4 4 4<br />

Larinioides patagiatus (CL.) 1 1 1<br />

LYCOSIDAE<br />

Alopecosa cuneata (CL.) 1 1 1<br />

Alopecosa pulverulenta (CL.) 75 6 81 81<br />

Alopecosa trabalis (CL.) 1 1 2 2<br />

Pardosa amentata (CL.) 2 21 14 4 68 8 117 113 4<br />

Pardosa fulvipes (COLL.)* 3 1 2 1 21 31 59 59<br />

Pardosa paludicola (CL.) 1 1 1<br />

Pardosa palustris (L.) 138 2 1 141 141<br />

Pardosa prativaga (L. K.) 1 1 7 9 8 1<br />

Pardosa pullata (CL.) 132 1 133 133<br />

Pirata hygrophilus TH. 12 46 5 5 80 236 28 13 425 414 10 1<br />

Pirata latitans (BL.) 1 1 1 3 3<br />

Pirata piraticus (CL.) 19 1 20 20<br />

Pirata piscatorius (CL.) 1 3 8 53 65 63 2<br />

Pirata tenuitarsis SIMON* 4 5 47 3 22 81 79 2<br />

Trochosa ruricola (DE GEER) 20 1 1 22 21 1<br />

Trochosa spinipalpis (F. O. P.-C.) 13 11 12 2 8 29 75 74 1<br />

Trochosa terricola TH. 1 1 39 41 39 1 1<br />

PISAURIDAE<br />

Dolomedes fimbriatus (CL.) 2 2 12 3 22 33 3 77 57 1 19<br />

Pisaura mirabilis (CL.) 1 3 2 2 8 1 7<br />

AGELENIDAE<br />

Histopona torpida (C. L. K.) 1 1 1<br />

HAHNIIDAE<br />

Antistea elegans (BL.) 2 2 2<br />

Cryphoeca silvicola (C. L. K.) 2 2 2<br />

AMAUROBIIDAE<br />

Callobius claustrarius (HAHN) 1 1 1<br />

CLUBIONIDAE<br />

Cheiracanthium punctorium (VILL.) 2 2 2<br />

Clubiona germanica TH.* 1 1 1<br />

Clubiona lutescens WEST. 8 1 4 13 2 1 1 9<br />

Clubiona phragmitis C. L. K. 1 4 1 25 1 32 1 16 15<br />

Clubiona reclusa O. P.- C. 1 8 1 7 1 18 3 15<br />

Clubiona stagnatilis KULC. 5 6 11 1 7 3<br />

GNAPHOSIDAE<br />

Gnaphosa nigerrima L. K.* 2 8 10 10<br />

ZORIDAE<br />

Zora spinimana (SUND.) 2 1 2 2 7 3 4<br />

THOMISIDAE<br />

Ozyptila trux (BL.) 2 7 4 13 11 2<br />

Xysticus bifasciatus C. L. K. 2 1 3 3<br />

Xysticus cristatus (CL.) 13 1 14 13 1<br />

Xysticus ulmi (HAHN)* 2 6 4 12 6 6<br />

SALTICIDAE<br />

Evarcha arcuata (CL.) 4 4 4<br />

Evarcha falcata (CL.) 1 1 1<br />

Neon reticulatus (BL.) 2 2 2<br />

Sitticus floricola (C. L. K.) 1 4 3 1 8 17 2 15<br />

Total 87 142 479 60 106 309 462 375 130 2150 1780 65 157 148<br />

75


T a b l e 5. Number <strong>of</strong> species, diversity, evenness (Shannon index), and percentage <strong>of</strong> endangered species<br />

and dominant harvestman species (> 5 specimens) <strong>of</strong> <strong>the</strong> specific sample areas, and total number and average<br />

for <strong>the</strong> whole area <strong>of</strong> investigation.<br />

76<br />

No<br />

sp.<br />

div. even.<br />

%<br />

endang.<br />

sp.<br />

dominant species<br />

1 Alnus 6 1.42 0.79 17 N. schuelleri (38%), O. tridens (37%), R. triangularis (9%)<br />

2 Salix 2 – – 0<br />

3 s-mead 6 1.35 0.75 17 P. opilio (58%)<br />

4 m-mead 2 – – 0<br />

5 Carex 3 – – 0<br />

6 Phrag 3 – – 0<br />

7 fen 5 1.45 0.90 20 O. tridens (33%), R. triangularis (33%)<br />

8 float 3 0.83 0.76 0 P. opilio (69%)<br />

9 bog 7 1.29 0.66 0 M. morio (57%), A. aurantiacus (18%), P. quadripunctatum (13%)<br />

Total 13 – – 15<br />

average 4 1.27 0.77 6<br />

T a b l e 6. Number <strong>of</strong> species, diversity, evenness (Shannon index), percentage <strong>of</strong> endangered species and<br />

dominant spider species <strong>of</strong> <strong>the</strong> specific sample areas, and total number and average for <strong>the</strong> whole area <strong>of</strong><br />

investigation.<br />

No<br />

sp.<br />

div. even.<br />

%<br />

endang.<br />

sp.<br />

dominant species<br />

1 Alnus 33 2.93 0.84 39 H. insignis (18%), P. hygrophilus (14%), B. nigrinus (13%)<br />

2 Salix 29 2.52 0.75 48 P. hygrophilus (32%), O. gibbosus (15%), T. spinipalpis (9%)<br />

3 s-mead 26 2.02 0.62 31 P. palustris (29%), P. pullata (28%), A. pulverulenta (16%)<br />

4 m-mead 15 2.09 0.77 33 P. listeri (35%), T. spinipalpis (20%), A. pulverulenta (10%)<br />

5 Carex 27 2.75 0.83 67 A. crassiceps (24%), P. amentata (13%), D. fimbriatus (11%)<br />

6 Phrag 30 2.44 0.72 73 P. hygrophilus (26%), P. tenuitarsis (15%), P. clercki (14%)<br />

7 fen 33 1.89 0.54 58 P. hygrophilus (51%), P. amentata (15%), O. gibbosus (9%)<br />

8 float 39 2.96 0.81 59 P. piscatorius (14%), S. elegans (12%), A. crassiceps (10%)<br />

9 bog 24 2.34 0.74 17 T. terricola (30%), T. spinipalpis (22%), P. hygrophilus (10%)<br />

total 111 – – 36<br />

average 28 2.44 0.74 47


References<br />

BUCHAR, J., THALER, K., 1997: Die Wolfspinnen von Österreich 4 (Schluß): Gattung Pardosa max.p. (Arachnida,<br />

Araneae: Lycosidae) - Faunistisch-tiergeographische Übersicht. Carinthia II, 187, 107, p. 515-539.<br />

ELLENBERG, H., 1979: Zeigerwerte der Gefäßpflanzen Mitteleuropas. Scripta Geobotanica, 9, 122 pp.<br />

FRIESS, T., 1998: Die Wanzen (Heteroptera) des Naturschutzgebietes Hörfeld-Moor (Kärnten/Steiermark). Carinthia<br />

II, 188, 108, p. 589-605.<br />

HOLM, A., KRONESTEDT, T., 1970: A taxonomic study <strong>of</strong> <strong>the</strong> wolf <strong>spiders</strong> <strong>of</strong> <strong>the</strong> Pardosa pullata-group (Araneae,<br />

Lycosidae). Acta ent. bohemoslov., 67, p. 408-428.<br />

HUEMER, P., Wieser, C., 1997: Bemerkenswerte Nachweise von Schmetterlingen im Hörfeldmoor (Lepidoptera).<br />

Carinthia II, 187, 107, p. 401-408.<br />

KOMPOSCH, C., 1995a: Enoplognatha tecta (Keyserling) und Tetragnatha shoshone Levi neu für Österreich.<br />

(Araneae: Theridiidae, Tetragnathidae). Carinthia II, 185, 105, p. 729-734.<br />

KOMPOSCH, C., 1995b: Spinnen (Araneae). In WIESER, C., MILDNER, P., KOFLER, A. (eds): Naturführer Sablatnigmoor.<br />

Verl. Naturwiss. Ver. Kärnten, Klagenfurt, p. 75-89.<br />

KOMPOSCH, C., 1999: Rote Liste der Weberknechte Kärntens. Naturschutz in Kärnten, 15, p. 547-565.<br />

KOMPOSCH, C., STEINBERGER, K.-H., 1999: Rote Liste der Spinnen Kärntens. Naturschutz in Kärnten, 15, p. 567-618.<br />

LÖSER, S, MEYER, E., THALER, K., 1982: Laufkäfer, Kurzflügelkäfer, Asseln, Webespinnen, Weberknechte und<br />

Tausendfüßer des Naturschutzgebietes “Murnauer Moos” und der angrenzenden westlichen Talhänge (Coleoptera:<br />

Carabidae, Staphylinidae; Crustacea: Isopoda; Aranei; Opiliones; Diplopoda). Entom<strong>of</strong>auna, Suppl.<br />

1, p. 369-446.<br />

MARTENS, J., 1978: Spinnentiere, Arachnida: Weberknechte, Opiliones. In SENGLAUB, F., HANNEMANN, H.J., SCHU-<br />

MANN, H. (eds): Die Tierwelt Deutschlands, 64, Jena, 464 pp.<br />

MIKHAILOV, K.G., 1992: The spider genus Clubiona Latreille, 1804 (Arachnida, Aranei, Clubionidae) in <strong>the</strong><br />

USSR fauna: a critical review with taxonomical remarks. Arthropoda Selecta, 1, p. 3-34.<br />

MILASOWSZKY, N., ZULKA, K.P., 1998: Habitat requirements and conservation <strong>of</strong> <strong>the</strong> „flagship species“ Lycosa<br />

singoriensis (Laxmann 1770) (Araneae: Lycosidae) in <strong>the</strong> National Park Neusiedler See-Seewinkel (Austria).<br />

Z. Ökologie u. Naturschutz, 7, p. 111-119.<br />

NEET, C.R., 1996: Spiders as indicator species: lessons from two case studies. In MAHNERT, V. (ed.): Proceedings<br />

<strong>of</strong> <strong>the</strong> XIII th International Congress <strong>of</strong> Arachnology. Geneva, 1995. Revue suisse de Zoologie, hors serie, p.<br />

501-510.<br />

ROTH, A., 1999: Ök<strong>of</strong>aunistische Analyse der Spinnenzönosen (Arachnida, Araneae) zweier Enns-Inseln in Oberösterreich.<br />

Beitr. Naturk. Oberösterreichs, 7, p. 53-78.<br />

RUPP, B., 1999: Ök<strong>of</strong>aunistische Untersuchungen an der epigäischen Spinnenfauna (Arachnida: Araneae) des<br />

Wörschacher Moores (Steiermark, Bez. Liezen). Mitt. naturwiss. Ver. Steiermark, 129, p. 269-279.<br />

RŮŽIČKA, V., HOLEC, M., 1998: New records <strong>of</strong> <strong>spiders</strong> from pond littorals in <strong>the</strong> Czech Republic. Arachnol.<br />

Mitt., 16, p. 1-7.<br />

THALER, K., 1992: Weitere Funde nivaler Spinnen (Aranei) in Nordtirol und Beifänge. Ber. nat.-med. Verein<br />

Innsbruck, 79, p. 153-159.<br />

THALER, K., KNOFLACH, B., 1997: Funde hochalpiner Spinnen in Tirol 1992-1996 und Beifänge (Araneae, Opiliones,<br />

Pseudoscorpiones, Diplopoda, Coleoptera). Ber. nat.-med. Verein Innsbruck, 84, p. 159-170.<br />

77


Ekológia (Bratislava) Vol. 19, Supplement 4, 79-85, 2000<br />

SPIDERS (ARANEAE) ON SANDY ISLANDS IN THE<br />

SOUTHWESTERN ARCHIPELAGO OF FINLAND<br />

SEPPO KOPONEN<br />

Zoological Museum, University <strong>of</strong> Turku, FIN-20014 Turku, Finland. E-mail: sepkopo@utu.fi<br />

Introduction<br />

Abstract<br />

Koponen S.: Spiders (Araneae) on sandy islands in <strong>the</strong> southwestern archipelago <strong>of</strong> Finland. In<br />

Gajdoš P., Pekár S. (eds): Proceedings <strong>of</strong> <strong>the</strong> 18th <strong>European</strong> Colloquium <strong>of</strong> Arachnology, Stará<br />

Lesná, 1999. Ekológia (Bratislava), Vol. 19, Supplement 4/2000, p. 79-85.<br />

Spiders were studied on two sandy islands in <strong>the</strong> outermost part <strong>of</strong> <strong>the</strong> SW archipelago <strong>of</strong> Finland:<br />

Korppoo Jurmo (59 0 50’N, 21 0 37’E) and Dragsfjärd Örö (59 0 50’N, 22 0 20’E). The main<br />

collecting method was pitfall trapping. Typical, and <strong>of</strong>ten locally abundant, species on sandy and/<br />

or gravel shores were e.g. Arctosa cinerea, Alopecosa fabrilis, Pardosa agricola, Xerolycosa<br />

miniata, Zelotes longipes, Z. praeficus, Callilepis nocturna, Lasiargus hirsutus, Trichoncus hackmani,<br />

Microlinyphia impigra, Steatoda albomaculata, Philodromus fallax, Phlegra fasciata<br />

and Sitticus saltator. On dry heath meadows <strong>the</strong> following species, in addition to many <strong>of</strong> <strong>the</strong><br />

above-mentioned <strong>spiders</strong>, were typically caught: Zelotes electus, Alopecosa cuneata, Pardosa<br />

agrestis, P. palustris, Trichopterna cito and Lepthyphantes decolor. The material included three<br />

species listed in <strong>the</strong> Finnish Red Data Book, all in need <strong>of</strong> monitoring, i.e. Zelotes electus (abundant),<br />

Metapanamomops kaestneri (locally abundant) and Acartauchenius scurrilis. Also many<br />

o<strong>the</strong>r rare species, like Jacksonella falconeri, Argenna subnigra and Pseudicius encarpatus,<br />

were found.<br />

The southwestern archipelago <strong>of</strong> Finland consists <strong>of</strong> over 41 000 islands <strong>of</strong> different<br />

size. The spider fauna <strong>of</strong> this area has been studied by e.g. HACKMAN (1953), LEHTINEN,<br />

KLEEMOLA (1962), KLEEMOLA (1963), PALMGREN (1972), PALMGREN, LÖNNQVIST (1974),<br />

LEHTINEN et al. (1979).<br />

A large area (19 000 km 2 and 8 400 islands or islets) <strong>of</strong> <strong>the</strong> sou<strong>the</strong>rn part <strong>of</strong> <strong>the</strong> archipelago<br />

belongs nowadays to <strong>the</strong> joint working area <strong>of</strong> <strong>the</strong> Archipelago National Park, and<br />

investigation <strong>of</strong> fauna in <strong>the</strong> Park was carried out during <strong>the</strong> 1990s. In <strong>the</strong> present paper,<br />

data on <strong>the</strong> spider fauna on two ra<strong>the</strong>r large sandy islands are presented. The islands Jurmo<br />

and Örö are situated in <strong>the</strong> outer archipelago and facing <strong>the</strong> open Baltic Sea.<br />

79


Fig. 1. The study islands in <strong>the</strong> southwestern archipelago <strong>of</strong> Finland; 1 = Jurmo, 2 = Örö.<br />

Study area, material and methods<br />

The islands Jurmo (in Korppoo/Korpo; 59 0 50’N, 21 0 37’E) and Örö (in Dragsfjärd; 59 0 50’N, 22 0 20’E) are<br />

ra<strong>the</strong>r isolated sandy islands (Fig. 1). The area <strong>of</strong> Jurmo is 2.7 and <strong>of</strong> Örö 2.0 km 2 . The distance between <strong>the</strong><br />

islands is about 35 km. In Örö <strong>the</strong>re are forests <strong>of</strong> different types, with pine forests dominating naturally, whereas<br />

in Jurmo only a planted pine woodland can be found.<br />

Two main habitat types were studied: 1) sand/gravel sea shores 2) dry meadows and heaths. Two sea shores<br />

and a pond shore were studied in Jurmo and five sea shores in Örö. Three dry meadows or heaths were investigated<br />

in Jurmo and two in Örö island where, in addition, a man-made open sandy heath was studied.<br />

The shores were characterised by sand or gravel, sometimes also by larger stones. In some places wrack (drift<br />

<strong>of</strong> Fucus etc) was found. The sparse vegetation was formed by Leymus arenarius and several plants that are rare<br />

in Finland, like Elymus farctus, Crambe maritima, Isatis tinctoria, Salsola kali, Atriplex littoralis, Cakile maritima,<br />

and Honkenya peploides. In addition, some species <strong>of</strong> Carex, as well as <strong>of</strong> Poaceae, and Galium verum, Lathyrus<br />

japonicus, Thymus serpyllum, Tanacetum vulgare and Rosa rugosa are locally typical plants.<br />

In dry meadows and heaths e.g. Juniperus communis, Calluna vulgaris, Potentilla subarenaria, Linum<br />

catharcticum, Arctostaphylos uva-ursi, Thymus serpyllum, Empetrum nigrum, Antennaria dioica, Cardamine<br />

hirsuta, Artemisia campestris as well as Carex and Poaceae species are typical and at least locally common.<br />

The main collecting method was pitfall trapping. Plastic cups (diameter 70 mm) with covers against rainfall<br />

and litter, and with ethylene glycol and detergent as preservative, were used. The trapping period in Jurmo was<br />

29 June - 26 August 1995, and in Örö 25 May - 13 September 1996.<br />

The trapping sites (A-F), with characteristic plant species, were in Jurmo: 1) Shores (sou<strong>the</strong>rn and<br />

southwestern side), A: sand shore, Leymus, Empetrum, Galium verum; B: sand shore, Galium verum, Empetrum,<br />

Leymus, Juniperus; C: silty shore <strong>of</strong> temporary ponds, Agrostis stolonifera; 2) Dry meadows & heaths, D:<br />

calcareous heath, Festuca, Potentilla subarenaria, Antennaria, Linum, Juniperus, lichens; E: dry meadow,<br />

Poaceae, Juniperus; F: thymus heath, Poaceae, Thymus, Empetrum, Calluna, Juniperus.<br />

80


The trapping sites (A-H) in<br />

Örö were: 1) Shores (western<br />

side), A: sand dune, small pines,<br />

Galium verum, Isatis, Poaceae,<br />

Rosa rugosa, Cladonia; B:<br />

sand-gravel-stony shore, Leymus,<br />

Thymus, Galium verum,<br />

Poaceae; C: sand dune, Leymus,<br />

Galium verum, Sedum, Rosa,<br />

Poaceae; D: sand shore, Thymus,<br />

Galium verum, Anthriscus,<br />

Allium, Crambe, Chamenaerium,<br />

Tanacetum, Sedum, Rosa,<br />

Juniperus, Poaceae; E: sand-<br />

-gravel-stony shore, Leymus,<br />

Galium verum, Tanacetum,<br />

Crambe, Myosotis, Poaceae; 2)<br />

Heaths, F: warm heath, Thymys,<br />

Calluna, Cardamine hirsuta,<br />

Cirsium, Poaceae; G: warm<br />

heath, Calluna, Viola tricolor,<br />

Artemisia campestris, Poaceae;<br />

H: edge <strong>of</strong> man-made sand field<br />

and dry pine forest, open sand,<br />

Calamagrostis.<br />

The spider material from Jurmo<br />

and Örö consisted <strong>of</strong> about<br />

1 600 and 3 800 identifiable<br />

specimens, respectively. The<br />

material is deposited in <strong>the</strong><br />

Zoological Museum, University <strong>of</strong> Turku.<br />

Results and discussion<br />

Altoge<strong>the</strong>r, about 190 species <strong>of</strong> <strong>spiders</strong> were found in Jurmo and Örö islands in 1995-<br />

96. The most species-rich families were Linyphiidae (s.lat.; 67 species), Lycosidae (24),<br />

Theridiidae (19) and Gnaphosidae (17).<br />

Some species were frequently found both on shores and in dry meadow or heath habitats,<br />

i.e. <strong>the</strong>y were common in all open areas. These include e.g. Zelotes longipes (L. KOCH),<br />

Pardosa palustris (LINNAEUS), P. agrestis (WESTRING) and P. agricola (THORELL) in Jurmo,<br />

and Zelotes praeficus (L. KOCH), Z. electus (C. L. KOCH), Z. longipes, Callilepis nocturna<br />

(LINNAEUS), Phrurolithus festivus (C. L. KOCH) and Alopecosa fabrilis (CLERCK) in Örö.<br />

Spiders in shore habitats<br />

T a b l e 1. The most abundant <strong>spiders</strong> caught by pitfall traps on sea<br />

shores (sites A-B) and on a pond shore (site C) in Jurmo. Numbers are<br />

given for each species as a percentage <strong>of</strong> <strong>the</strong> total catch at <strong>the</strong><br />

respective site. Numbers in brackets denote that <strong>the</strong> species was not<br />

among <strong>the</strong> six most abundant ones, data for <strong>the</strong> dominant species are<br />

in bold; Aver- average percentage on sea shores. For description <strong>of</strong> <strong>the</strong><br />

sites, see <strong>the</strong> text.<br />

A B Aver C<br />

Lasiargus hirsutus (MENGE) 31 4 18 –<br />

Trichoncus hackmani MILL. (3) 27 15 –<br />

Zelotes subterraneus (C. L. K.) 29 – 15 –<br />

Alopecosa fabrilis (CL.) (1) 17 9 –<br />

Pardosa agricola (TH.) (2) 13 8 2<br />

Pardosa agrestis (WEST.) 8 – 4 (2)<br />

Oedothorax fuscus (BL.) 7 – 3 55<br />

Thanatus striatus C. L. K. 4 (2) 3 –<br />

Pachygnatha degeeri SUND. – 5 3 (0)<br />

Pirata piraticus (CL.) 3 – 2 (2)<br />

Oedothorax retusus (WEST.) – (1) . 15<br />

Oedothorax agrestis (BL.) (1) – . 7<br />

Erigone longipalpis (SUND.) – – . 6<br />

Number <strong>of</strong> species 23 20 . 14<br />

Number <strong>of</strong> individuals 258 114 . 454<br />

The most abundant species on sandy sea shores and on <strong>the</strong> silty pond shore in Jurmo<br />

island are shown in Table 1. Two erigonine species, Lasiargus hirsutus (MENGE) and<br />

81


T a b l e 2. The most abundant <strong>spiders</strong> caught by pitfall traps on shores in Örö (sites A-E). Numbers are given<br />

for each species as a percentage <strong>of</strong> <strong>the</strong> total catch at <strong>the</strong> respective site. Numbers in brackets denote that <strong>the</strong><br />

species was not among <strong>the</strong> six most abundant ones, data for <strong>the</strong> dominant species are in bold; Aver- average<br />

percentage on sea shores. For description <strong>of</strong> <strong>the</strong> sites, see <strong>the</strong> text.<br />

A B C D E Aver<br />

Lasiargus hirsutus (MENGE) 56 11 (1) 25 42 27<br />

Xerolycosa miniata (C. L. K.) 12 (3) 76 13 (1) 21<br />

Zelotes electus (C. L. K.) 5 (2) 4 11 (2) 5<br />

Pardosa agricola (TH.) 3 (1) (0) (4) 18 5<br />

Alopecosa fabrilis (CL.) 3 20 (0) (3) (0) 5<br />

Callilepis nocturna (L.) (1) 16 3 (1) 3 5<br />

Zelotes praeficus (L. K.) (2) (5) (2) 5 6 4<br />

Arctosa cinerea (FABR.) 3 – 4 (2) (2) 2<br />

Pardosa agrestis (WEST.) – 11 – – – 2<br />

Micaria nivosa L. K. – 10 (0) (0) – 2<br />

Zelotes longipes (L. K.) (0) 8 – – – 2<br />

Phrurolithus festivus (C. L. K.) (1) (2) 2 (0) (3) 2<br />

Trichoncus hackmani MILL. (2) (2) 2 (1) (2) 2<br />

Pachygnatha degeeri SUND. (1) (1) (1) 6 – 2<br />

Alopecosa pulverulenta (CL.) (0) – – 7 – 1<br />

Thanatus striatus C. L. K. (0) (1) (1) (0) 5 1<br />

Zelotes subterraneus (C. L. K.) (0) (2) – – 5 1<br />

Number <strong>of</strong> species 37 34 24 46 26 .<br />

Number <strong>of</strong> individuals 729 388 496 722 395 .<br />

Trichoncus hackmani MILLIDGE dominated on sea shores, and Oedothorax fuscus<br />

(BLACKWALL) and O. retusus (WESTRING) dominated <strong>the</strong> silty pond shore. O<strong>the</strong>r abundant<br />

species were e.g. Zelotes subterraneus (C. L. KOCH), A. fabrilis and P. agricola.<br />

In Örö, L. hirsutus, Xerolycosa miniata (C. L. KOCH) and A.fabrilis were dominant species<br />

in shore trap series (Table 2). O<strong>the</strong>r abundant species were Z. electus, P. agricola, C.<br />

nocturna, Z. praeficus and Arctosa cinerea (FABRICIUS).<br />

The most typical and abundant sand/gravel shore species in Jurmo and Örö islands was<br />

L. hirsutus. The species is known in Finland only from <strong>the</strong> outer part <strong>of</strong> <strong>the</strong> archipelago;<br />

HACKMAN (1953) reported it for <strong>the</strong> first time in Finland from Fucus heaps in Jurmo and<br />

from a few o<strong>the</strong>r localities.<br />

The shore material included many rare and interesting species: species on wide sandy<br />

shores were e.g. A. cinerea, A. fabrilis, X. miniata, Philodromus fallax SUNDEVALL, Xysticus<br />

sabulosus (HAHN), Microlinyphia impigra (O. P.-CAMBRIDGE), Steatoda albomaculata (DE<br />

GEER), Phlegra fasciata (HAHN) and Sitticus saltator (O. P.-CAMBRIDGE).<br />

Typical species on shores in <strong>the</strong> SW archipelago, and many <strong>of</strong> <strong>the</strong>m rare, were also Erigone<br />

longipalpis (SUNDEVALL), T. hackmani, Linyphia tenuipalpis SIMON, Argenna subnigra (O. P.-<br />

CAMBRIDGE), Micaria nivosa L. KOCH, Z. electus, Clubiona similis L. KOCH, Aelurillus vinsignitus<br />

(CLERCK), Myrmarachne formicaria (DE GEER), Thanatus striatus C. L. KOCH,<br />

Segestria senoculata (LINNAEUS), Dipoena hamata TULLGREN and D. prona (MENGE).<br />

82


Spiders in dry meadows<br />

and heaths<br />

Abundant <strong>spiders</strong><br />

caught by pitfall traps in<br />

dry meadows and in heaths<br />

in Jurmo island are listed<br />

in Table 3. Dominant in<br />

different habitats were Z.<br />

longipes, P. palustris and<br />

P. agrestis, o<strong>the</strong>r common<br />

species e.g. Drassodes<br />

lapidosus (WALCKENAER),<br />

Z. electus and locally<br />

Trichopterna cito (O. P.-<br />

CAMBRIDGE).<br />

Abundant species in dry<br />

heaths and in <strong>the</strong> manmade<br />

sandy heath in Örö<br />

island are given in Table 4.<br />

Dominant species in dry<br />

open heaths were Z.<br />

praeficus and Alopecosa<br />

cuneata (CLERCK), o<strong>the</strong>r<br />

common species were Z.<br />

electus, Z. longipes and<br />

Metapanamomops<br />

kaestneri (WIEHLE).<br />

Lepthyphantes decolor<br />

(WESTRING), P. festivus and<br />

X. miniata were <strong>the</strong> most<br />

abundant species in <strong>the</strong><br />

man-made heath where<br />

also <strong>the</strong> habitat resembled<br />

both heaths and <strong>the</strong> nearby<br />

sandy shore.<br />

Typical and abundant<br />

heath species in Jurmo and<br />

Örö islands were several<br />

species <strong>of</strong> <strong>the</strong> genera<br />

Zelotes (especially Z.<br />

T a b l e 3. The most abundant <strong>spiders</strong> caught by pitfall traps in dry<br />

meadows and heaths in Jurmo (sites D-F). Numbers for each species<br />

are given as a percentage <strong>of</strong> <strong>the</strong> total catch at <strong>the</strong> respective site.<br />

Numbers in brackets denote that <strong>the</strong> species was not among <strong>the</strong> six<br />

most abundant ones, data for <strong>the</strong> dominant species are in bold; Averaverage<br />

percentage in studied habitats. For description <strong>of</strong> <strong>the</strong> sites, see<br />

<strong>the</strong> text.<br />

D E F Aver<br />

Zelotes longipes (L. K.) 31 24 23 26<br />

Pardosa palustris (L.) 7 (4) 41 17<br />

Pardosa agrestis (WEST.) 37 7 5 16<br />

Drassodes lapidosus (WALC.) 7 7 5 6<br />

Zelotes electus (C. L. K.) 2 8 4 5<br />

Trichopterna cito (O. P.–C.) (0) 13 – 4<br />

Pardosa agricola (TH.) (1) 11 – 4<br />

Metopobactrus prominulus (O. P.–C.) (0) (1) 7 3<br />

Alopecosa pulverulenta (CL.) 4 (1) (1) 2<br />

Number <strong>of</strong> species 25 29 15 .<br />

Number <strong>of</strong> individuals 257 174 133 .<br />

T a b l e 4. The most abundant <strong>spiders</strong> caught by pitfall traps in dry<br />

heaths (sites F-G) and in <strong>the</strong> man-made sandy heath in Örö (site H).<br />

Numbers for each species are given as a percentage <strong>of</strong> <strong>the</strong> total catch<br />

at <strong>the</strong> respective site. Numbers in brackets denote that <strong>the</strong> species was<br />

not among <strong>the</strong> six most abundant ones, data for <strong>the</strong> dominant species<br />

are in bold; Aver- average percentage in studied heaths. For<br />

description <strong>of</strong> <strong>the</strong> sites, see <strong>the</strong> text.<br />

F G Aver H<br />

Zelotes praeficus (L. K.) 33 23 28 –<br />

Alopecosa cuneata (CL.) 13 30 22 –<br />

Zelotes electus (C. L. K.) 8 10 9 6<br />

Zelotes longipes (L. K.) 6 11 9 (1)<br />

Metapanamomops kaestneri (WIEH.) (3) 7 5 –<br />

Callilepis nocturna (L.) 7 (2) 5 –<br />

Alopecosa fabrilis (CL.) (2) 5 4 3<br />

Phrurolithus festivus (C. L. K.) 6 – 3 18<br />

Lepthyphantes decolor (WEST.) (4) – . 36<br />

Xerolycosa miniata (C. L. K.) (1) – . 10<br />

Pardosa lugubris (WALC.) (0) – . 6<br />

Number <strong>of</strong> species 36 23 . 18<br />

Number <strong>of</strong> individuals 503 246 . 67<br />

praeficus, Z. electus, Z. longipes), Alopecosa (A. cuneata, A. fabrilis, A. pulverulenta<br />

(CLERCK)) and Pardosa (P. agrestis, P. palustris).<br />

83


Worth mentioning are also L. decolor (found in Jurmo and Örö), Porrhomma montanum<br />

JACKSON (Örö), M. kaestneri (Örö), Micrargus subaequalis (WESTRING) (Jurmo), T. cito<br />

(Jurmo and Örö), Tapinocyboides pygmaea (MENGE) (Jurmo and Örö), Typhochrestes<br />

digitatus (O. P.-CAMBRIDGE) (Örö), Walckenaeria monoceros (WIDER) (Jurmo), Zelotes<br />

pusillus (C. L. KOCH) (Örö), C. nocturna (Örö), Micaria silesiaca L. KOCH (Örö),<br />

Poecilochroa variana (C. L. KOCH) (Jurmo and Örö), Phaeocedus braccatus (L. KOCH)<br />

(Örö), Pardosa nigriceps (THORELL) (Jurmo and Örö), and Xysticus erraticus (BLACKWALL)<br />

(Jurmo and Örö).<br />

In addition, <strong>the</strong> following noteworthy species were found in <strong>the</strong> field/shrub layer <strong>of</strong> dry<br />

heaths: Achaearanea riparia (BLACKWALL) (in Örö), A. saxatile (C. L. KOCH) (Jurmo and<br />

Örö), Theridion pallens BLACKWALL (Örö), T. tinctum (WALCKENAER) (Örö).<br />

Endangered species and faunistic rarities<br />

Three species amongst <strong>the</strong> present material have been included in <strong>the</strong> Finnish Red Data<br />

Book as species in need <strong>of</strong> monitoring (RASSI et al., 1992): Z. electus, M. kaestneri and<br />

Acartauchenius scurrilis (O. P.-CAMBRIDGE). All were found in Örö, and Z. electus also in<br />

Jurmo. Z. electus was <strong>the</strong> fourth most abundant species in Örö, and ra<strong>the</strong>r common also in<br />

dry heaths in Jurmo. M. kaestneri was also locally abundant in <strong>the</strong> dry heath in Örö. Only<br />

one specimen <strong>of</strong> A. scurrilis was found, also in dry heath in Örö. An interesting species is<br />

Pseudicius encarpatus (WALCKENAER), listed as extinct in Sweden (EHNSTRÖM et al., 1993)<br />

and which has also clearly declined in Finland during this century (cf. also PALMGREN, 1972);<br />

one specimen was found in Örö.<br />

Three species have recently been reported for <strong>the</strong> first time from Finland (KOPONEN,<br />

1999); two <strong>of</strong> <strong>the</strong>m (Jacksonella falconeri (WALCKENAER) from <strong>the</strong> gravel-sand shore in<br />

Örö and Enoplognatha thoracica (HAHN) from dry Thymus meadow in Jurmo) are based on<br />

<strong>the</strong> present material, and <strong>the</strong> third one (Ozyptila westringi (THORELL) from Jurmo) on previous<br />

museum material.<br />

Faunal comparisons<br />

The fauna found in sandy islands <strong>of</strong> Jurmo and Örö resembled, in general, that reported<br />

from corresponding habitats in Scania (ALMQUIST, 1973) and Öland (KRONESTEDT,<br />

1983), South Sweden, and from <strong>the</strong> nor<strong>the</strong>rn coast <strong>of</strong> Germany (SCHULTZ, FINCH, 1996).<br />

However, many species common ei<strong>the</strong>r on <strong>the</strong> North German coast or on dunes <strong>of</strong> Scania<br />

and in heaths <strong>of</strong> Öland are absent in <strong>the</strong> present area, probably due to <strong>the</strong> ra<strong>the</strong>r small<br />

size, marked isolation and nor<strong>the</strong>rn latitude <strong>of</strong> Jurmo and Örö. On <strong>the</strong> o<strong>the</strong>r hand, several<br />

common or characteristic species <strong>of</strong> <strong>the</strong> present material are absent or rare at more sou<strong>the</strong>rn<br />

Baltic Sea sites. Special characters <strong>of</strong> <strong>the</strong> present islands seem to be, for example, <strong>the</strong><br />

great number <strong>of</strong> species and individuals <strong>of</strong> Gnaphosidae and <strong>the</strong> dominance <strong>of</strong> Lasiargus<br />

hirsutus (MENGE) on shores (cf. ALMQUIST, 1973; VILBASTE, 1974; KRONESTEDT, 1983;<br />

SCHULTZ, FINCH, 1996).<br />

84


Acknowledgements<br />

The support by <strong>the</strong> Archipelago Park Area <strong>of</strong> <strong>the</strong> Finnish Forest and Park Service is greatly appreciated. The<br />

help in <strong>the</strong> field by Veikko Rinne and Tom Clayhills is gratefully acknowledged.<br />

References<br />

ALMQUIST, S., 1973: Spider associations in coastal sand dunes. Oikos, 24, p. 444-457.<br />

EHNSTRÖM, B., GARDENFORS, U., LINDELÖW, Å., 1993: Swedish red list <strong>of</strong> invertebrates 1993. Databanken för<br />

hotade arter, Uppsala, 69 pp. (In Swedish)<br />

HACKMAN, W., 1953: Spiders from Åland and <strong>the</strong> southwestern archipelago <strong>of</strong> Finland. Memoranda Societatis<br />

pro Fauna et Flora Fennica, 28, p. 70-78. (In Swedish)<br />

KLEEMOLA, A., 1963: On <strong>the</strong> zonation <strong>of</strong> <strong>spiders</strong> on stony shores <strong>of</strong> rocky islets in <strong>the</strong> southwestern archipelago<br />

<strong>of</strong> Finland. Aquilo (Zoologica), 1, p. 26-38.<br />

KOPONEN, S., 1999: Three species <strong>of</strong> <strong>spiders</strong> (Araneae) new to <strong>the</strong> fauna <strong>of</strong> Finland from <strong>the</strong> southwestern archipelago.<br />

Entomologica Fennica, 10, p. 6.<br />

KRONESTEDT, T., 1983: Spiders on <strong>the</strong> Great Alvar <strong>of</strong> <strong>the</strong> island <strong>of</strong> Öland, S Sweden. Entomologisk Tidskrift,<br />

104, p. 183-212. (In Swedish)<br />

LEHTINEN, P.T., KLEEMOLA, A., 1962: Studies on <strong>the</strong> spider fauna <strong>of</strong> <strong>the</strong> southwestern archipelago <strong>of</strong> Finland. I.<br />

Archivum Societatis Zoologicae Botanicae Fennicae ‘Vanamo’, 16, 1, p. 97-114.<br />

LEHTINEN, P.T., KOPONEN, S., SAARISTO, M., 1979: Studies on <strong>the</strong> spider fauna <strong>of</strong> <strong>the</strong> southwestern archipelago <strong>of</strong><br />

Finland II. The Aland mainland and <strong>the</strong> island <strong>of</strong> Eckerö. Memoranda Societatis pro Fauna et Flora Fennica,<br />

55, p. 33-52.<br />

PALMGREN, P., 1972: Studies on <strong>the</strong> spider populations <strong>of</strong> <strong>the</strong> surroundings <strong>of</strong> <strong>the</strong> Tvärminne Zoological Station,<br />

Finland. Societas Scientiarum Fennica, Commentationes Biologicae, 52, p. 1-133.<br />

PALMGREN, P., LÖNNQVIST, B., 1974: The <strong>spiders</strong> <strong>of</strong> some habitats at <strong>the</strong> Nåtö Biological Station (Åland, Finland).<br />

Societas Scientiarum Fennica, Commentationes Biologicae, 73, p. 1-10.<br />

RASSI, P., KAIPIAINEN, H., MANNERKOSKI, I., STÅHLS, G., 1992: Report on <strong>the</strong> monitoring <strong>of</strong> threatened animals and<br />

plants in Finland. Ministry <strong>of</strong> <strong>the</strong> Environment, Helsinki, 328 pp. (In Finnish)<br />

SCHULTZ, W., FINCH, O.-D., 1996: Biotoptypenbezogene Verteilung der Spinnenfauna der nordwestdeutschen<br />

Küstenregion. Cuvillier Verlag, Göttingen, 141 pp.<br />

VILBASTE, A., 1974: On <strong>the</strong> spider fauna <strong>of</strong> islets <strong>of</strong> Väinameri. Loodusvaatlusi, 1973, p. 132-145. (In Estonian)<br />

85


Ekológia (Bratislava) Vol. 19, Supplement 4, 87-96, 2000<br />

FAUNA OF SOIL-DWELLING PREDATORY<br />

GAMASINA MITES (ACARI: MESOSTIGMATA) IN<br />

SEASHORE HABITATS OF THE KURZEME COAST,<br />

LATVIA<br />

INETA SALMANE<br />

Institute <strong>of</strong> Biology, University <strong>of</strong> Latvia, Miera iela 3, LV-2169, Salaspils, Latvia. Fax: 371-9-345 412. Email:<br />

ineta_s@hotmail.com<br />

Introduction<br />

Abstract<br />

SALMANE I.: Fauna <strong>of</strong> soil-dwelling predatory Gamasina mites (Acari: Mesostigmata) in seashore<br />

habitats <strong>of</strong> <strong>the</strong> Kurzeme Coast, Latvia. In GAJDOŠ P., PEKÁR S. (eds): Proceedings <strong>of</strong> <strong>the</strong> 18th<br />

<strong>European</strong> Colloquium <strong>of</strong> Arachnology, Stará Lesná, 1999. Ekológia (Bratislava), Vol. 19, Supplement<br />

4/2000, p. 87-96.<br />

Because <strong>of</strong> <strong>the</strong> lack <strong>of</strong> data on <strong>the</strong> Gamasina mite fauna in coastal habitats <strong>of</strong> Latvia, sampling<br />

was made on <strong>the</strong> seashore <strong>of</strong> <strong>the</strong> Kurzeme Coast. An unexpectedly high total number (78) <strong>of</strong><br />

Gamasina species was recorded. Twenty-three species were found to be new for Latvia. A previously<br />

undescribed species (new to Science) from <strong>the</strong> genus Lasioseius was recorded from <strong>the</strong><br />

yellow dunes. Leioseius bicolor, Leioseius halophilus and Parasitus halophilus were recorded as<br />

<strong>the</strong> most widely distributed Gamasina species along <strong>the</strong> Kurzeme Coast.<br />

Driftline, primary and yellow dune Gamasina faunas were investigated separately. Fourteen Gamasina<br />

species were found to be common to all three habitats. Driftline habitats were <strong>the</strong> most<br />

diverse with 55 species. Twenty-two species were recorded from <strong>the</strong> primary dunes and 50 species<br />

from <strong>the</strong> yellow dunes.<br />

Comparison <strong>of</strong> Gamasina fauna along <strong>the</strong> coasts <strong>of</strong> <strong>the</strong> Baltic Sea and <strong>the</strong> Riga Gulf <strong>of</strong> <strong>the</strong> Kurzeme<br />

was made. Fifty species from coastal habitats <strong>of</strong> <strong>the</strong> Riga Gulf Coast and 55 from <strong>the</strong> Baltic<br />

Sea Coast were recorded. Twenty-seven Gamasina species were recorded as common for both<br />

sites, but 24 species for <strong>the</strong> Riga Gulf Coast and 29 for <strong>the</strong> Baltic Sea Coast were unique for <strong>the</strong>ir<br />

respective habitats.<br />

Seashore ecosystems vary in terms <strong>of</strong> ecological conditions and biological diversity, and<br />

can be characterised by an interaction between geomorphological and biological processes<br />

(JUNGERIUS, 1985). Biological processes in coastal habitats are complicated and <strong>the</strong> role <strong>of</strong><br />

<strong>the</strong> soil fauna in <strong>the</strong>m is important (MALLOW et al., 1984). Protozoa and Nematoda are<br />

87


attracted to <strong>the</strong> active rhizosphere and may feed on bacteria, as well as on living and dead<br />

plant material and soil algae and fungi. Collembola - bacterial and fungal grazers, and<br />

Gamasina mites as predators <strong>of</strong> Collembola, o<strong>the</strong>r soil dwelling mites, Nematoda, Insecta<br />

larvae etc. may control this system (KOEHLER et al., 1992). This complicated system is very<br />

important for soil processes generally, but for seashore habitats in particular. Unfortunately,<br />

little is known about <strong>the</strong> soil fauna in coastal habitats <strong>of</strong> Latvia and few data are available<br />

concerning <strong>the</strong> soil Gamasina mites that live <strong>the</strong>re.<br />

The fauna <strong>of</strong> soil Gamasina mites <strong>of</strong> seashore ecosystems in Latvia is poorly investigated.<br />

Some sampling was carried out by Kadite (Lithuania). She described 35 Gamasina<br />

species from various seashore habitats (EITMINAVICHUTE, 1976). Some case studies along <strong>the</strong><br />

seacoast <strong>of</strong> Latvia have been made by <strong>the</strong> author <strong>of</strong> <strong>the</strong> present article (MELECIS et al., 1994;<br />

SALMANE, 1996; PAULINA et al., 1999), <strong>the</strong> results <strong>of</strong> which stimulated <strong>the</strong> need for <strong>the</strong> sampling<br />

reported here, with <strong>the</strong> aim <strong>of</strong> obtaining a closer insight into <strong>the</strong> Gamasina fauna <strong>of</strong><br />

<strong>the</strong> seashore habitats <strong>of</strong> Latvia.<br />

Study Area<br />

A total <strong>of</strong> 8 sampling sites were selected along <strong>the</strong> seacoast <strong>of</strong> <strong>the</strong> Kurzeme (Engure<br />

(23°15'/57°10'), Roja (22°45'/57°30'), Kolkasrags (22°30'/57°40'), Luzna (21°55'/57°35'),<br />

Ventspils (21°30'/57°25'), Pavilosta (21°15'/56°55'), Liepaja (21°0'/56°30') and Pape (21°5'/<br />

56°15') in <strong>the</strong> driftline, primary and yellow dunes.<br />

The driftline habitats were characterised mostly by fine sand and material washed ashore,<br />

including algae and o<strong>the</strong>r jetsam deposited by <strong>the</strong> sea. Organic debris deposited by <strong>the</strong> sea<br />

was <strong>the</strong> main nutrient source here. Cakile maritima, Chenopodium rubrum or Salsola calii<br />

represented <strong>the</strong> vegetation in a few cases. The primary dunes were characterised by fine to<br />

medium sandy soils with minimal content <strong>of</strong> organics in <strong>the</strong> soil. Single Calamophila baltica,<br />

Ammodenia peploides, Amophila arenaria, Leymus arenarius, Festuca arenaria and Juncus<br />

balticus represented <strong>the</strong> vegetation here.The yellow dunes were characterised by medium<br />

sandy soils with a relatively high content <strong>of</strong> organics and more abundant vegetation represented<br />

by Calamophila baltica, Amophila arenaria, Festuca arenaria, Hieracium<br />

umbellatum, Carex arenarius, Ammodenia pepoloides, Anthyllis maritima, Lathyrus<br />

japonicus and Salix sp.<br />

Material and methods<br />

We focused on qualitative sampling to investigate <strong>the</strong> spectrum <strong>of</strong> Gamasina species. The sampling was<br />

performed in 8 sites along <strong>the</strong> Kurzeme Coast (Western part <strong>of</strong> Latvia), which includes <strong>the</strong> western part <strong>of</strong> <strong>the</strong><br />

Riga Gulf Coast and <strong>the</strong> western part <strong>of</strong> <strong>the</strong> Latvian sea coast washed by <strong>the</strong> Baltic Sea. Three sampling sites in<br />

Riga Gulf Coast <strong>of</strong> <strong>the</strong> Kurzeme Coast and 5 at Baltic Sea Coast were chosen. At each site sampling was carried<br />

out by hand or by using a soil corer (23cmþ x 10cm). A single sample included approximately 300-400 g <strong>of</strong><br />

88


substrate. Altoge<strong>the</strong>r 120 soil samples were taken from <strong>the</strong> organic debris <strong>of</strong> <strong>the</strong> driftline or <strong>the</strong> rhizosphere <strong>of</strong><br />

plants in primary and yellow dunes. The collected material was taken to <strong>the</strong> laboratory in plastic bags.<br />

Extraction was carried out using Tullgren funnels, where samples were exposed for a period <strong>of</strong> 14 days.<br />

Determination and nomenclature <strong>of</strong> Gamasina species are based upon <strong>the</strong> keys <strong>of</strong> BREGETOVA (1977), HIRSHMANN<br />

(1971), KARG (1993), KOLODOCHKA (1978) and LAPINA (1976 a, b). The quantitative comparison <strong>of</strong> Gamasina<br />

mites among sampling sites was not possible because <strong>of</strong> <strong>the</strong> unequal number <strong>of</strong> samples taken.<br />

Results<br />

Seventy-eight Gamasina species were recorded in <strong>the</strong> collected material, 23 <strong>of</strong> which<br />

were found for <strong>the</strong> first time in <strong>the</strong> fauna <strong>of</strong> Latvia (Table 1). One, previously undescribed<br />

species (new to Science) from <strong>the</strong> genus Lasioseius was found. Leioseius bicolor (BERLESE)<br />

(8 sampling sites), L. halophilus (WILLMANN) and Parasitus halophilus (SELLNICK) (7) and<br />

Thinoseius spinosus (WILLMANN) and Leioseius insignis HIRSCHMANN (6) were <strong>the</strong> most<br />

widely distributed species in <strong>the</strong> seashore habitats <strong>of</strong> <strong>the</strong> Kurzeme Coast (Table 2).<br />

Comparison <strong>of</strong> Gamasina mites’ fauna among <strong>the</strong> habitats was made and 14 species<br />

were revealed as common for all habitats (Table 1). Species found <strong>the</strong>re were mainly ubiquitous,<br />

forest and seashore inhabitants. The driftline communities were found to be <strong>the</strong><br />

most diverse with 55 species, 22 <strong>of</strong> which differed from <strong>the</strong> dune fauna. At <strong>the</strong> dune habitats<br />

22 and 50 species in primary and yellow dunes, respectively, were recorded.<br />

Fourteen species were common for all three investigated habitat types, 3 species common<br />

for driftline and primary dune, 15 species for driftline and yellow dune. Three Gamasina<br />

species were common for both primary and yellow dunes. Forty-three species were recorded<br />

only in one habitat type. Twenty-two <strong>of</strong> <strong>the</strong>m were found as typical only for <strong>the</strong><br />

driftline, 2 species for <strong>the</strong> primary and 18 species for <strong>the</strong> yellow dune habitats.<br />

Comparison between <strong>the</strong> fauna <strong>of</strong> Gamasina mites <strong>of</strong> <strong>the</strong> Baltic Sea Coast and Riga Gulf<br />

Coast <strong>of</strong> Kurzeme was made. In <strong>the</strong>se two sites 55 and 50 species, respectively, could be<br />

determined. About 1/3 <strong>of</strong> <strong>the</strong>m was common for both sites, but <strong>the</strong> rest <strong>of</strong> <strong>the</strong> species were<br />

unique for one <strong>of</strong> <strong>the</strong> sites.<br />

Discussion<br />

Fifty-five Gamasina were recorded in <strong>the</strong> driftline habitats and <strong>the</strong> most abundant species<br />

<strong>the</strong>re found were those with demands for wet soils with a high amount <strong>of</strong> organic<br />

material. Several species (Parasitus kempersi OUDEMANSI, Halolaelaps balticus WILLMANN,<br />

H. incisus HYATT, Thinoseius spinosus), known as common driftline inhabitants (KARG,<br />

1993), were found in high numbers in <strong>the</strong> material washed ashore. Also some hygrophilous<br />

Gamasina (Gamasolaelaps excisus (C. L. KOCH), Neojordensia levis (OUDEMANS ET VOIGTS),<br />

Cheiroseius necorniger (OUDEMANS) and Hypoaspis vacua (MICHAEL)), and species from<br />

<strong>the</strong> genus Macrocheles, preferring habitats with high organic content, were numerous <strong>the</strong>re.<br />

89


T a b l e 1. Occurrence <strong>of</strong> Gamasina species on <strong>the</strong> seashore <strong>of</strong> <strong>the</strong><br />

Kurzeme Coast. (* - species recorded for <strong>the</strong> first time in Latvia).<br />

Gamasina (Acari) Driftline Primary<br />

dune<br />

90<br />

Yellow<br />

dune<br />

Parasitus halophilus (SELL.)* x x x<br />

Holoparasitus excipuliger (BERL.) x x x<br />

Pergamasus vagabundus KARG x x x<br />

Veigaia nemorensis (C. L. K.) x x x<br />

Leioseius bicolor (BERL.) x x x<br />

Leioseius halophilus (WILL.) x x x<br />

Leioseius insignis HIRS.* x x x<br />

Amblyseius marinus (WILL.)* x x x<br />

Amblyseius agrestis (KARG)* x x x<br />

Dendrolaelaps nostricornutus HIRS. ET<br />

WISN.*<br />

x x x<br />

Asca bicornis (CANE. ET FANZ.) x x x<br />

Halolaelaps balticus WILL.* x x x<br />

Thinoseius spinosus (WILL.)* x x x<br />

Parazercon sarekensis WILL. x x x<br />

Veigaia cervus (KRAM.) x x<br />

Macrocheles glaber (MULL.) x x<br />

Prozercon trägardhi (HALB.) x x<br />

Parasitus kempersi OUDE.* x x<br />

Pergamasus crassipes (L.) x x<br />

Pergamasus septentrionalis (OUDE.) x x<br />

Leioseius minutus (HALB.) x x<br />

Pergamasus teutonicus WILL. x x<br />

Pergamasus wasmanni (OUDE.) x x<br />

Amblyseius bicaudus WAIN. x x<br />

Amblyseius messor WAIN. x x<br />

Amblyseius meridionalis (BERL.) x x<br />

Dendrolaelaps foveolatus LEIT. x x<br />

Macrocheles tardus (C. L. K.) x x<br />

Hypoaspis aculeifer (CANE.) x x<br />

Hypoaspis praesternalis WILL. x x<br />

Hypoaspis vacua (MICH.) x x<br />

Zercon carpathicus (SELL.) x x<br />

Parasitus kraepelini BERL. x<br />

Parasitus lunaris BERL. x<br />

Parasitus fimetorum BERL. x<br />

Pergamasus truncus SCHW.* x<br />

Gamasodes bispinosus (HALB.)* x<br />

Pergamasus lapponicus TRAG. x<br />

Veigaia exigua (BERL.) x<br />

Gamasolaelaps excisus (C. L. K.)* x<br />

Neojordensia levis (OUDE. ET VOIG.) x<br />

The high abundance<br />

<strong>of</strong> <strong>the</strong>se species could<br />

be explained by <strong>the</strong><br />

presence <strong>of</strong> very favourable<br />

ecological<br />

conditions. Driftline<br />

habitats are rich in <strong>the</strong><br />

organic material (nutrients)<br />

deposited by <strong>the</strong><br />

sea and, thus, <strong>the</strong> most<br />

favourable environmental<br />

conditions for<br />

various invertebrates,<br />

on which Gamasina are<br />

known to prey (COLE-<br />

MAN, CROSSLEY, 1996;<br />

PUGH, 1985), were<br />

formed. Fresh organic<br />

material attracts various<br />

Insecta, which feed and<br />

lay eggs <strong>the</strong>re. Their<br />

eggs, larvae and some<br />

specialised driftline<br />

Collembola species and<br />

o<strong>the</strong>r small adult Insecta<br />

form <strong>the</strong> main<br />

food source for predatory<br />

Gamasina mites.<br />

Useful food for Gamasina<br />

is also o<strong>the</strong>r soil<br />

mite groups, Polychaeta,<br />

Nematoda and<br />

Enchytraeidae, dwelling<br />

in <strong>the</strong> material<br />

washed ashore. These<br />

favourable ecological<br />

conditions for Gamasina<br />

mites enables <strong>the</strong>m<br />

to achieve a high abundance<br />

in <strong>the</strong> driftline.<br />

Favourable conditions<br />

determine <strong>the</strong> ex-


istence <strong>of</strong> many Gamasina<br />

species, which are not typical<br />

driftline inhabitants.<br />

O<strong>the</strong>r groups recorded in<br />

<strong>the</strong> driftline comprised species<br />

characteristic mainly <strong>of</strong><br />

various inland ecosystems<br />

(e.g. some ubiquitous species<br />

(Pergamasus vagabundus<br />

KARG, Holoparasitus<br />

excipuliger (BERLESE)<br />

and Veigaia nemorensis (C.<br />

L. KOCH)), forest species<br />

(Pergamasus lapponicus<br />

TRAGARDH, Pergamasus<br />

crassipes (LINNAEUS), P.<br />

wasmanni (OUDEMANS),<br />

Hypoaspis aculeifer<br />

(CANESTRINI) and Parazercon<br />

sarekensis WILLMANN)<br />

and inland meadow species<br />

(Cheiroseius borealis<br />

(BERLESE), Leioseius minutus<br />

(HALBERT), Asca bicornis<br />

(CANESTRINI ET FANZAGO),<br />

Hypoaspis praesternalis<br />

WILLMANN, H. vacua,<br />

Veigaia exigua (BERLESE)).<br />

Some common dune inhabitants<br />

(Leioseius bicolor,<br />

Parasitus halophilus) were<br />

also recorded in <strong>the</strong> material<br />

from <strong>the</strong> driftline. Species<br />

<strong>of</strong> this group were not<br />

as numerous as <strong>the</strong> abovementioned<br />

typical driftline<br />

inhabitants.<br />

Fifteen species were recorded<br />

as common for <strong>the</strong><br />

driftline and yellow dunes,<br />

T a b l e 1.<br />

Gamasina (Acari) Driftline Primary<br />

dune<br />

Yellow<br />

dune<br />

Cheiroseius borealis (BERL.) x<br />

Cheiroseius necorniger (OUDE.) x<br />

Amblyseius obtusus (C. L. K.) x<br />

Amblyseius herbarius WAIN. x<br />

Dendrolaelaps latior (LEIT.)* x<br />

Dendrolaelaps fallax (LEIT.) x<br />

Halolaelaps incisus HYATT* x<br />

Halolaelaps marinus (BRADY)* x<br />

Macrocheles montanus (WILL.) x<br />

Alliphis siculus (OUDE.) x<br />

Eviphis ostrinus (C. L. K.) x<br />

Prozercon sellnicki HALA. x<br />

Zercon montanus WILL. x<br />

Zercon fageticola HALA.* x<br />

Rhodacarellus silesiacus WILL. x x<br />

Rhodacarus reconditus ATHIAS-H. x x<br />

Dendrolaelaps arenarius KARG* x x<br />

Zercon zelawaiensis SELL. x<br />

Leioseius montanulus HIRS. x<br />

Lasioseius sp. nov. x<br />

Hypoaspis claviger (BERL.) x<br />

Hypoaspis sclerotarsa COSTA* x<br />

Hypoaspis similisetae KARG* x<br />

Hypoaspis kargi COSTA x<br />

Laelaspis astronomicus L. K. x<br />

Zercon spatulatus (C. L. K.) x<br />

Leioseius minusculus (BERL.) x<br />

Platyseius italicus (BERL.) x<br />

Antenoseius delicatus BERL. x<br />

Amblyseius aurescens ATHIAS-H. x<br />

Amblyseius andersoni (CHANT) x<br />

Amblyseius bakeri (GARM.) x<br />

Amblyseius graminis CHANT x<br />

Rhodacarus mandibularis BERL.* x<br />

Rhodacarus haarlovi SHCH.* x<br />

Minirhodacarellus minimus (KRAG)* x<br />

Dendrolaelaspis angulosus WILL.* x<br />

Totally 78 species 55 22 50<br />

and this could be explained by <strong>the</strong> relatively high organic matter content in <strong>the</strong> soils <strong>of</strong><br />

yellow dunes. In turn, <strong>the</strong> driftline and primary dunes have only 3 common Gamasina species<br />

because <strong>of</strong> <strong>the</strong> totally different ecological conditions for soil animals.<br />

91


T a b l e 2. Distribution <strong>of</strong> Gamasina species in <strong>the</strong> seashore habitats <strong>of</strong> <strong>the</strong> Kurzeme Coast. Sampling sites:<br />

1-Engure, 2- Roja, 3- Kolkasrags, 4- Lūžņa, 5- Ventspils, 6- Pāvilosta, 7- Liepāja, 8- Pape. Nr- number <strong>of</strong><br />

sampling sites where <strong>the</strong> respective species occur.<br />

Riga Gulf Baltic Sea Nr<br />

Gamasina species 1 2 3 4 5 6 7 8<br />

Leioseius bicolor (BERL.) x x x x x x x x 8<br />

Parasitus halophilus (SELL.) x x x x x x x 7<br />

Leioseius halophilus (WILL.) x x x x x x x 7<br />

Thinoseius spinosus (WILL.) x x x x x x 6<br />

Leioseius insignis HIRS. x x x x x x 6<br />

Hypoaspis aculeifer (CANE.) x x x x x 5<br />

Halolaelaps balticus WILL. x x x x x 5<br />

Dendrolaelaps nostricornutus HIRS. ET<br />

WISN.<br />

x x x x x 5<br />

Cheiroseius necorniger (OUDE.) x x x x 4<br />

Amblyseius marinus (WILL.) x x x x 4<br />

Veigaia nemorensis (C. L. K.) x x x x 4<br />

Pergamasus crassipes (L.) x x x 3<br />

Pergamasus vagabundus KARG x x x 3<br />

Amblyseius bicaudus WAIN. x x x 3<br />

Hypoaspis vacua (MICH.) x x x 3<br />

Parazercon sarekensis WILL. x x x 3<br />

Halolaelaps incisus HYATT x x x 3<br />

Pergamasus lapponicus TRAG. x x 2<br />

Leioseius minutus (HALB.) x x 2<br />

Rhodacarellus silesiacus WILL. x x 2<br />

Rhodacarus mandibularis BERL. x x 2<br />

Rhodacarus reconditus ATHIAS-H. x x 2<br />

Macrocheles tardus (C. L. K.) x x 2<br />

Asca bicornis (CANE. ET FANZ.) x x 2<br />

Hypoaspis praesternalis WILL. x x 2<br />

Hypoaspis sclerotarsa COSTA x x 2<br />

Zercon spatulatus (C. L. K.) x x 2<br />

Macrocheles glaber (MULL.) x x 2<br />

Prozercon trägardhi (HALB.) x x 2<br />

Lasioseius sp.nov. x 1<br />

Parasitus kraepelini BERL. x 1<br />

Parasitus lunaris BERL. x 1<br />

Parasitus fimetorum BERL. x 1<br />

Pergamasus truncus SCHW. x 1<br />

Gamasodes bispinosus (HALB.) x 1<br />

Veigaia exigua (BERL.) x 1<br />

Gamasolaelaps excisus (C. L. K.) x 1<br />

Neojordensia levis (OUDE. ET VOIG.) x 1<br />

Cheiroseius borealis (BERL.) x 1<br />

92


T a b l e 2.<br />

Riga Gulf Baltic Sea Nr<br />

Gamasina species 1 2 3 4 5 6 7 8<br />

Amblyseius agrestis (KARG) x 1<br />

Amblyseius bakeri (GARM.) x 1<br />

Amblyseius graminis CHANT x 1<br />

Dendrolaelaspis angulosus WILL. x 1<br />

Dendrolaelaps latior (LEIT.) x 1<br />

Dendrolaelaps fallax (LEIT.) x 1<br />

Macrocheles montanus (WILL.) x 1<br />

Alliphis siculus (OUDE.) x 1<br />

Eviphis ostrinus (C. L. K.) x 1<br />

Prozercon sellnicki HALA. x 1<br />

Zercon montanus WILL. x 1<br />

Rhodacarus haarlovi SHCH. x x x x 4<br />

Minirhodacarellus minimus (KRAG) x x x x 4<br />

Holoparasitus excipuliger (BERL.) x x x 3<br />

Dendrolaelaps arenarius KARG x x x 3<br />

Parasitus kempersi OUDE. x x 2<br />

Pergamasus septentrionalis (OUDE.) x x 2<br />

Pergamasus teutonicus WILL. x x 2<br />

Pergamasus wasmanni (OUDE.) x x 2<br />

Amblyseius messor WAIN. x x 2<br />

Amblyseius meridionalis (BERL.) x x 2<br />

Dendrolaelaps foveolatus LEIT. x x 2<br />

Zercon carpathicus (SELL.) x x 2<br />

Veigaia cervus (KRAM.) x 1<br />

Leioseius minusculus (BERL.) x 1<br />

Leioseius montanulus HIRS. x 1<br />

Platyseius italicus (BERL.) x 1<br />

Antenoseius delicatus BERL. x 1<br />

Amblyseius obtusus (C. L. K.) x 1<br />

Amblyseius aurescens ATHIAS-H. x 1<br />

Amblyseius andersoni (CHANT) x 1<br />

Amblyseius herbarius WAIN. x 1<br />

Halolaelaps marinus (BRADY) x 1<br />

Hypoaspis claviger (BERL.) x 1<br />

Hypoaspis similisetae KARG x 1<br />

Hypoaspis kargi COSTA x 1<br />

Laelaspis astronomicus L. K. x 1<br />

Zercon zelawaiensis SELL. x 1<br />

Zercon fageticola HALA. x 1<br />

In total 78 species 50 55<br />

93


Gamasina species in dune habitats, in comparison with driftline habitats, were not so<br />

abundant, with <strong>the</strong> exception <strong>of</strong> two species (Minirhodacarellus minimus (KRAG) and<br />

Dendrolaelaps arenarius KARG). Gamasina species occurring in <strong>the</strong> dune habitats were<br />

ra<strong>the</strong>r different from those in <strong>the</strong> driftline habitats. That is not surprising, if we take into<br />

account <strong>the</strong> different ecological conditions <strong>the</strong>re. The impact <strong>of</strong> <strong>the</strong> sea decreases roughly<br />

in an inland direction, which leads to <strong>the</strong> absence <strong>of</strong> organic material deposited by <strong>the</strong> sea in<br />

<strong>the</strong> dune habitats. Vegetation in <strong>the</strong> primary dunes was poorly represented, on <strong>the</strong> whole<br />

only single plants were found and <strong>the</strong>re were few places where <strong>the</strong>y formed small communities.<br />

Thus vegetation is <strong>the</strong> main factor, which determines <strong>the</strong> organic matter content in<br />

<strong>the</strong> soil (JUNGERIUS, 1990). The production <strong>of</strong> organics in <strong>the</strong> soil is relatively slow and <strong>the</strong><br />

primary dunes are poor in nutrients. As known from <strong>the</strong> literature (ANDRÉ et al., 1994), <strong>the</strong><br />

dispersion <strong>of</strong> Gamasina in sandy habitats shows aggregation to <strong>the</strong> rhizosphere <strong>of</strong> plants,<br />

and <strong>the</strong> density <strong>of</strong> individuals in bare sand is very low. As is clear from Table 1, <strong>the</strong> fauna <strong>of</strong><br />

<strong>the</strong> primary dunes was poor. The number <strong>of</strong> species recorded in <strong>the</strong> primary dunes was <strong>the</strong><br />

lowest among <strong>the</strong> habitats investigated. The species Rhodacarus reconditus ATHIAS-HENRIOT,<br />

found <strong>the</strong>re, is known as being characteristic for <strong>the</strong> pioneer stage <strong>of</strong> succession (CHRISTIAN,<br />

1995). This gives evidence <strong>of</strong> <strong>the</strong> initiation <strong>of</strong> soil-forming processes <strong>the</strong>re.<br />

In <strong>the</strong> dunes occur species like Leioseius bicolor, Dendrolaelaps arenarius and plant<br />

inhabitants from <strong>the</strong> genus Amblyseius, which are more or less adapted to <strong>the</strong> dry soil conditions<br />

with low organic matter content. However, <strong>the</strong>re are also species common for variable<br />

habitats like <strong>the</strong> ubiquitous Gamasina species (Holoparasitus excipuliger, Rhodacarellus<br />

silesiacus WILMANN, Veigaia nemorensis and Pergamasus vagabundus); species inhabiting<br />

various agroecosystems (Rhodacarus mandibularis BERLESE, R. haarlovi SHCHERBAK, R.<br />

reconditus); forest species (Pergamasus crassipes, P. wasmanni, Hypoaspis aculeifer and<br />

Parazercon sarekensis) and meadow species (Hypoaspis vacua, H. praesternalis and<br />

Dendrolaelaps angulosus WILMANN).<br />

Twenty-three species were found as typical only for <strong>the</strong> primary and yellow dunes (Table<br />

1). The difference in species composition between <strong>the</strong> primary and yellow dune fauna is<br />

obvious. Twenty-two species were found in <strong>the</strong> primary dunes, most <strong>of</strong> <strong>the</strong>m common also<br />

to <strong>the</strong> driftline or yellow dune fauna. Two species were found to be common only to <strong>the</strong><br />

primary dunes. From <strong>the</strong> yellow dunes a total <strong>of</strong> 50 Gamasina species were collected, 18 <strong>of</strong><br />

which were recorded only <strong>the</strong>re.<br />

The great differences between <strong>the</strong> fauna <strong>of</strong> <strong>the</strong> primary and yellow dunes can be explained<br />

by variability <strong>of</strong> <strong>the</strong> ecological conditions. At <strong>the</strong> yellow dunes more abundant<br />

vegetation was found, which explains <strong>the</strong> formation <strong>of</strong> a larger amount <strong>of</strong> organic material<br />

in <strong>the</strong> soil. That, in turn, creates favourable environmental conditions for Gamasina mites<br />

and <strong>the</strong> number <strong>of</strong> species recorded was almost as high as in <strong>the</strong> driftline. The very high<br />

abundances <strong>of</strong> microarthropods in yellow dunes were also found by KOEHLER et al. (1992).<br />

Comparison between <strong>the</strong> fauna <strong>of</strong> Gamasina mites <strong>of</strong> <strong>the</strong> Baltic Sea Coast and Riga<br />

Gulf Coast <strong>of</strong> Kurzeme was made. In <strong>the</strong>se two sites 55 and 50 species, respectively, were<br />

recorded (Table 2). About 1/3 <strong>of</strong> Gamasina species were found to be common to both<br />

sites. The rest <strong>of</strong> <strong>the</strong> species were found only in one <strong>of</strong> <strong>the</strong> Kurzeme Coast sites. The<br />

94


Baltic Sea Coast and Riga Gulf Coast <strong>of</strong> Kurzeme had 28 and 22 species, respectively.<br />

Some species, such as Rhodacarus haarlovi and Minirhodacarellus minimus, occurred<br />

in 4 sampling sites in <strong>the</strong> yellow dunes, Dendrolaelaps arenarius in 3 sampling sites it<br />

<strong>the</strong> primary and yellow dunes <strong>of</strong> <strong>the</strong> Baltic Sea Coast, and <strong>the</strong>y could be considered as<br />

characteristic for <strong>the</strong> Baltic Sea Coast <strong>of</strong> Latvia. Holoparasitus excipuliger is known as<br />

ubiquitous in <strong>the</strong> fauna <strong>of</strong> Latvia. The rest <strong>of</strong> <strong>the</strong> species do not have a wide range <strong>of</strong><br />

distribution (Table 2).<br />

The species in <strong>the</strong> material from <strong>the</strong> Riga Gulf Coast <strong>of</strong> <strong>the</strong> Kurzeme were ra<strong>the</strong>r rare<br />

and could be found in one sampling site only, with <strong>the</strong> exception <strong>of</strong> Macrocheles glaber<br />

(MULLER) and Prozercon trägardhi (HALBERT), which were recorded in 2 sampling sites.<br />

The differences between <strong>the</strong> Riga Gulf Coast and <strong>the</strong> Baltic Sea Coast <strong>of</strong> <strong>the</strong> Kurzeme<br />

could be explained by <strong>the</strong> differing ecological conditions, which are more severe in <strong>the</strong><br />

Baltic Sea Coast habitats. They are swept by <strong>the</strong> prevailing West winds and are more exposed<br />

to sea floods, which leads to more dynamic soils with a less stable organic content<br />

and a higher salt content. The Riga Gulf Coast climate is milder. There are fewer strong<br />

storms, <strong>the</strong> water temperature is higher, and <strong>the</strong> salt content <strong>of</strong> <strong>the</strong> water is lower, and <strong>the</strong><br />

West winds are not so strong <strong>the</strong>re. Because <strong>of</strong> such differences, <strong>the</strong> diversity <strong>of</strong> Gamasina<br />

mites in both sides <strong>of</strong> <strong>the</strong> Kurzeme Coast differs greatly. Species occurring only on one <strong>of</strong><br />

<strong>the</strong>se Coasts have selected <strong>the</strong> most favourable habitats for <strong>the</strong>m.<br />

Data from <strong>the</strong> previously poorly investigated Coast <strong>of</strong> Latvia provides an explanation<br />

for such a large number (23) <strong>of</strong> new species. Thirteen new species from <strong>the</strong> family<br />

Rhodacaridae were recorded, because <strong>of</strong> <strong>the</strong> weak investigation <strong>of</strong> this family in Latvia so<br />

far. The rest <strong>of</strong> <strong>the</strong> new species were common seashore inhabitants, such as Parasitus<br />

halophilus and Parasitus kempersi, or species typical <strong>of</strong> various habitats. A new Lasioseius<br />

sp. was found only in one sampling site <strong>of</strong> Kolkasrags in <strong>the</strong> yellow dunes and its distribution<br />

is currently unknown.<br />

Leioseius bicolor can be considered as <strong>the</strong> most widely distributed Gamasina mite species<br />

in <strong>the</strong> Kurzeme Coast habitats (Tables 1, 2). It was found in all <strong>the</strong> investigated habitats<br />

and sampling sites. Leioseius halophilus and Parasitus halophilus and Thinoseius spinosus<br />

and Leioseius insignis were found in all habitat types and in 7 and 6 sampling sites, respectively.<br />

The rest <strong>of</strong> <strong>the</strong> species were found in less than 6 sampling sites.<br />

The highest numbers <strong>of</strong> Gamasina mites were found in <strong>the</strong> habitats with well-aerated and<br />

humus-enriched soils, but dry and sandy habitats had a smaller number <strong>of</strong> species. The<br />

most numerous species were those characteristic <strong>of</strong> specific habitats, but also a high number<br />

<strong>of</strong> various species known to be common in inland ecosystems was recorded.<br />

Thus this investigation gives an insight into <strong>the</strong> diverse groups <strong>of</strong> Gamasina mites inhabiting<br />

coastal ecosystems and shows <strong>the</strong> great value <strong>of</strong> <strong>the</strong> biological diversity <strong>of</strong> soil fauna<br />

<strong>of</strong> <strong>the</strong> seashore habitats in Latvia.<br />

95


Acknowledgements<br />

This study was supported by <strong>the</strong> Swedish project “Areas with high biodiversity on <strong>the</strong> Latvian Baltic Sea<br />

Coast”, as well as by <strong>the</strong> German project “Biogeography and communities <strong>of</strong> Collembola (Insecta) and Gamasina<br />

(Acari) in coastal dunes <strong>of</strong> <strong>the</strong> Sou<strong>the</strong>rn Baltic”. The author is very grateful to Dr. Lars Lundquist from <strong>the</strong><br />

Department <strong>of</strong> Systematic Zoology, Lund University for <strong>the</strong> help given in <strong>the</strong> determination <strong>of</strong> some Gamasina<br />

species.<br />

References<br />

ANDRE, H.M., NOTI, M.-I., LEBRUN, P., 1994: The soil fauna: <strong>the</strong> o<strong>the</strong>r last biotic frontier. Biodiversity and Conservation,<br />

3, p. 45-56.<br />

BREGETOVA, N.G., 1977: Identification key <strong>of</strong> soil inhabiting mites. Mesostigmata. Nauka, Leningrad, 717 pp.<br />

(In Russian).<br />

CHRISTIAN, A., 1995: Succession <strong>of</strong> Gamasina in coal mined areas in Eastern Germany. Acta Zoologica Fennica,<br />

196, p. 380-381.<br />

COLEMAN, D.C., CROSSLEY, D.A. Jr., 1996: Fundamentals <strong>of</strong> soil ecology. Academic Press, San Diego, 205 pp.<br />

EITMINAVICHUTE, I.S. (ed.), 1976: Soil invertebrate fauna <strong>of</strong> <strong>the</strong> coastal area in <strong>the</strong> east Baltic region. Vilnius, 172<br />

pp. (In Russian)<br />

HIRSCHMANN, W., 1971: Gangsystematik der Parasitiformes. Acarologie, 82-88, 15, p. 10-42.<br />

JUNGERIUS, P.D., 1990: The characteristics <strong>of</strong> dune soils. Catena, Suplement 18, (Cremlingen), p. 155-162.<br />

KARG, W., 1993: Acari (Acarina), Milben Parasitiformes (Anactinochaeta) Cohors Gamasina Leach. Raubmilben.<br />

2., überarbeitete Auflage. Gustav Fischer Verlag, Jena, 524 pp.<br />

KOEHLER, H., HOFMANN, S., MUNDERLOH, E., 1992: The soil mes<strong>of</strong>auna <strong>of</strong> white-, grey- and brown-dune sites in<br />

Jutland (Denmark) with special reference to <strong>the</strong> Gamasina (Acari, Parasitiformes). In CARTER, R.W.G., CUR-<br />

TIS, T.G.F., SHEEHY-SKEFFINGTON, M.J. (eds.): Coastal dunes. Balkema, Roterdam, Brookfield, p. 273-281.<br />

KOLODOCHKA, L.A., 1978: Handbook on identifying <strong>of</strong> plant inhabiting phytoseiid mites. Naukova Dumka, Kiev,<br />

78 pp. (In Russian)<br />

LAPINA, I., 1976a: Gamasin mites <strong>of</strong> <strong>the</strong> family Aceosejidae Baker et Wharton, 1952 in <strong>the</strong> fauna <strong>of</strong> <strong>the</strong> Latvian<br />

SSR. Latvijas Entomologs, 19, p. 65-90. (In Russian)<br />

LAPINA, I., 1976b: Free-living gamasin mites <strong>of</strong> <strong>the</strong> family Laelaptidae Berlese, 1892 in <strong>the</strong> fauna <strong>of</strong> <strong>the</strong> Latvian<br />

SSR. Latvijas Entomologs, 19, p. 20-64. (In Russian)<br />

LAPINA, I., 1988: Gamasin mites <strong>of</strong> Latvia. Zinatne, Riga, 198 pp. (In Russian)<br />

MALLOW, D., LUDWIG, D., CROSSLEY, D.A. JR., 1984: Microarthropod community structure in a coastal dune<br />

ecosystem on Jekyll Island, Georgia U.S.A. Pedobiologia, 27, p. 365-376.<br />

MELECIS, V., SPOTE, I., PAULINA, E., 1994: Soil microarthropods as potential bioindicators for coastal monitoring.<br />

In GUDELIS, V., PAVILONSKAS, R., ROEPSTORFF, A. (eds): Abstracts <strong>of</strong> <strong>the</strong> International Conference “Coastal<br />

conservation and management in <strong>the</strong> Baltic region. Klaipedos Universitetas, Klaipeda (Lithuania), p. 111-<br />

115.<br />

PAULINA, E., SALMANE, I., 1999: Collembola and gamasin mites <strong>of</strong> <strong>the</strong> restricted area Lake Engure, Latvia. In<br />

ELBERG, K., MARTIN, M., PEKKARINEN, A. (eds): Proceedings <strong>of</strong> <strong>the</strong> XXIV Nordic Congress <strong>of</strong> Entomology.<br />

Eesti Loodusfoto, Tartu (Estonia), p. 145-150.<br />

PUGH, P.J.A., 1985: Studies on <strong>the</strong> biology <strong>of</strong> British littoral Acari. Ph. D. <strong>the</strong>sis, University <strong>of</strong> Wales.<br />

SALMANE, I., 1996: Gamasin mites (Acari, Gamasina) <strong>of</strong> Kurzeme coast <strong>of</strong> <strong>the</strong> Baltic Sea. Latvijas Entomologs,<br />

35, p. 28-34.<br />

96


Ekológia (Bratislava) Vol. 19, Supplement 4, 97-104, 2000<br />

SPIDERS (ARANEAE) OF THE PEATBOG NATIONAL<br />

NATURE RESERVE ŠVIHROVSKÉ RAŠELINISKO<br />

(SLOVAKIA)<br />

JAROSLAV SVATOŇ 1 , ROMAN PRÍDAVKA 2<br />

1 Kernova 8, 036 01 Martin, Slovakia.<br />

2 Novákova 5, 036 01 Martin, Slovakia.<br />

SVATOŇ J., PRÍDAVKA R.: Spiders (Araneae) <strong>of</strong> <strong>the</strong> peatbog National Nature Reserve Švihrovské<br />

rašelinisko (Slovakia). In GAJDOŠ P., PEKÁR S. (eds): Proceedings <strong>of</strong> <strong>the</strong> 18th <strong>European</strong> Colloquium<br />

<strong>of</strong> Arachnology, Stará Lesná, 1999. Ekológia (Bratislava), Vol. 19, Supplement 4/2000, p.<br />

97-104.<br />

Wetlands and peatbogs belong to <strong>the</strong> most rare and critically threatened ecosystems in<br />

Slovakia. Their protection became <strong>of</strong> prime interest in land conservation recently. Some 40<br />

to 50 years ago <strong>the</strong>re were 578 peatbogs registered in Slovakia with an area <strong>of</strong> more than<br />

4 000 ha. Most <strong>of</strong> <strong>the</strong>m were located in <strong>the</strong> lowland Podunajská nížina, Záhorie, in <strong>the</strong><br />

valley Horehronské podolie, in <strong>the</strong> Oravská and Liptovská kotlina Basin as well as in <strong>the</strong><br />

High Tatras. During <strong>the</strong> last 50 years <strong>the</strong> number and <strong>the</strong> area <strong>of</strong> <strong>the</strong>se habitats have dramatically<br />

decreased as a result <strong>of</strong> intensive agriculture and pollution. All this resulted in <strong>the</strong><br />

patchy distribution <strong>of</strong> such habitats.<br />

From <strong>the</strong> arachnological point <strong>of</strong> view, very little attention has been paid to wetland<br />

habitats in Slovakia. An exception is a study <strong>of</strong> JEDLIČKOVÁ (1988) which summarised <strong>the</strong><br />

seasonal occurrence <strong>of</strong> 283 species <strong>of</strong> <strong>spiders</strong> collected from six biotopes <strong>of</strong> Jurský Šúr in<br />

<strong>the</strong> lowland <strong>of</strong> Podunajská nížina, and <strong>the</strong> paper <strong>of</strong> SVATOŇ, PRÍDAVKA (1997) which deals<br />

with <strong>the</strong> arachn<strong>of</strong>auna <strong>of</strong> <strong>the</strong> Kláštorské lúky National Nature Reserve located in <strong>the</strong><br />

Turčianska kotlina Basin. A number <strong>of</strong> papers have treated <strong>the</strong>se habitats only superficially<br />

(GAJDOŠ, 1988, 1994; GAJDOŠ et al., 1984a, b, 1988, 1992; MILLER, 1935, 1936, 1937, 1958,<br />

1967; MILLER, KRATOCHVÍL, 1939, 1940; MILLER, SVATOŇ, 1974; SVATOŇ, 1981, 1983a, b, c,<br />

1984, 1985; SVATOŇ et al., 1998; SVATOŇ, MAJKUS, 1988; SVATOŇ, MILLER, 1979; ŽITŇANSKÁ,<br />

1977, 1981a, b).<br />

Stimulated by <strong>the</strong> Slovak Conservation Agency, residing in Liptovský Mikuláš, we began<br />

to investigate <strong>the</strong> spider fauna <strong>of</strong> <strong>the</strong> National Nature reserve Švihrovské rašelinisko in<br />

1995 and continued until 1999.<br />

97


This National Nature Reserve is situated at <strong>the</strong> border <strong>of</strong> <strong>the</strong> Liptovská kotlina Basin in<br />

<strong>the</strong> western part <strong>of</strong> <strong>the</strong> High Tatras near <strong>the</strong> village Jamník at 600-800 m a.s.l. (grid no.<br />

6884). The peatbog originated from <strong>the</strong> alluvium <strong>of</strong> <strong>the</strong> brook Čierny potok, in <strong>the</strong> middle<br />

<strong>of</strong> a spruce forest. Phytocenologically it is a transitional peatbog characterised by Caricion<br />

fuscae and Caricion lasiocarpae vegetation types. The few trees which grow on <strong>the</strong> peatbog<br />

are Picea excelsa, Pinus silvestris and Alnus sp.<br />

The <strong>spiders</strong> were collected at 6 sites (S1- moor biotope, S2- Alnetum incanae biotope,<br />

S3- central peatbog, S4- border <strong>of</strong> <strong>the</strong> spruce forest, S5- spruce forest, S6- meadows surrounding<br />

<strong>the</strong> brook) by means <strong>of</strong> pitfall traps, sweeping, beating <strong>of</strong> tree branches, sieving<br />

and individual collecting in order to obtain as many species as possible. The study sites<br />

were visited at one month intervals between May and October when <strong>the</strong> traps were emptied.<br />

Species nomenclature is according to PLATNICK (1997).<br />

During five years, 3 564 individuals <strong>of</strong> <strong>spiders</strong> belonging to 180 species (20 families)<br />

were collected in total (Table 1). 694 individuals were juvenile, and thus could not be<br />

identified into a species level. According to BUCHAR’S (1992) classification <strong>of</strong><br />

<strong>the</strong>rmopreference, 59 species (32.7%) were psychrophilous (P), 43 species (23.9%) were<br />

mesophilous (M), 67 species (37.8%) were unspecified (N), and 5 species (2.2%), namely<br />

Entelecara congenera (O. P.-CAMBRIDGE), Metopobactrus ascitus (KULCZYŃSKI), Talavera<br />

sp., Tegenaria domestica (CLERCK), and Xysticus sp. could not be classified. Remarkable is<br />

<strong>the</strong> occurrence <strong>of</strong> 6 species (3.3%) which are characterised as <strong>the</strong>rmophilous (T): Alopecosa<br />

trabalis (CLERCK), Araniella opisthographa (KULCZYŃSKI), Enoplognatha thoracica (HAHN),<br />

Meioneta fuscipalpis (C. L. KOCH), Steatoda castanea (CLERCK) and Xysticus lanio C. L.<br />

KOCH.<br />

Of <strong>the</strong> six study sites, <strong>the</strong> central part <strong>of</strong> <strong>the</strong> peatbog (S3) was found to be most diverse<br />

in spider species as 138 (76.7%) species were recorded <strong>the</strong>re. On <strong>the</strong> o<strong>the</strong>r sites only 20-70<br />

species were found. The poorest species composition (14 species) was observed on <strong>the</strong><br />

Alnetum incanae biotope (S2).<br />

From <strong>the</strong> faunistic point <strong>of</strong> view several spider species, such as Bolyphantes luteolus<br />

(BLACKWALL), Ceratinopsis stativa (SIMON), Emblyna brevidens (KULCZYŃSKI), Entelecara<br />

erythropus (WESTRING), Entelecara media KULCZYŃSKI, Hilaira excisa (O. P.-CAMBRIDGE),<br />

Pirata uliginosus (THORELL), Poeciloneta variegata (BLACKWALL), Sitticus caricis (WESTRING)<br />

and Theridion mystaceum L. KOCH are <strong>of</strong> a remarkable importance because <strong>the</strong>y are known<br />

only from few localities in Slovakia. Two species, namely Gnaphosa nigerrima L. KOCH<br />

and Heliophanus dampfi SCHENKEL, are new to Slovakia.<br />

The investigation <strong>of</strong> <strong>the</strong> Švihrovské rašelinisko peatbog will continue. We plan to focus<br />

on <strong>the</strong> surrounding wet biotopes. It is important to stress that arachnological research should<br />

be focussed on o<strong>the</strong>r peatbogs in Slovakia as well, particularly in <strong>the</strong> Orava region and <strong>the</strong><br />

western part <strong>of</strong> Slovakia.<br />

98


T a b l e 1. List <strong>of</strong> species collected from 6 sites (S1-S6) <strong>of</strong> <strong>the</strong> peatbog. Numbers represent ♂/♀. TP stands<br />

for <strong>the</strong>rmopreference classification after BUCHAR (1992). See text for explanation <strong>of</strong> classifiation letters.<br />

Species S-1 S-2 S-3 S-4 S-5 S-6 TP<br />

ULOBORIDAE<br />

Hyptiotes paradoxus (C. L. K.) –/1 P<br />

THERIDIIDAE<br />

Enoplognatha ovata (CL.) –/4 11/16 7/7 6/3 3/2 N<br />

Enoplognatha thoracica (HAHN) –/2 T<br />

Euryopis flavomaculata (C. L. K.) –/1 –/1 N<br />

Neottiura bimaculata (L.) –/2 –/4 –/2 N<br />

Robertus arundineti (O. P.-CBR.) 1/– N<br />

Steatoda bipunctata (L.) 1/2 M<br />

Steatoda castanea (CL.) –/1 T<br />

Theridion impressum L. K. 4/6 N<br />

Theridion mystaceum L. K. –/1 M<br />

Theridion pinastri L. K. 1/3 M<br />

Theridion sisyphium (CL.) –/1 6/14 1/13 1/1 –/2 N<br />

Theridion tinctum (WALCK.) 1/9 –/6 –/2 –/2 N<br />

Theridion varians HAHN 5/17 N<br />

LINYPHIIDAE<br />

Agyneta subtilis (O. P.- CBR.) 1/5 1/5 –/1 P<br />

Bathyphantes approximatus (O. P.- CBR.) –/1 P<br />

Bathyphantes nigrinus (WESTR.) –/3 N<br />

Bolyphantes alticeps (SUND.) 3/4 P<br />

Bolyphantes luteolus (BL.) –/1 P<br />

Centromerus arcanus (O. P.- CBR.) –/1 3/5 P<br />

Centromerus levitarsis (SIM.) 2/1 P<br />

Centromerus sylvaticus (BL.) –/1 N<br />

Ceratinopsis stativa (SIM.) –/2 P<br />

Cnephalocotes obscurus (BL.) 1/– 5/– N<br />

Dicymbium nigrum (BL.) 1/– N<br />

Dicymbium tibiale (BL.) –/1 –/2 N<br />

Diplocephalus latifrons (O. P.- CBR.) –/2 N<br />

Diplocephalus permixtus (O. P.- CBR.) –/1 P<br />

Diplostyla concolor (WID.) –/1 N<br />

Dismodicus bifrons (BL.) 1/– P<br />

Dismodicus elevatus (C. L. K.) 1/1 P<br />

Drapetisca socialis (SUND.) –/1 P<br />

Entelecara acuminata (WID.) –/1 –/2 M<br />

Entelecara congenera (O. P.- CBR.) –/3 –/1 –/1 3/5 ?<br />

Entelecara erythropus (WESTR.) –/2 –/3 M<br />

Entelecara media KULCZ. –/1 P<br />

Erigone atra BL. 1/– A<br />

Erigone dentipalpis (WID.) 1/– A<br />

Erigonella ignobilis (O. P.- CBR.) –/2 P<br />

Hilaira excisa (O. P.- CBR.) 2/– P<br />

Kaestneria dorsalis (WID.) –/1 M<br />

Lepthyphantes alacris (BL.) 2/6 P<br />

Lepthyphantes cristatus (MGE.) 3/2 2/8 P<br />

Lepthyphantes crucifer (MGE.) –/3 M<br />

Lepthyphantes mengei KULCZ. 1/– A<br />

Lepthyphantes obscurus (BL.) –/1 P<br />

Lepthyphantes tenebricola (WID.) 2/1 P<br />

Lepthyphantes zimmermanni BERTH. –/1 P<br />

99


T a b l e 1./2 Cont.<br />

Species S-1 S-2 S-3 S-4 S-5 S-6 TP<br />

Leptorhoptrum robustum (WESTR.) 3/– P<br />

Linyphia hortensis SUND. –/1 M<br />

Linyphia triangularis (CL.) 4/3 9/22 7/7 1/1 1/1 N<br />

Lophomma punctatum (BL.) 5/3 P<br />

Macrargus rufus (WID.) 2/1 N<br />

Maso sundevalli (WESTR.) 2/– P<br />

Meioneta fuscipalpis (C. L. K.) –/1 T<br />

Meioneta rurestris (C. L. K.) –/3 N<br />

Metopobactrus ascitus (KULCZ.) 1/– ?<br />

Micrargus herbigradus (BL.) 1/1 1/1 P<br />

Microlinyphia pusilla (SUND.) 1/13 N<br />

Neriene peltata (WID.) –/1 M<br />

Neriene radiata (WALCK.) 1/4 –/1 M<br />

Notioscopus sarcinatus (O. P.- CBR.) –/1 15/28 –/4 P<br />

Oedothorax agrestis (BL.) 2/– M<br />

Oedothorax apicatus (BL.) 1/– 1/– M<br />

Oedothorax gibbosus (BL.) 1/4 3/3 7/21 2/3 P<br />

Oedothorax retusus (WEST.) 1/– P<br />

Pelecopsis radicicola (L. K.) 1/– N<br />

Pityohyphantes phrygianus (C. L. K.) 2/– 1/5 1/1 –/2 P<br />

Pocadicnemis pumila (BL.) –/3 1/– N<br />

Poeciloneta variegata (BL.) –/3 P<br />

Tallusia experta (O. P.- CBR.) 5/– P<br />

Tapinopa longidens (WID.) 1/– P<br />

Walckenaeria acuminata BL. –/1 1/1 N<br />

Walckenaeria antica (WID.) 1/– N<br />

Walckenaeria atrotibialis (O. P.- CBR.) 2/2 6/13 –/2 M<br />

Walckenaeria furcillata (MGE.) –/1 N<br />

Walckenaeria kochi (O. P.- CBR.) 1/1 4/8 –/2 P<br />

Walckenaeria mitrata (MGE.) –/1 N<br />

Walckenaeria nudipalpis (WESTR.) –/1 7/2 P<br />

TETRAGNATHIDAE<br />

Metellina mengei (BL.) 1/4 P<br />

Metellina segmentata (CL.) 2/2 P<br />

Pachygnatha listeri SUND. 3/– –/2 6/9 1/4 1/– –/1 M<br />

Tetragnatha extensa (L.) 2/5 –/2 M<br />

Tetragnatha montana SIM. 1/1 M<br />

Tetragnatha obtusa C. L. K. 2/1 –/3 –/2 M<br />

Tetragnatha pinicola L. K. 4/6 –/1 –/1 N<br />

ARANEIDAE<br />

Aculepeira ceropegia (WALCK.) 3/27 1/1 1/4 P<br />

Araneus alsine (WALCK.) –/1 2/6 1/7 M<br />

Araneus diadematus CL. 1/2 8/30 –/1 –/2 N<br />

Araneus marmoreus CL. 1/11 6/75 1/1 2/5 –/2 M<br />

Araneus quadratus CL. –/2 15/43 –/2 –/1 –/1 N<br />

Araneus sturmi (HAHN) P<br />

Araniella alpica (L. K.) 4/10 1/1 –/1 P<br />

Araniella cucurbitina (CL.) 3/4 1/3 1/1 1/– N<br />

Araniella displicata (HENTZ) –/1 N<br />

Araniella opisthographa (KULCZ.) –/3 T<br />

Cyclosa conica (PALL.) 1/– 1/4 –/3 1/– P<br />

Gibbaranea omoeda (THOR.) –/1 P<br />

Hypsosinga sanguinea (C. L. K.) –/2 N<br />

100


T a b l e 1./3 Cont.<br />

Species S-1 S-2 S-3 S-4 S-5 S-6 TP<br />

Larinioides patagiatus (CL.) –/6 M<br />

Mangora acalypha (WALCK.) 1/4 –/1 N<br />

LYCOSIDAE<br />

Alopecosa aculeata (CL.) –/1 –/1 M<br />

Alopecosa pulverulenta (CL.) –/3 1/– –/4 1/3 N<br />

Alopecosa trabalis (CL.) –/1 1/1 T<br />

Pardosa amentata (CL.) 1/6 P<br />

Pardosa lugubris (WALCK.) –/1 –/1 N<br />

Pardosa monticola (CL.) –/1 N<br />

Pardosa palustris (L.) –/1 N<br />

Pardosa prativaga (L. K.) –/1 P<br />

Pardosa pullata (CL.) –/8 15/16 56/98 30/23 2/3 N<br />

Pirata hygrophilus THOR. 3/10 1/20 40/65 13/43 P<br />

Pirata latitans (BL.) 1/9 M<br />

Pirata piraticus (CL.) 6/10 P<br />

Pirata piscatorius (CL.) 2/– M<br />

Pirata uliginosus (THOR.) 1/5 25/6 –/3 –/1 P<br />

Trochosa spinipalpis (O. P.- CBR.) –/3 54/24 –/5 P<br />

Trochosa terricola THOR. –/1 1/7 –/2 N<br />

Xerolycosa nemoralis (WESTR.) 1/2 –/1 N<br />

PISAURIDAE<br />

Dolomedes fimbriatus (CL.) –/9 2/72 –/1 –/16 P<br />

Pisaura mirabilis (CL.) 2/2 N<br />

AGELENIDAE<br />

Agelena labyrinthica (CL.) 2/– 1/– M<br />

Tegenaria domestica (CL.) 1/– ?<br />

Tegenaria silvestris L. K. –/1 N<br />

CYBAEIDAE<br />

Cybaeus angustiarum L. K. 10/3 1/– P<br />

HAHNIIDAE<br />

Antistea elegans (BL.) 21/7 13/8 116/99 67/54 P<br />

Cryphoeca silvicola (C. L. K.) 1/2 P<br />

DICTYNIDAE<br />

Cicurina cicur (FABR.) –/2 N<br />

Dictyna arundinacea (L.) 1/1 N<br />

Dictyna pusilla THOR. –/5 1/1 1/2 –/2 P<br />

Emblyna brevidens (KULCZ.) –/1 1/– M<br />

Nigma flavescens (WALCK.) –/1 N<br />

AMAUROBIIDAE<br />

Callobius claustrarius (HAHN) 1/2 P<br />

Coelotes inermis (L. K.) 12/4 P<br />

Coelotes terrestris (WID.) 5/3 1/– 12/4 8/2 N<br />

LIOCRANIDAE<br />

Agroeca brunea (BL.) 2/– –/1 N<br />

Phrurolithus festivus (C. L. K.) –/2 N<br />

CLUBIONIDAE<br />

Cheiracanthium erraticum (WALCK.) 2/44 1/5 2/10 M<br />

Clubiona caerulescens L. K. –/1 N<br />

Clubiona diversa O. P.- CBR. –/2 N<br />

Clubiona germanica THOR. 1/1 1/1 –/1 M<br />

Clubiona lutescens WESTR. –/1 1/32 –/3 –/2 M<br />

Clubiona neglecta O. P.- CBR. 1/3 N<br />

101


T a b l e 1./4 Cont.<br />

Species S-1 S-2 S-3 S-4 S-5 S-6 TP<br />

Clubiona pallidula (CL.) –/1 –/1 M<br />

Clubiona reclusa O. P.- CBR. –/4 1/33 2/29 P<br />

Clubiona stagnatilis KULCZ. –/2 M<br />

Clubiona subsultans THOR. 3/5 P<br />

Clubiona subtilis L. K. –/1 M<br />

Clubiona terrestris WESTR. –/1 N<br />

Clubiona trivialis C. L. K. 4/– 15/10 2/2 1/– –/1 N<br />

GNAPHOSIDAE<br />

Drassodes pubescens (THOR.) 2/– N<br />

Gnaphosa nigerrima L. K. 1/5 M<br />

Zelotes clivicola (L. K.) 1/– P<br />

Zelotes latreillei (SIM.) 1/– A<br />

ZORIDAE<br />

Zora spinimana (SUND.) –/1 2/1 –/2 A<br />

HETEROPODIDAE<br />

Micrommata virescens (CL.) –/2 2/33 A<br />

PHILODROMIDAE<br />

Philodromus aureolus (CL.) –/1 –/1 M<br />

Philodromus cespitum (WALCK.) –/2 M<br />

Philodromus collinus C. L. K. 18/18 2/4 2/3 1/2 A<br />

Philodromus margaritatus (CL.) –/1 1/25 –/2 M<br />

Tibellus oblongus (WALCK.) –/1 9/29 –/2 –/4 M<br />

THOMISIDAE<br />

Diaea dorsata (FABR.) 1/4 –/1 M<br />

Misumena vatia (CL.) –/1 2/13 –/1 –/1 –/1 A<br />

Ozyptila trux (BL.) 1/– 4/2 P<br />

Xysticus audax (SCHR.) 2/6 A<br />

Xysticus bifasciatus C. L. K. –/1 A<br />

Xysticus cristatus (CL.) –/1 1/3 –/3 1/2 A<br />

Xysticus lanio C. L. K. 1/1 T<br />

Xysticus sp. –/3 4/29 –/5 –/8 M<br />

Xysticus ulmi (HAHN) 1/– M<br />

SALTICIDAE<br />

Bianor aurocinctus (OHL.) 1/– 1/– A<br />

Dendryphantes rudis (SUND.) 2/– 10/21 4/9 –/6 A<br />

Euophrys frontalis (WALCK.) –/1 A<br />

Evarcha arcuata (CL.) 1/1 M<br />

Evarcha falcata (CL.) 5/2 26/20 2/1 3/3 2/1 A<br />

Heliophanus dampfi SCHENK. –/2 P<br />

Heliophanus dubius C. L. K. –/4 M<br />

Neon reticulatus (BL.) 1/4 M<br />

Salticus cingulatus (PANZ.) –/2 M<br />

Sitticus caricis (WESTR.) 1/– 8/3 P<br />

Talavera sp. 1/– 2/– P<br />

102


References<br />

BUCHAR, J., 1992: Komentierte Artenliste der Spinnen Böhmens (Araneida). Acta Univ. Carol., Biol. (Praha), 36,<br />

p. 383-428.<br />

GAJDOŠ, P., 1988: Composition <strong>of</strong> <strong>spiders</strong> (Aranei) <strong>of</strong> <strong>the</strong> locality Úkropová in <strong>the</strong> Ponitrie Protected Landscape<br />

Area. Rosalia (Nitra), 5, p. 117-127. (In Slovak)<br />

GAJDOŠ, P., 1994: The epigeic spider communities <strong>of</strong> lowlands forests in <strong>the</strong> surrouding <strong>of</strong> <strong>the</strong> Morava river.<br />

Ekológia (Bratislava), 13, Supplement 1, p. 135-144.<br />

GAJDOŠ, P., SVATOŇ, J., KRUMPÁL, M., 1984a: New and unusual records <strong>of</strong> <strong>spiders</strong> from Slovakia I. (Araneae:<br />

Atypidae, Dictynidae, Gnaphosidae, Clubionidae, Zoridae, Salticidae, Lycosidae). Biológia (Bratislava), 39,<br />

2, p. 223-225.<br />

GAJDOŠ, P., SVATOŇ, J., KRUMPÁL, M., 1984b: New and unusual records <strong>of</strong> <strong>spiders</strong> from Slovakia II. (Araneae:<br />

Linyphiidae, Micryphantidae). Biológia (Bratislava), 39, 6, p. 633-635.<br />

GAJDOŠ, P., SVATOŇ, J., MAJKUS, Z., 1988: Spiders (Araneae) <strong>of</strong> <strong>the</strong> surroundings <strong>of</strong> Nová Sedlica (East Carpathian).<br />

Zborník Východoslovenského múzea v Košiciach, Prírodné vedy, (Košice), 29, p. 73-90. (In Slovak)<br />

GAJDOŠ, P., SVATOŇ, J., ŽITŇANSKÁ, O., KRUMPÁLOVÁ, Z., 1992: Spiders (Araneae) <strong>of</strong> <strong>the</strong> Danubian plain. Entom.<br />

Probl., (Bratislava), 23, p. 39-60.<br />

JEDLIČKOVÁ, J., 1988: Spiders (Aranei) <strong>of</strong> <strong>the</strong> Jurský šúr Nature Reserve (Czechoslovakia). Biol. Práce (Bratislava),<br />

34, 3, p. 1-170.<br />

MILLER, F., 1935: Contribution to <strong>the</strong> arachnological research <strong>of</strong> south part <strong>of</strong> Bohemia. Věda přír. (Praha), 16, 1,<br />

p. 9-21. (In Czech)<br />

MILLER, F., 1936: Ano<strong>the</strong>r contribution to <strong>the</strong> spider fauna <strong>of</strong> <strong>the</strong> south part <strong>of</strong> Czech. Věda přír. (Praha), 17, 4,<br />

p. 98. (In Czech)<br />

MILLER, F., 1937: Neue Spinnenarten (Araneae) aus der Čechoslovakischen Republik II. Festschr. Strand (Riga),<br />

2, p. 563-570.<br />

MILLER, F., 1958: Beitrag zur Kenntnis der tschechoslovakischen Spinnenarten aus der Gattung Centromerus<br />

Dahl. Čas. českoslov. Společ. ent. (Praha), 55, 1, p. 71-91.<br />

MILLER, F., 1967: Studien über die Kopulationsorgane der Spinnengattung Zelotes, Micaria, Robertus und Dipoena<br />

nebst Beschreibung einiger neuen oder unvollkommen bekannten Spinnenarten. Přírodov. Pr. Úst. ČSAV<br />

Brno, N. S. (Praha), 1, 7, p. 251-298.<br />

MILLER, F., KRATOCHVÍL, J., 1939: Several new <strong>spiders</strong> for Czechoslovakia. Sbor. ent. Odd. Nár. Mus. (Praha), 17,<br />

p. 234-244. (In Czech)<br />

MILLER, F., KRATOCHVÍL, J., 1940: Ein Beitrag zur Revision der mitteleuropäischen Spinnenarten aus der Gattung<br />

Porrhomma E. Sim. Zool. Anz. (Leipzig), 130, 7-8, p. 161-190.<br />

MILLER, F., SVATOŇ, J., 1974: Contribution to <strong>the</strong> knowledge <strong>of</strong> spider fauna <strong>of</strong> Súľovské skaly. In: Štollman, A.<br />

(ed.), Súľovské skaly – Štátna prírodná rezervácia. Monogr. Vlastiv. zbor. Považia (Martin), 1, p. 243-284.<br />

(In Slovak, summary in German).<br />

PLATNICK, N.I., 1997: Advances in Spider Taxonomy 1992-1995, with Redescriptions 1940-1980. New York<br />

Entom. <strong>Society</strong> and Amer. Mus. <strong>of</strong> Nat. Hist. Publ., New York, 976 pp.<br />

SVATOŇ, J., 1981: Einige neue oder unvollkommen bekannte Spinnenarten aus der Slowakei. Biológia (Bratislava),<br />

36, 2, p. 167-177.<br />

SVATOŇ, J., 1983a: Spider fauna (Arachnida, Araneae) <strong>of</strong> <strong>the</strong> State Nature Reserve Čierny kameň in Veľká Fatra.<br />

Ochr. Prír. (Bratislava), 4, p.119-134. (In Slovak, summary in German, English and Russian.)<br />

SVATOŇ, J., 1983b: Spiders (Araneida) <strong>of</strong> <strong>the</strong> central part <strong>of</strong> <strong>the</strong> High Tatras. Zbor. Prác o Tatran. nár. Parku<br />

(Martin), 24, p. 95-153. (In Slovak, summary in German, English and Russian.)<br />

SVATOŇ, J., 1983c: Weitere neue oder unvollkommen bekannte Spinnenarten aus der Slowakei. Biológia (Bratislava),<br />

38, 6, p. 569-580.<br />

SVATOŇ, J., 1984: Spiders (Araneida) <strong>of</strong> Turčianská kotlina Basin, 1. part (Mygalomorpha: Atypidae. Cribellatae:<br />

Amaurobiidae, Dictynidae, Uloboridae). Kmetianum (Martin), 7, p. 217-225. (In Slovak)<br />

SVATOŇ, J., 1985: Outline <strong>of</strong> <strong>the</strong> spider fauna (Araneida) <strong>of</strong> <strong>the</strong> proposed protected site Urpín near Banská<br />

Bystrica. Stredné Slovensko (Martin), 4, p. 237-259. (In Slovak)<br />

103


SVATOŇ, J., FRANC, V., KRAJČA, A., KRUMPÁLOVÁ, Z., KRÍŽOVÁ, V., PEKÁR, S., STAŇKOVÁ, E., SVATOŇOVÁ, E., 1998:<br />

To <strong>the</strong> contribution <strong>of</strong> <strong>spiders</strong> (Araneae) <strong>of</strong> Nature Reserve Kysuce. Vlast. zborník Považia (Žilina), 19, p.<br />

101-115. (In Slovak, summary in English.)<br />

SVATOŇ, J., MAJKUS, Z., 1988: Contribution to <strong>the</strong> knowledge <strong>of</strong> <strong>spiders</strong> (Araneae) <strong>of</strong> Plešivská planina. Ochr.<br />

Prír. – Výsk. Práce z ochr. prír. (Bratislava), 6B, p. 203-242. (In Slovak, summary in German, English and<br />

Russian.)<br />

SVATOŇ, J., MILLER, F., 1979: Spider fauna <strong>of</strong> <strong>the</strong> State Nature Reserve Rozsutec. Kmetianum (Martin), 5, p. 177-<br />

198. (In Slovak, summary in German and Russian.)<br />

SVATOŇ, J., PRÍDAVKA, R, 1997: Spider fauna (Araneae) <strong>of</strong> <strong>the</strong> State Nature Reserve Kláštorské lúky in <strong>the</strong> basin<br />

Turčianska kotlina. In KADLEČÍK, J. (ed.): Zborník „Turiec 1996“, MŽP SR, Bratislava, p. 131-143. (In Slovak)<br />

ŽITŇANSKÁ, O., 1977: Spider fauna <strong>of</strong> <strong>the</strong> surroundings <strong>of</strong> Zemplínska Šírava. Acta Fac. rer. nat. Univ. Comen.,<br />

Zool. (Bratislava), 22, p. 69-85. (In Slovak, summary in Russian.)<br />

ŽITŇANSKÁ, O., 1981a: Studie über die Lebensgemeinschaften der Spinnen in dem Waldtyp Querco-carpinetum<br />

in Báb bei Nitra. Acta Fac. rer. nat. Univ. Comen., Zool. (Bratislava), 25, p. 39-59.<br />

ŽITŇANSKÁ, O., 1981b: Zusammensetzung der Lebensgemeinschaften der Spinnen (Araneida) in dem Gebiet<br />

Liptovská Mara. Acta Fac. rer. nat. Univ. Comen., Zool. (Bratislava), 25, p. 61-81.<br />

104


Ekológia (Bratislava) Vol. 19, Supplement 4, 105-110, 2000<br />

DATA ON THE BIOLOGY OF LARINIA JESKOVI<br />

MARUSIK, 1986 (ARANEAE: ARANEIDAE) FROM<br />

THE REED BELTS OF LAKE BALATON<br />

CSABA SZINETÁR<br />

Department <strong>of</strong> Zoology Berzsenyi College, H-9701 Szomba<strong>the</strong>ly, Károlyi Gáspár tér 4. Hungary. E-mail:<br />

szcsaba@fs2.bdtf.hu<br />

Introduction<br />

Abstract<br />

SZINETÁR C.: Data on <strong>the</strong> biology <strong>of</strong> Larinia jeskovi Marusik, 1986 (Araneae: Araneidae) from <strong>the</strong><br />

reed belts <strong>of</strong> Lake Balaton. In GAJDOŠ P., PEKÁR S. (eds): Proceedings <strong>of</strong> <strong>the</strong> 18th <strong>European</strong> Colloquium<br />

<strong>of</strong> Arachnology, Stará Lesná, 1999. Ekológia (Bratislava), Vol. 19, Supplement 4/2000, p.<br />

105-110.<br />

Observations were made <strong>of</strong> Larinia jeskovi Marusik, 1986 in Hungary (Balatongyörök, UTM<br />

XM87). The study describes <strong>the</strong> habitat, activity and phenological characteristics <strong>of</strong> this rare orb<br />

web spider observed in <strong>the</strong> reed belts <strong>of</strong> Lake Balaton.<br />

As part <strong>of</strong> a complex research project into <strong>the</strong> fauna <strong>of</strong> Hungarian reeds, <strong>the</strong> <strong>spiders</strong> <strong>of</strong> <strong>the</strong><br />

reed belt <strong>of</strong> Lake Balaton have been studied by <strong>the</strong> author since 1992. Some interesting observations<br />

were previously reported on <strong>the</strong> fauna in 1995 (SZINETÁR, 1995). Several zoologists<br />

dealt with <strong>the</strong> research <strong>of</strong> <strong>the</strong> surroundings <strong>of</strong> Lake Balaton in <strong>the</strong> nineties. The observations<br />

<strong>of</strong> this research, toge<strong>the</strong>r with an account <strong>of</strong> <strong>the</strong> collections made by Imre Loksa and István<br />

Loksa in 1990-91, were summarised by SZATHMÁRY (1995). In <strong>the</strong> summer <strong>of</strong> 1996 two female<br />

and two male Larinia jeskovi were collected during nocturnal observations and 9 fur<strong>the</strong>r female<br />

specimens were observed. This rare species was described from <strong>the</strong> Amur River basin<br />

(Russia) by MARUSIK (1986). In Europe L. jeskovi has been discovered and investigated by<br />

KUPRYJANOWICZ (1995, 1997). The <strong>European</strong> population <strong>of</strong> L. jeskovi could belong to a different<br />

species (MARUSIK, pers. com.). One female specimen has been kept under experimental conditions<br />

to obtain a better understanding <strong>of</strong> <strong>the</strong> process <strong>of</strong> web building. In <strong>the</strong> summer <strong>of</strong> 1997<br />

data on <strong>the</strong> species were collected at <strong>the</strong> same habitat for a longer time. During this period<br />

several hundred specimens were observed along <strong>the</strong> section <strong>of</strong> lakeshore under investigation.<br />

In this study I summarise <strong>the</strong> data collected during <strong>the</strong>se two years.<br />

105


Study area<br />

The study area is situated in <strong>the</strong> north-western region <strong>of</strong> Lake Balaton, in <strong>the</strong> vicinity <strong>of</strong><br />

Balatongyörök (Lat.47°10’ N, Long. 17°20’ E., UTM XM 78).<br />

The habitat where observations were made is a typical reedy part <strong>of</strong> <strong>the</strong> nor<strong>the</strong>rn shore.<br />

The homogeneous reed belt has virtually disappeared from this shore section. Only some<br />

metre-wide spots can be sporadically found. This discontinuous reedy <strong>zone</strong> is completely<br />

washed by <strong>the</strong> waves and it creates a debris barrier beach parallel to <strong>the</strong> shore. Outwards,<br />

a sedge-reed strip <strong>of</strong> land <strong>of</strong> variable width can be found, which turns into a marsh meadow<br />

and fen meadow. The strip between <strong>the</strong> barrier beach and <strong>the</strong> fen meadow is a permanently<br />

flooded area, even in <strong>the</strong> summer. In some places this <strong>zone</strong> is one hundred metres wide. Its<br />

water is cooler than elsewhere and has a brownish colour caused by humic acids. In <strong>the</strong><br />

sedge-reed strip Typha angustifolia is frequent and Cladium mariscus can be found sporadically<br />

as well. In some places T. angustifolia forms almost homogenous, reed-free stands.<br />

Typha latifolia can also be found in limited numbers in <strong>the</strong> reedy area. On <strong>the</strong> clumps <strong>of</strong><br />

Carex elata, Hydrocotyle vulgaris and Pedicularis palustris are frequent. In <strong>the</strong> fragments<br />

<strong>of</strong> <strong>the</strong> swampy meadow several orchid species (Dactylorhiza incarnata, Orchis laxiflora,<br />

Epipactis palustris) and Eriophorum latifolium can be found. The major part <strong>of</strong> <strong>the</strong> area<br />

marked out for data collection was covered by Caricetum elatae typhaetosum angustifoliae.<br />

Material and methods<br />

Since <strong>the</strong> species is exclusively nocturnal, it was only investigated at night. Probably, this is <strong>the</strong> reason<br />

why <strong>the</strong> species has only recently been found. The research was carried out with <strong>the</strong> help <strong>of</strong> a torch, generally<br />

between 10 and 12 p.m. The field observations were made on 21-23 August, 1996. In <strong>the</strong> summer <strong>of</strong> 1996<br />

a total <strong>of</strong> 13 specimens were found and observed (11 female, 2 male) in <strong>the</strong> examined reed belt. Data for <strong>the</strong><br />

webs <strong>of</strong> eight females were collected in <strong>the</strong> surveyed habitat. From 24 August, 1996 a female specimen was<br />

kept in an artificial habitat for 5 days to observe web-building and feeding at night. A stem <strong>of</strong> T. angustifolia<br />

was planted in a pot filled with water. The pot had a diameter <strong>of</strong> 40 cm and height <strong>of</strong> 15 cm. The spider was<br />

acclimatised here. In <strong>the</strong> summer <strong>of</strong> 1997, between 14 July and 28 August, <strong>the</strong> research was carried out in <strong>the</strong><br />

same location as in <strong>the</strong> previous year and in <strong>the</strong> surroundings along about 2-3 kilometres <strong>of</strong> a shore section. In<br />

<strong>the</strong> area several hundreds <strong>of</strong> specimens <strong>of</strong> L. jeskovi were observed. In order to get exact data, an area was<br />

marked out that was undisturbed by anglers and ba<strong>the</strong>rs. Data were collected six times here between 19 July<br />

and 29 August. The sampling area was a 2 metre-wide and 90 metre-long strip, perpendicular to <strong>the</strong> lake. The<br />

area was marked out with a rope at a height <strong>of</strong> 1 metre. The designated area was thoroughly examined at<br />

night, using torches for illumination. During observation periods in <strong>the</strong> summer <strong>of</strong> 1997, data on <strong>the</strong> web sites<br />

<strong>of</strong> 163 specimens were recorded. On <strong>the</strong> basis <strong>of</strong> this, we have factual information on <strong>the</strong> webs <strong>of</strong> 176 specimens<br />

(1996-97). In addition, at least <strong>the</strong> same number <strong>of</strong> specimens were observed along <strong>the</strong> section <strong>of</strong> shore<br />

examined. I recorded <strong>the</strong> exact location <strong>of</strong> <strong>the</strong> Larinia specimens, <strong>the</strong> distance between <strong>the</strong> hub <strong>of</strong> <strong>the</strong> web and<br />

<strong>the</strong> water level, <strong>the</strong> plant species <strong>the</strong> web was fastened to, and <strong>the</strong> behaviour <strong>of</strong> <strong>the</strong> animals. In <strong>the</strong> designated<br />

area no animals were collected. Two persons carried out <strong>the</strong> research each time, examining <strong>the</strong> sample area<br />

with torches. Only rainless and windless nights were adequate for data collection because <strong>the</strong> animals do not<br />

build <strong>the</strong>ir webs when <strong>the</strong> wind blows or it rains, and <strong>the</strong>y quickly demolish <strong>the</strong>ir webs when <strong>the</strong> wea<strong>the</strong>r<br />

changes and <strong>the</strong>y withdraw to <strong>the</strong> vegetation <strong>zone</strong>. During <strong>the</strong> research period (July and August) we did not<br />

manage to catch L. jeskovi specimens during <strong>the</strong> daytime. During nocturnal collection with sweep-netting<br />

106


some specimens (non-quantitative sample) were caught. In <strong>the</strong> autumn <strong>of</strong> 1996 and 1997 daytime research<br />

has been carried out for finding <strong>the</strong> egg sacs.<br />

Results and discussion<br />

Phenology<br />

My observation data relate to <strong>the</strong> period between 26 June and 10 October only. Between<br />

26 June and 24 July only juvenile specimens were found. During July <strong>the</strong>se were<br />

generally in <strong>the</strong> subadult stage (on <strong>the</strong> male <strong>spiders</strong> <strong>the</strong> swollen palpal organs were conspicuous).<br />

On 29 July fully developed males were also found. The majority <strong>of</strong> female<br />

<strong>spiders</strong> were still subadults. The adult male <strong>spiders</strong> were typical vagrants, but a fully<br />

developed male was found in a small web as well, and it was in a typical position on <strong>the</strong><br />

hub. During August males were found in <strong>the</strong> webs <strong>of</strong> females on several occasions (for<br />

instance from <strong>the</strong> <strong>spiders</strong> observed on 29 August, 9 were males. 5 were vagrants, 2 were<br />

in <strong>the</strong>ir own web, and 2 at <strong>the</strong> edge <strong>of</strong> <strong>the</strong> web <strong>of</strong> females). The cocoon <strong>of</strong> <strong>the</strong> species<br />

could not be found. It is presumed that <strong>the</strong> females lay <strong>the</strong>ir egg sacs in September. During<br />

October 1997 daytime research was carried out in <strong>the</strong> area using sweep-netting. With<br />

sweep-netting at a height <strong>of</strong> 50 cm I managed to catch 3 young L. jeskovi. On <strong>the</strong> basis <strong>of</strong><br />

<strong>the</strong>ir colour, shape and markings it was obvious that <strong>the</strong>y were juvenile specimens from<br />

<strong>the</strong> 1. or 2. stage <strong>of</strong> L. jeskovi.<br />

Daily activity<br />

According to my observations, in <strong>the</strong> testing period (subadult and adult phase) L. jeskovi<br />

builds its web only at night. In <strong>the</strong> test area I did not manage to observe <strong>the</strong> animals during<br />

<strong>the</strong> daytime. The female specimen reared under experimental conditions spent <strong>the</strong> day near<br />

<strong>the</strong> water level, motionless, in a resting position. It became active during <strong>the</strong> half-hour after<br />

sunset. Firstly only slow stretching (smaller changes <strong>of</strong> position) was observed. Web building<br />

began 40-50 minutes after sunset and lasted for about 15-25 minutes. The building <strong>of</strong><br />

<strong>the</strong> main and temporary spirals took place very quickly. After building <strong>the</strong> main spiral, <strong>the</strong><br />

spider takes an upside-down position on <strong>the</strong> hub <strong>of</strong> <strong>the</strong> web. Like <strong>the</strong> o<strong>the</strong>r cross <strong>spiders</strong>, it<br />

wraps its prey and takes it to <strong>the</strong> hub. The web is relatively weak, and is easily damaged by<br />

<strong>the</strong> wind and by prey animals. The observed spider dismantled <strong>the</strong> web before dawn. 1.5-2<br />

hours before sunrise <strong>the</strong> web could no longer be found. Between 17-24 July 1997 (sunset<br />

was 8.42 p.m. on 19 July) <strong>the</strong> web was actively built between 9.15 and 9.30 p.m. Between<br />

27-29 August (sunset was 7.38 p.m.) <strong>the</strong> webs were ready after 8.45 p.m. When it was<br />

windy or rainy, <strong>the</strong>y did not build webs. When <strong>the</strong> wind strength was increasing during <strong>the</strong><br />

night, <strong>the</strong>y quickly dismantled <strong>the</strong>ir webs. This prevented us from collecting data on several<br />

occasions.<br />

107


108<br />

Typha angustifolia Phragmites australis<br />

Carex elata Typha latifolia<br />

30%<br />

16%<br />

1%<br />

53%<br />

Fig.1. Web-site selection <strong>of</strong> Larinia jeskovi (14.07.-<br />

29.08.1997, Balatongyörök).<br />

Height <strong>of</strong> hub (cm)<br />

250<br />

200<br />

150<br />

100<br />

50<br />

0<br />

21.07-24.07 29.07-28.08<br />

Fig. 2. Mean height (± SD) <strong>of</strong> web hubs (<strong>of</strong> Larinia<br />

jeskovi (21.07-24.07: only juveniles, 29.07-28.08:<br />

adult males and subadult and adult females).<br />

Population density<br />

14<br />

12<br />

10<br />

8<br />

6<br />

4<br />

2<br />

0<br />

21.07. 24.07. 29.07. 28.08.<br />

Fig.3. Mean population density (± SD) <strong>of</strong> Larinia jeskovi<br />

at Lake Balaton (number <strong>of</strong> specimens/20m 2 ).<br />

Website selection<br />

The webs <strong>of</strong> female specimens found in<br />

<strong>the</strong> summer <strong>of</strong> 1996 were all on T.<br />

angustifolia. Some <strong>of</strong> <strong>the</strong> webs were fastened<br />

to bulrush and reed at <strong>the</strong> same time.<br />

In <strong>the</strong> area designated in <strong>the</strong> summer <strong>of</strong> 1997<br />

we managed to observe <strong>the</strong> choice <strong>of</strong> plants<br />

by 159 specimens. Between 14 July and 29<br />

August, 52% <strong>of</strong> <strong>the</strong> observed adult and subadult<br />

specimens fastened <strong>the</strong>ir webs to T.<br />

angustifolia, 30% to reeds, 17% to C. elata,<br />

1% to T. latifolia. From this it is clear that<br />

this species prefers T. angustifolia (Fig. 1).<br />

This choice can be explained by <strong>the</strong> fact that<br />

<strong>the</strong> closing <strong>of</strong> <strong>the</strong> upper level <strong>of</strong> <strong>the</strong> vegetation<br />

is disadvantageous for <strong>the</strong> species. The<br />

closing <strong>of</strong> <strong>the</strong> vegetation was more significant<br />

in <strong>the</strong> case <strong>of</strong> <strong>the</strong> reed in <strong>the</strong> examined<br />

habitat than at places where <strong>the</strong> bulrush was<br />

dominant at <strong>the</strong> upper level. The distance<br />

between <strong>the</strong> hub and <strong>the</strong> water level depends,<br />

<strong>of</strong> course, on <strong>the</strong> plant. Adults were usually<br />

found on bulrush and reed. In 28% <strong>of</strong> cases<br />

<strong>the</strong> height <strong>of</strong> <strong>the</strong> webs observed up to 24<br />

July was less than 100cm, after 29 July it<br />

was only 3.4%. In <strong>the</strong> case <strong>of</strong> <strong>the</strong> webs examined<br />

in 1996 <strong>the</strong> average distance between<br />

<strong>the</strong> hub and water level was 113.7<br />

(±17.4) cm. In 1997 <strong>the</strong> height <strong>of</strong> 158 webs<br />

was recorded in <strong>the</strong> test area between 19<br />

July and 29 August. The distance between<br />

<strong>the</strong> hub <strong>of</strong> <strong>the</strong> web and <strong>the</strong> water level was<br />

139cm (138.89 ±44.54). The height <strong>of</strong> <strong>the</strong><br />

web found in <strong>the</strong> highest place was 225cm,<br />

<strong>the</strong> height <strong>of</strong> <strong>the</strong> web found in <strong>the</strong> lowest<br />

place was 40cm. The average height <strong>of</strong> <strong>the</strong><br />

webs observed between 29 July and 28<br />

August (<strong>the</strong>y were already adults) was<br />

greater (159.15 ±36.65). On <strong>the</strong> basis <strong>of</strong> this<br />

observation it can be concluded that webs<br />

<strong>of</strong> adults were higher than those <strong>of</strong> subadults<br />

(133.96 ±41.72) (P


Web-structure and building behaviour<br />

L. jeskovi builds its web exclusively at night. Every night it builds its typical web, and in <strong>the</strong><br />

morning it recycles <strong>the</strong> web by ingesting it toge<strong>the</strong>r with <strong>the</strong> frame threads. If it is disturbed by<br />

wind or rain during <strong>the</strong> night, it demolishes <strong>the</strong> web. With artificial illumination <strong>the</strong> dismantling<br />

<strong>of</strong> <strong>the</strong> web was also witnessed. This is a typical, vertical orb web. Its shape is generally<br />

oval and extended vertically, <strong>the</strong> shape depends on <strong>the</strong> plant to which <strong>the</strong> spider has fastened<br />

<strong>the</strong> web. Webs fastened to bulrush and reed are more stretched vertically than those fastened<br />

to sedge. The web has relatively few radii. Webs with 18 radii (17.77 ±1.78) are <strong>the</strong> most<br />

frequent. The maximum was 21, and <strong>the</strong> minimum was 15 radii. Usually <strong>the</strong>re were some thin<br />

threads across <strong>the</strong> centre <strong>of</strong> <strong>the</strong> web hubs. But sometimes <strong>the</strong> hub had a hole <strong>of</strong> irregular shape<br />

in <strong>the</strong> centre. There is a relatively wide free <strong>zone</strong> between <strong>the</strong> hub and <strong>the</strong> main spirals. The<br />

diameter <strong>of</strong> <strong>the</strong> whole capture area <strong>of</strong> <strong>the</strong> webs built by females on T. angustifolia was 38 cm<br />

vertically (38.2 ±6.7), and 27 cm horizontally (26.7 ±4.5). The capture area was wider under<br />

<strong>the</strong> hub. Its development also depends on <strong>the</strong> plant to which it is attached.<br />

Population density<br />

The density <strong>of</strong> L. jeskovi in <strong>the</strong> sample area designated in 1997 is given in Fig. 3. The<br />

density <strong>of</strong> L. jeskovi (specimens/20 m 2 ) decreased between 29 July and 28 August. The<br />

number <strong>of</strong> observed Larinia specimens in five <strong>zone</strong>s <strong>of</strong> reed belt (from <strong>the</strong> swampy meadow<br />

to <strong>the</strong> water) is shown in Fig. 4.<br />

Fur<strong>the</strong>r orb web species <strong>of</strong> <strong>the</strong> examined reed belt<br />

Since 1992 <strong>the</strong> following orb web species have been found in <strong>the</strong> examined reed belt<br />

(from <strong>the</strong> water to <strong>the</strong> swampy meadow): Tetragnatha striata L. KOCH, T. shoshone (LEVI),<br />

Fig. 4. The number <strong>of</strong> observed<br />

Larinia specimens in five <strong>zone</strong>s <strong>of</strong><br />

reed belts at four different dates.<br />

Number <strong>of</strong> specimens<br />

16<br />

14<br />

12<br />

10<br />

8<br />

6<br />

4<br />

2<br />

0<br />

21.07.1997 24.07.1997<br />

29.07.1997 27.08.1997<br />

1-10 m 10-20 m 20-30 m 30-40 m 40-50 m<br />

109


T. reimoseri (ROSCA), T. extensa (LINNAEUS), T. nigrita LENDL, Larinioides ixobolus (THORELL),<br />

Larinioides folium (SCHRANK) (=L. suspicax (O.P.-CAMBRIDGE), Larinia jeskovi MARUSIK,<br />

Larinia bonneti SPASSKY, Singa nitidula (C. L. KOCH), Argiope bruennichi (SCOPOLI), Cyclosa<br />

oculata (WALCKENAER), Araneus quadratus CLERCK, Cercidia prominens (WESTRING). The<br />

species were differentiated from each o<strong>the</strong>r in terms <strong>of</strong> horizontal and vertical web site<br />

locations, and in relation to daily activity. The distribution and activity <strong>of</strong> L. jeskovi overlapped<br />

with that <strong>of</strong> only T. reimoseri, L. folium, S. nitidula and L. bonneti.<br />

Acknowledgements<br />

The author would like to express his thanks to Yuri Marusik and Janus Kupryjanowicz for help in connection<br />

with Larinia jeskovi, to Samuel Zschokke in connection with web building <strong>of</strong> this species, as well as to his wife<br />

and fa<strong>the</strong>r for technical assistance, and to Ferenc Samu for his constructive comments on <strong>the</strong> manuscript.<br />

The author was Bolyai Fellow <strong>of</strong> HAS.<br />

This work was supported by Scientific Committee <strong>of</strong> Berzsenyi College.<br />

References<br />

KUPRYJANOWICZ, J., 1995: Larinia jeskovi Marusik, 1986, a spider species new to Europe (Araneae: Araneidea).<br />

Bull. Br. arachnol. Soc., 10, 2, p. 78-80.<br />

KUPRYJANOWICZ, J., 1997: Spiders <strong>of</strong> <strong>the</strong> Biebrza National Park - species new and rare to Poland. In ŻABKA, M.<br />

(ed.): Proc. 16th Europ. Coll. Arachnol., Siedlce, 1996, p. 183-194.<br />

MARUSIK, Yu.M., 1986: The orb-weaver genus Larinia Simon in <strong>the</strong> USSR (Aranei, Araneidea). Spixiana, 3, p.<br />

245-254.<br />

SZATHMÁRY, K., 1995: The spider (Araneae) fauna <strong>of</strong> <strong>the</strong> shore <strong>of</strong> Lake Balaton, Hungary. Opusc. Zool. Budapest,<br />

27-28, p. 65-70.<br />

SZINETÁR, Cs., 1995: Some data on <strong>the</strong> spider fauna <strong>of</strong> reeds in Hungary. I. Interesting faunistic data from <strong>the</strong><br />

reeds <strong>of</strong> Lake Balaton. Folia ent. Hung., 56, p. 205-209.<br />

110

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!