26.08.2013 Views

spiders (araneae) of the fishpond eulittoral zone - European Society ...

spiders (araneae) of the fishpond eulittoral zone - European Society ...

spiders (araneae) of the fishpond eulittoral zone - European Society ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Ekológia (Bratislava) Vol. 19, Supplement 4, 51-54, 2000<br />

SPIDERS (ARANEAE) OF THE FISHPOND<br />

EULITTORAL ZONE<br />

MICHAL HOLEC<br />

University <strong>of</strong> South Bohemia, Faculty <strong>of</strong> Biological Sciences, Na sádkách 7, 37005 České Budějovice, Czech<br />

Republic; Institute <strong>of</strong> Soil Biology, Academy <strong>of</strong> Sciences <strong>of</strong> <strong>the</strong> Czech Republic, Na sádkách 7, 37005 České<br />

Budějovice, Czech Republic. E-mail: mh@tix.bf.jcu.cz<br />

Introduction<br />

Abstract<br />

HOLEC M.: Spiders (Araneae) <strong>of</strong> <strong>the</strong> <strong>fishpond</strong> <strong>eulittoral</strong> <strong>zone</strong>. In GAJDOŠ P., PEKÁR S. (eds): Proceedings<br />

<strong>of</strong> <strong>the</strong> 18th <strong>European</strong> Colloquium <strong>of</strong> Arachnology, Stará Lesná, 1999. Ekológia (Bratislava),<br />

Vol. 19, Supplement 4/2000, p. 51-54.<br />

A study was made <strong>of</strong> <strong>spiders</strong> living in vegetation (Phragmites australis, Typha angustifolia and<br />

Carex) <strong>of</strong> <strong>the</strong> <strong>eulittoral</strong> <strong>zone</strong> <strong>of</strong> ponds in <strong>the</strong> Czech Republic. Specimens were collected from<br />

floating pitfall traps, by beating vegetation and by hand collection. In total, 38 spider species<br />

were recorded, and ten <strong>of</strong> <strong>the</strong>se are considered to be specialised inhabitants <strong>of</strong> <strong>the</strong> <strong>eulittoral</strong> <strong>zone</strong>.<br />

The spider assemblage <strong>of</strong> tall sedge vegetation exhibited <strong>the</strong> highest abundance and species diversity.<br />

Various types <strong>of</strong> wetlands have been studied in <strong>the</strong> Czech Republic. Bogs were studied<br />

intensively by KŮRKA (e.g. 1990, 1995) and (MILLER, 1951), wet meadows by RŮŽIČKA (1987).<br />

MILLER, OBRTEL (1975) investigated <strong>the</strong> terrestrial <strong>zone</strong> <strong>of</strong> <strong>fishpond</strong> reed marshes. The<br />

arachn<strong>of</strong>auna <strong>of</strong> <strong>the</strong> <strong>eulittoral</strong> <strong>zone</strong> <strong>of</strong> <strong>fishpond</strong> vegetation has not been studied previously<br />

in <strong>the</strong> Czech Republic.<br />

SZINETÁR (1993) summarised <strong>the</strong> literature on <strong>spiders</strong> <strong>of</strong> moorlands in Hungary. SZINETÁR<br />

(1995) published interesting faunistic data for <strong>the</strong> reed beds <strong>of</strong> Lake Balaton. RENNER,<br />

BELLMAN (1995) investigated <strong>the</strong> spider fauna <strong>of</strong> <strong>the</strong> lake ,,Schmiechener See“. Spider communities<br />

<strong>of</strong> <strong>the</strong> Danube Delta were investigated by WEISS et al. (1998). The distribution<br />

pattern <strong>of</strong> hygrophilous species <strong>of</strong> <strong>the</strong> genus Pirata was described by RENNER (1986) and<br />

that <strong>of</strong> Tetragnatha species in <strong>the</strong> Danube Delta by UHL et al. (1992). Data on <strong>the</strong> ecology<br />

and distribution <strong>of</strong> species <strong>of</strong> <strong>the</strong> genus Dolomedes were summarised by HELSDINGEN (1993)<br />

and DUFFEY (1995).<br />

51


T a b l e 1. List <strong>of</strong> spider species recorded in vegetation<br />

stands <strong>of</strong> Cx -Carex, Ta- Typha angustifolia, Pa-<br />

Phragmites australis. – A: in small numbers and locally<br />

distributed, B: in small numbers and widespread, C:<br />

abundant and locally distributed, D: abundant and<br />

widespread. * eulitoral specialists.<br />

Cx Ta Pa<br />

Araeoncus crassiceps (WEST.) A<br />

Antistea elegans (BL.) B B B<br />

Aphileta misera (O. P.-C.) A<br />

Bathyphantes approximatus (O. P.-C.) D B B<br />

Bathyphantes gracilis (BL.) D B B<br />

*Clubiona juvenis SIMON A A<br />

Clubiona phragmitis C. L. K. B D D<br />

Dismodicus bifrons (BL.) A<br />

Dolomedes fimbriatus (CL.) A<br />

*Dolomedes plantarius (CL.) D<br />

*Donacochara speciosa (TH.) B D D<br />

Enoplognatha caricis (FICK.) A<br />

Gnathonarium dentatum (WIDER) B B B<br />

Gongylidiellum murcidum SIMON A A A<br />

Hypomma bituberculatum (WIDER) D B B<br />

Kaestneria pullata (O. P.-C.) A A A<br />

Larinioides folium (SCH.) B B B<br />

Lophomma punctatum (BL.) A A<br />

*Marpissa radiata (GRUBE) B A A<br />

*Microlinyphia impigra (O. P.-C.) B B B<br />

Neriene clathrata (SUND.) D B B<br />

Pachygnatha clercki SUND. D B B<br />

Pardosa prativaga (L. K.) B B B<br />

Pardosa sphagnicola (F. D.) A<br />

Pirata piraticus (CL.) D D D<br />

Pirata piscatorius (CL.) B B<br />

Pirata tenuitarsis SIMON C C C<br />

Porrhomma pygmaeum (BL.) A A A<br />

*Rugathodes instabilis (O. P.-C.) C C A<br />

Silometopus elegans (O. P.-C.) A A<br />

Sitticus floricola (C. L. K.) B A A<br />

Taranucnus setosus (O. P.-C.) A<br />

Tetragnatha extensa (L.) D B B<br />

*Tetragnatha shoshone LEVI A C C<br />

*Tetragnatha striata L. K. C C C<br />

*Theridion hemerobius SIMON A D A<br />

*Theridiosoma gemmosum (L. K.) B B B<br />

Tibellus maritimus (MENGE) A A A<br />

52<br />

total number <strong>of</strong> species 37 28 29<br />

I studied <strong>spiders</strong> in three different<br />

types <strong>of</strong> littoral vegetation. Selected<br />

faunistic data were published<br />

by RŮŽIČKA, HOLEC (1998).<br />

Material and methods<br />

Spiders were collected from <strong>the</strong><br />

vegetation by hand, and by beating <strong>the</strong><br />

vegetation. Floating pitfall traps (RŮŽIČKA,<br />

1982; RENNER, 1986) were used in order to<br />

collect <strong>spiders</strong> walking on <strong>the</strong> water<br />

surface. Spiders were collected from <strong>the</strong><br />

end <strong>of</strong> April to July in 1996 and 1997. 702<br />

determinable individuals representing 38<br />

species were collected. Thirteen stands <strong>of</strong><br />

vegetation in eight ponds in different parts<br />

<strong>of</strong> <strong>the</strong> Czech Republic were investigated.<br />

Spiders were collected from three types <strong>of</strong><br />

littoral vegetation - Phragmites australis<br />

(five plots), Typha angustifolia (three plots)<br />

and stands with Carex (three plots<br />

vegetated by Carex acutiformis and two by<br />

Carex elata).<br />

Abundance data were treated semiquantitatively,<br />

and coded as follows; - A:<br />

species in small numbers and locally<br />

distributed, B: in small numbers and<br />

widespread, C: abundant and locally<br />

distributed, D: abundant and widespread.<br />

This classification is based on our own data<br />

and on <strong>the</strong> literature (BUCHAR, 1989).<br />

Results and discussion<br />

38 species were recorded (Table<br />

1). 10 <strong>of</strong> <strong>the</strong>se have not been recorded<br />

before in terrestrial habitats<br />

or in wetlands in <strong>the</strong> Czech Republic.<br />

These species are considered<br />

to be specialists <strong>of</strong> <strong>the</strong> <strong>eulittoral</strong><br />

<strong>zone</strong> (<strong>the</strong>se species are marked by<br />

an asterisk in Table 1).<br />

Tetragnatha shoshone LEVI and<br />

Tetragnatha striata L. KOCH were


collected predominantly at <strong>the</strong> water’s edge near reed and cattail stands. Donacochara<br />

speciosa (THORELL), Clubiona juvenis SIMON were associated mainly with reed and dense<br />

cattail stands. Theridion hemerobius SIMON was collected in highest numbers in <strong>the</strong> canopy<br />

layers <strong>of</strong> cattail. Marpissa radiata (GRUBE) prefers sedge, although it seems to be more<br />

terrestrial than <strong>the</strong> o<strong>the</strong>r species. HOLEC (unpubl.) observed several females with cocoons in<br />

a pea field surrounding large reed marshes. BÍLEK (in BUCHAR, 1989) collected this species<br />

from oak seedlings near a pond. Records <strong>of</strong> M. radiata from <strong>the</strong> Czech Republic are rare,<br />

its occurrence in sedge is relatively common, and I consider this species to be a specialist<br />

<strong>of</strong> <strong>the</strong> <strong>eulittoral</strong> <strong>zone</strong>. Theridiosoma gemmosum (L. KOCH) is a widespread species, but<br />

usually very time-consuming to find. Although I searched intensively in reed, sedge and<br />

cattail stands, I never found large numbers <strong>of</strong> specimens. T. gemmosum was recorded in<br />

higher numbers (about 50 subadult males in five minutes) in grass overhanging <strong>the</strong> banks <strong>of</strong><br />

channels (HOLEC, RŮŽIČKA,1998). Similarly, BOGGILD (BOGGILD, CROCKER, 1971) collected it<br />

in higher numbers (40 specimens in half an hour), although none were found in <strong>the</strong> first half<br />

hour. Dolomedes plantarius (CLERCK) was recorded only among sedges along eutrophic<br />

<strong>fishpond</strong>s or among water lilies, surrounded by sedge stands. Our results correspond with<br />

DUFFEY (1995), who showed that D. plantarius is a species <strong>of</strong> mesotrophic/eutrophic wetlands.<br />

There is no firm evidence for D. plantarius coexisting with D. fimbriatus (CLERCK)<br />

anywhere in Europe (DUFFEY, 1995). Three localities were recorded where both species<br />

were caught toge<strong>the</strong>r at <strong>the</strong> same site and in <strong>the</strong> same habitat (flooded sedge) in <strong>the</strong> Czech<br />

Republic. Two records were from South Bohemia (1 ex. D. plantarius and 1 ex. D. fimbriatus,<br />

Potěšil pond, lgt. Růžička; 1 ex. D. plantarius and 1 ex D. fimbriatus, Velký Tisý pond, lgt.<br />

Holec) and two were from North Bohemia (1 ex. D. plantarius and 1 ex. D. fimbratus,<br />

Břehyně ponds, lgt. Holec; 4 ex. D. plantarius and 2 ex. D. fimbriatus, Hradčanské rybníky<br />

ponds, lgt. Holec). KŮRKA (1997) investigated pine bogs surrounding both North Bohemian<br />

ponds mentioned and recorded only D. fimbriatus.<br />

Coexistence <strong>of</strong> both species at ponds can probably be common at localities where <strong>the</strong><br />

bog habitat <strong>of</strong> D. fimbriatus shows a gradual transition to <strong>the</strong> pond habitat <strong>of</strong> D. plantarius.<br />

RENNER, BELLMAN (1995) described two main factors influencing <strong>the</strong> spider fauna at<br />

Schmiechener See in Sou<strong>the</strong>rn Germany. The first factor is <strong>the</strong> presence <strong>of</strong> extensive stands<br />

<strong>of</strong> Carex elata and <strong>the</strong> second is an extreme fluctuation <strong>of</strong> water level. Despite methodological<br />

problems with data collection, it seems that permanently flooded sedge tussock<br />

stands are unique habitats for retaining species diversity. Thirty seven species were recorded<br />

here and <strong>the</strong> abundance <strong>of</strong> most species also seemed to be higher.<br />

Similarly, LUFF (1966), BOSSENBROEK et al. (1977), KESSLER et al. (1988) and DENIS et al.<br />

(1998) found that grass or sedge tussock can harbour ra<strong>the</strong>r large numbers <strong>of</strong> invertebrates<br />

under adverse wea<strong>the</strong>r conditions. Tussocks <strong>of</strong> Carex elata and C. acutiformes are typical<br />

<strong>of</strong> permanently high water and sedges provide relative stable biotopes. The high degree <strong>of</strong><br />

spatial variability <strong>of</strong> sedge tussocks is evident. Most <strong>spiders</strong> are associated with <strong>the</strong> <strong>zone</strong> <strong>of</strong><br />

overhanging old leaves.<br />

The <strong>eulittoral</strong> <strong>zone</strong> <strong>of</strong> reed vegetation is a relatively homogeneous habitat without much<br />

spatial variability. High water level can be much more important here than in <strong>the</strong> case <strong>of</strong><br />

sedge tussocks. The water level determines <strong>the</strong> spatial variability <strong>of</strong> <strong>the</strong> ground <strong>zone</strong> where<br />

53


<strong>the</strong>re is reed litter. Narrow-leaved cattail grows in permanently deeper water. Its lowest<br />

layer is thin and only rarely emerges from <strong>the</strong> deep water. Most <strong>of</strong> its diversity is associated<br />

with higher leaf canopy layers.<br />

I can confirm <strong>the</strong> importance <strong>of</strong> both factors. More detailed studies on <strong>the</strong> structure <strong>of</strong><br />

pond vegetation and faunistics studies are needed to understand its diversity.<br />

References<br />

BOSENBROEK, P., KESSLER, A., LIEM, A.S.N., VLIJM, L., 1977: The significance <strong>of</strong> plant growth –forms as shelter<br />

for terrestrial animals. J. Zool. Lond., 182, p. 1-6.<br />

BØGGILD, O., CROCKER, J., 1971: Notes on <strong>the</strong> habitat <strong>of</strong> Theridiosoma gemmosum (L. Koch). Newsl. Br. Arachnol.<br />

Soc., 2, p. 6.<br />

BUCHAR, J., 1989: The knowledge <strong>of</strong> <strong>the</strong> present Bohemian arachn<strong>of</strong>auna and its improvement to evaluation <strong>of</strong><br />

natural conditions. Thesis, Charles University, Praha. (In Czech)<br />

DENIS, P.Y., GORDON, I.J., 1998: Distribution and abundance <strong>of</strong> small Insects and Arachnids in Relation to Structural<br />

Heterogenity <strong>of</strong> grazed, indigenous Grasslands. Ecol. Entomol., 23, 3, p. 253-264.<br />

DUFFEY, E., 1995: The distribution, status and habitat <strong>of</strong> Dolomedes fimbriatus (Clerck) and D. plantarius in<br />

Europe. In RŮŽIČKA, V. (ed.): Proceedings <strong>of</strong> <strong>the</strong> 15 th <strong>European</strong> Colloquium <strong>of</strong> Arachnology, České Budějovice,<br />

1994, p. 54-65.<br />

VAN HELSDINGEN, P.J., 1993: Ecology and distribution <strong>of</strong> Dolomedes in Europe (Araneida: Dolomedidae). Boll.<br />

Acc. Gioenia Sci. Nat., 26, 345, p. 181-187.<br />

KESSLER, A., VERMEULEN, J.W.C., WAPENAAR, P., 1984: Partitioning <strong>of</strong> <strong>the</strong> space in tussock <strong>of</strong> <strong>the</strong> sedge, Carex<br />

distans, during winter, by spider community. J. Zool. Lond., 204, p. 259-269.<br />

KŮRKA, A., 1990: The arachn<strong>of</strong>auna Bohemian peat bogs. Spiders <strong>of</strong> <strong>the</strong> State Nature Reserve Mrtvý Luh.<br />

Šumava Mts. Acta Mus. Nat. Pragae. Ser. B, 46, p. 37-77.<br />

KŮRKA, A., 1995: Some rare and remarkable <strong>spiders</strong> species from peat bogs <strong>of</strong> <strong>the</strong> Czech Republic. Čes. Nár.<br />

Muz., Řada přírodověd., 164, p. 77-86.<br />

KŮRKA, A., 1997: The spider fauna (Araneida) <strong>of</strong> <strong>the</strong> military area Ralsko. Bezděz, 5, p. 237-268. (In Czech)<br />

LUFF, M.L., 1966: The abundance and diversity <strong>of</strong> <strong>the</strong> beetle fauna <strong>of</strong> grass tussock. J. Anim. Ecol., 35, p. 189-208.<br />

MILLER, F., 1951: Araneous-Fauna <strong>of</strong> <strong>the</strong> Peat-Bogs near Rejvíz (High Jeseník). Přírodovědecký sborník ostravského<br />

kraje, 12, p. 202-247. (In Czech)<br />

MILLER, F., OBRTEL, R., 1975: Soil surface <strong>spiders</strong> (Araneida) in terrestrial reed swamp in sou<strong>the</strong>rn Moravia<br />

(Czechoslovakia). Acta Entomol. Bohemoslov., 72, p. 272-285.<br />

RENNER, F., 1986: Zur Nischendiffer enzierung bei Pirata-Arten (Araneida, Lycosidae). Verh. naturwiss. Ver.<br />

Hamburg (NF), 28, p. 75-90.<br />

RENNER, F., BELLMANN, H., 1995: Zur Spinnenfauna des Naturschutzgebietes ,,Schmiechener See“. Beih. Veröff.<br />

Naturschutz Landschaftspflege Bad.- Württ., 78, p. 403-410.<br />

RŮŽIČKA, V., 1982: Modification to improve <strong>the</strong> efficiency <strong>of</strong> pitfall traps. Newsl. Br. Arachnol. Soc., 34, p. 2-4.<br />

RŮŽIČKA, V., 1987: An analysis <strong>of</strong> spider communities in <strong>the</strong> meadows <strong>of</strong> <strong>the</strong> Třeboň basin. Acta Sc. Nat., Brno,<br />

21, 5, p. 1-39.<br />

RŮŽIČKA, V., HOLEC, M., 1998: New records <strong>of</strong> <strong>spiders</strong> from pond littoral in <strong>the</strong> Czech Republic. Arachnol. Mitt.,<br />

16, p. 1-7.<br />

SZINETÁR, C., 1993: The spider <strong>of</strong> reed marshlands in Hungary. Folia ent. hungarica, 54, p. 155-162. (In Hungarian)<br />

SZINETÁR, C., 1995: Some data on <strong>the</strong> spider fauna <strong>of</strong> reeds in Hungaria. I. Interesting faunistic data from <strong>the</strong><br />

reeds <strong>of</strong> Lake Balaton. Folia ent. hung, 56, p. 205-209.<br />

UHL, G., SACHER P., WEISS I., KRAUS, O., 1992: Europaische Vorkomen von Tetragnatha shoshone (Arachnida,<br />

Araneae, Tetragnathidae). Verh. naturwiss. Ver. Hamburg (NF), 33, p. 247-261.<br />

WEISS, I., SCHNEIDER, E., ANDRIESCU, I., 1998: Die Spinnen des Biosphärenreservats Donau-Delta, Rumanien<br />

(Arachnida, Araneae). Linzer biol.Beitr., 30, 1, p. 263-275.<br />

54


Ekológia (Bratislava) Vol. 19, Supplement 4, 55-64, 2000<br />

LONG TERM CHANGES IN SPIDER (ARANEAE)<br />

COMMUNITIES IN NATURAL AND DRAINED FENS<br />

IN THE BIEBRZA RIVER VALLEY<br />

ANNA KAJAK 1 , JANUSZ KUPRYJANOWICZ 2 , PETER PETROV 1<br />

1 Institute <strong>of</strong> Ecology PAS, 05-092 Łomianki, Poland. E-mail: ekolog@warman.com.pl<br />

2 University in Bialystok, Institute <strong>of</strong> Biology, Swierkowa 20B, 15-950 Bialystok, Poland. E-mail:<br />

kuprzool@cksr.ac.bialystok.pl<br />

Introduction<br />

Abstract<br />

Kajak A., Kupryjanowicz J., Petrov P.: Long term changes in spider (Araneae) communities in<br />

natural and drained fens in <strong>the</strong> Biebrza River Valley. In Gajdoš P., Pekár S. (eds): Proceedings <strong>of</strong><br />

<strong>the</strong> 18th <strong>European</strong> Colloquium <strong>of</strong> Arachnology, Stará Lesná, 1999. Ekológia (Bratislava), Vol.<br />

19, Supplement 4/2000, p. 55-64.<br />

The density and diversity <strong>of</strong> <strong>spiders</strong> were compared in three periods: I – 1955, II – 1978-1983, III-<br />

1996-1998. The quadrat method was applied to estimate <strong>the</strong> density <strong>of</strong> <strong>spiders</strong>, and <strong>the</strong> Shannon-<br />

Wiener index was used to calculate species diversity. A decrease in spider species diversity, through<br />

time, was detected in managed grasslands. It was accompanied by a decrease in <strong>the</strong> number <strong>of</strong><br />

families. This tendency was not found in natural fens. Spider density was similar in <strong>the</strong> compared<br />

periods. In period III, spider diversity and total density were positively correlated with soil moisture,<br />

abundance <strong>of</strong> microhabitats in an area and landscape heterogeneity, measured by <strong>the</strong> distance to<br />

shrubs. A negative correlation was found between <strong>the</strong> density <strong>of</strong> <strong>spiders</strong> and <strong>the</strong> intensity <strong>of</strong> management<br />

practice (mowing by heavy machines and grazing by cattle), and <strong>the</strong> bulk density <strong>of</strong> <strong>the</strong> soil.<br />

Plant diversity (H‘ based on <strong>the</strong> proportion <strong>of</strong> <strong>the</strong> area covered by each plant species) did not<br />

influence <strong>the</strong> diversity <strong>of</strong> <strong>spiders</strong>. The proportion <strong>of</strong> species connected exclusively with <strong>the</strong> field<br />

layer decreased with time. The effect <strong>of</strong> management on spider mobility was positive.<br />

The objective <strong>of</strong> our study was to analyse changes in spider species diversity and density in<br />

fens, over time and over environmental gradients. Impoverishment <strong>of</strong> a community is considered<br />

an indicator <strong>of</strong> <strong>the</strong> deterioration <strong>of</strong> habitat quality. Spider communities are a reliable<br />

source <strong>of</strong> information concerning <strong>the</strong> condition <strong>of</strong> habitats, because <strong>of</strong> <strong>the</strong>ir sensitivity to<br />

environmental conditions, <strong>the</strong>ir high number <strong>of</strong> species, and <strong>the</strong>ir tendency to occur abundantly<br />

in various ecosystems (DUFFEY, 1978; MAELFAIT et al., 1997; HÄNGGI et al., 1995). This<br />

problem is especially relevant to peatlands, which are endangered habitats, due to <strong>the</strong>ir dimin-<br />

55


T a b l e 1. Number <strong>of</strong> study sites in natural and<br />

managed grasslands, on soil formed from sedge<br />

moss (A), tall sedge (B), or alder (C) type <strong>of</strong> peat,<br />

analysed for three periods.<br />

Period Sites<br />

(Years) Natural Managed<br />

A B A B C<br />

I 1955 – 2 2 – –<br />

IIa 1978-1979 1 2 1 3 1<br />

IIb 1982-1983 1 2 1 3 2<br />

III 1996-1998 1 2 2 2 2<br />

T a b l e 2. Characteristics <strong>of</strong> study sites in natural (N) grasslands in<br />

period III. Data after SZUNIEWICZ, CHRZANOWSKI (in press),<br />

KAMIŃSKI (in press).<br />

Parameter A B<br />

Peat origin sedge-moss Sedge<br />

Mean soil moisture (% by volume) 85.0 83.9-87.6<br />

Soil bulk density (g.cm -3 ) 0.154 0.151-0.160<br />

Thickness <strong>of</strong> peat deposit (cm) 150 70-170<br />

Yield (g.dwt.m -3 ) 350 200-250<br />

T a b l e 3. Characteristics <strong>of</strong> study sites in managed grasslands, analysed in period III. Data after<br />

PASTERNAK-KUŚMIERSKA et al.1997, SZUNIEWICZ, CHRZANOWSKI (in press), KAMIŃSKI (in press).<br />

Parameter A B C<br />

Peat origin sedge-moss sedge alder<br />

Mean soil moisture (% by volume) 78-82 68-79 59-71<br />

Soil bulk density (g cm -3 ) 0.198-0.209 0.229-0.371 0.256-0.332<br />

Thickness <strong>of</strong> peat deposit (cm) 400 140-400 80-265<br />

Yield (g d.wt m -2 ) 460 350 - 395 264 - 900<br />

T a b l e 4. Spider species diversity and mean density (ind.m -2 ) in natural and managed peat grasslands.<br />

Period Natural grasslands Managed grasslands P<br />

Density H’ Density H’<br />

1 3 2 4 1-2 3-4<br />

I 19.0 ±1.0 4.42 - 4.54 12.6 ± 0.7 3.90 – 4.45


for use as hay meadows and pastures. O<strong>the</strong>r parts were included in <strong>the</strong> Biebrza National<br />

Park and left without human interference. We tried to analyse how spider communities<br />

changed in both natural (N) and managed (M) grasslands by comparing (1) species diversity,<br />

(2) total density, and (3) community structure, from three sampling periods (Table 1).<br />

Material and methods<br />

All study sites were located on peat soils originating from <strong>the</strong> three plant communities, which are most<br />

common in <strong>the</strong> valley. These were: A. sedge-moss communities (Caricetum limoso-diandrae) in <strong>the</strong> emersion<br />

<strong>zone</strong> <strong>of</strong> <strong>the</strong> valley, B. tall sedge communities (Caricetum elatae and Peucedano-Caricetum paradoxae), in<br />

immersion, flooded <strong>zone</strong>, or C. alder carr (Carici elongatae –Alnetum), which border <strong>the</strong> valley (Table 1).<br />

The soil properties, such as soil moisture content, decomposition rate <strong>of</strong> peat deposits, and soil texture, depend<br />

considerably on <strong>the</strong> origin <strong>of</strong> peat (Table 2 and 3). Soils formed from <strong>the</strong> sedge-moss community were<br />

characterised by a well-developed moss layer, <strong>the</strong> highest water-holding capacity <strong>of</strong> <strong>the</strong> soil and relatively<br />

stable moisture level throughout <strong>the</strong> year, in natural and drained grasslands (Table 2 and 3). The lowest moisture<br />

content was found in soils originating from alder peat (C). They were mineralised at <strong>the</strong> highest rate after<br />

drainage. Soils formed from tall sedge peat were intermediate in respect to water content and decomposition<br />

rate <strong>of</strong> peat deposits (Table 2 and 3).<br />

In most cases managed grasslands (M) were mown 2-3 times a year by heavy machines, and <strong>the</strong> hay was<br />

immediately removed. The drainage system was extended for hundreds <strong>of</strong> hectares between period I and II.<br />

Presently drained grasslands accounted for 62% <strong>of</strong> <strong>the</strong> area <strong>of</strong> organic soils in <strong>the</strong> valleys (OKRUSZKO, 1990).<br />

In period I small patches <strong>of</strong> cultivated grasslands were surrounded by extensive areas <strong>of</strong> natural fens (N). In<br />

Period II management was intensified. The drainage induced rapid mineralization <strong>of</strong> organic matter accumulated<br />

in peat, and <strong>the</strong> thickness <strong>of</strong> peat deposits declined gradually. A characteristic feature <strong>of</strong> drained fens is high<br />

variability <strong>of</strong> soil properties and <strong>of</strong> plant and animal communities. The system is subjected to secondary<br />

succession. More information about <strong>the</strong> grasslands studied is given in KAJAK (1962), KACZMAREK (1991),<br />

STEPA,PAŁCZYŃSKI (1991).<br />

In all periods compared, <strong>the</strong> quadrat method was applied to assess spider density. The effectiveness <strong>of</strong><br />

collecting <strong>spiders</strong> improved with time. In period I, <strong>spiders</strong> were hand-collected from large frames (0.25 m 2 in<br />

area). 16 samples were taken per site on each sampling date. In <strong>the</strong> next two periods (II and III) <strong>spiders</strong> were<br />

collected from smaller frames (0.0625 m 2 ), 10 samples per site were taken. Starting in 1982 (Period II b),<br />

samples were cut out <strong>of</strong> grassland turf and shaken several times over a plastic sheet until no more <strong>spiders</strong><br />

could be seen. In each period samples were taken from May until October (190 –250 per site in period I, 40 –<br />

190 in period II, 60 in period III).<br />

Species diversity was calculated by using <strong>the</strong> Shannon-Wiener diversity index H‘, <strong>the</strong> t-test was applied to<br />

estimate significance <strong>of</strong> differences between <strong>the</strong> values obtained. The number <strong>of</strong> specimens used in calculations<br />

ranged from 150 to 850 from particular sites and periods. In calculating <strong>the</strong> diversity index (H‘) for plants, <strong>the</strong><br />

per cent <strong>of</strong> area covered by each plant species was used. The data after KOTOWSKA et al.(1998) and KAMIŃSKI (in<br />

press) were used in calculations.<br />

The Wilcoxon signed rank test was applied to compare differences in diversity between periods in pooled<br />

spider data, and <strong>the</strong> Mann-Whitney U test to compare differences between natural and managed grasslands. The<br />

Kendall rank correlation coefficient was used to analyse <strong>the</strong> correlation between spider diversity and habitat<br />

properties (soil moisture, plant species diversity, plant complexity and distance to <strong>the</strong> nearest shrubs) in period<br />

III. An analysis <strong>of</strong> covariance was applied to estimate density response to <strong>the</strong> same environmental factors. In <strong>the</strong><br />

ranking <strong>of</strong> <strong>the</strong> grasslands studied with respect to plant complexity (number <strong>of</strong> microsites per area), <strong>the</strong> highest<br />

rank was given to grassland with a thick layer <strong>of</strong> mosses and litter and a multi-layered sward, formed by sedges<br />

and grasses with an admixture <strong>of</strong> forbes. The lowest rank was assigned to a grassland with low vegetation and<br />

patches <strong>of</strong> bare ground. The distance to <strong>the</strong> nearest shrubs was treated as a measure <strong>of</strong> landscape heterogeneity.<br />

This distance ranged from several meters to hundreds <strong>of</strong> meters in particular sites.<br />

57


T a b l e 5. Correlation coefficients (Kendall tau) between<br />

spider species diversity index (H`) and environmental factors<br />

(Period III).<br />

Variable tau N P<br />

Soil moisture 0.64 12 0.002<br />

Plant species diversity 0.11 16 0.27<br />

Number <strong>of</strong> microhabitats 0.68 16 0.0003<br />

Intensity <strong>of</strong> management –0.71 8 0.007<br />

Landscape heterogeneity 0.78 8 0.0012<br />

T a b l e 6. Number <strong>of</strong> <strong>spiders</strong> belonging to various families as a percentage <strong>of</strong> <strong>the</strong> total number <strong>of</strong> <strong>spiders</strong><br />

during three periods in natural peat grasslands. *Symbols <strong>of</strong> sites: N – natural fen, A- grassland located on<br />

sedge-moss peat, B- grassland located on tall sedge peat.<br />

Family<br />

I<br />

Periods<br />

II<br />

Study sites*<br />

III<br />

NB1 NB2 NA NB3 NA NB3<br />

Araneidae 11.5 22.1 0.3 0.1 0.1 0.8<br />

Linyphiidae 10.1 11.6 68.0 70.6 69.3 57.8<br />

Lycosidae 37.1 29.1 13.5 2.0 19.6 23.4<br />

Tetragnathidae 10.1 4.4 0.6 0.2 1.4 0.4<br />

Thomisidae 0.85 3.8 4.0 4.5 2.1 5.3<br />

Philodromidae 7.5 11.0 0.4 0.4 0.2 1.4<br />

Salticidae 4.2 3.8 10.7 18.4 0 1.3<br />

Clubionidae 4.7 5.1 2.1 3.6 1.1 3.3<br />

Gnaphosidae 4.5 2.0 0 0 0 0.2<br />

Theridiidae 1.8 0.4 0.2 0.2 1.3 1.5<br />

Hahnidae 9.8 2.15 0 0 3.6 1.8<br />

Dictynidae 2.4 1.2 0.2 0 0.7 1.3<br />

Zoridae 0.2 1.7 0 0 0.2 1.0<br />

Liocranidae 0 0.1 0 0 0.4 0.3<br />

Pisauridae 0 2.0 0 0 0 0<br />

Mimetidae 0 0 0 0 0 0.2<br />

No. <strong>of</strong> families 13 15 10 9 12 15<br />

Results and discussion<br />

Species diversity and composition<br />

Species diversity ranged from 2.95 to 4.72 for <strong>the</strong> periods and sites compared (Table 4).<br />

Species diversity was significantly higher in natural fens than in managed grasslands (P


T a b l e 7. Number <strong>of</strong> <strong>spiders</strong> belonging to various families as a percentage <strong>of</strong> <strong>the</strong> total number <strong>of</strong> <strong>spiders</strong> in<br />

three periods in managed grasslands. *Site symbols: M – managed grassland site, A- soil formed from sedgemoss<br />

peat, B –soil formed from tall sedge peat.<br />

Family<br />

I<br />

Periods<br />

II a<br />

Study sites*<br />

III<br />

MA1 MA2 MB1 MA1 MB1 MA1<br />

Araneidae 25.9 15.0 0 0 0.6 0.7<br />

Linyphiidae 16.5 24.5 59.1 71.4 36.3 73.1<br />

Lycosidae 6.4 9.3 21.3 2.8 35.6 5.2<br />

Tetragnathidae 39.8 32.4 13.6 25.8 13.0 3.2<br />

Thomisidae 6.4 7.0 3.3 0 13.2 12.4<br />

Philodromidae 1.9 1.9 0 0 0 0<br />

Salticidae 0.4 0.4 1.3 0 0 0<br />

Clubionidae 0.4 5.1 0 0 0 0<br />

Gnaphosidae 0.4 5.7 0 0 0 0<br />

Theridiidae 1.9 3.2 0.7 0 0.6 5.4<br />

Hahnidae 0 0.2 0.7 0 0.4 0<br />

Dictynidae 0 0.2 0 0 0.3 0<br />

Zoridae 0 0.2 0 0 0 0<br />

No. <strong>of</strong> families 10 13 7 3 8 6<br />

Mann-Whitney U test). The trend <strong>of</strong> decreasing diversity with respect to time was found for<br />

managed grasslands only. In managed sites compared in successive periods, lower index values<br />

were found in <strong>the</strong> later period (P80% <strong>of</strong> all specimens collected on both natural and managed grasslands. According to <strong>the</strong><br />

estimations for period I, <strong>the</strong>se families accounted for 50% <strong>of</strong> <strong>the</strong> spider community in natural<br />

grasslands and for about 60% in managed grasslands (Table 6 and 7). The changes in<br />

methods <strong>of</strong> spider collecting may have influenced and exaggerated <strong>the</strong>se differences between<br />

periods, but similar values were noted also in period II a, when <strong>the</strong> method <strong>of</strong> spider<br />

collecting was similar to that used during period I. A decrease in <strong>the</strong> proportion <strong>of</strong> <strong>spiders</strong><br />

59


T a b l e 8. Correlation coefficients (r) (analysis <strong>of</strong> covariance)<br />

between total spider density and environmental factors (Period<br />

III).<br />

Variable r F P<br />

Soil moisture 0.337 67.292


which can determine spider abundance and community composition (DE KEER et al., 1989;<br />

RUSHTON, EYRE, 1992; MAELFAIT et al., 1997; MERKENS, 1997). The o<strong>the</strong>r important factors<br />

influencing spider density are management practice (DUFFEY, 1978; DE KEER et al., 1989;<br />

DECLEER, 1990; RUSHTON, EYRE, 1992; MAELFAIT et al., 1997; MERKENS, 1997) and plant<br />

complexity (DUFFEY, 1978). Authors have shown that certain species prefer managed or<br />

unmanaged patches. In our data, <strong>the</strong> negative effect <strong>of</strong> mowing and grazing, on total spider<br />

density and species richness is very clear. According to <strong>the</strong> results <strong>of</strong> this paper, plant species<br />

diversity is less important for <strong>the</strong> diversity <strong>of</strong> <strong>spiders</strong>, than is plant complexity (abundance<br />

<strong>of</strong> microhabitats in an area). This result is in an agreement with UETZ (1979), who<br />

showed, experimentally, <strong>the</strong> relationship between spider density and litter thickness. He<br />

considered litter complexity to be <strong>the</strong> primary factor influencing <strong>the</strong> structure <strong>of</strong> spider<br />

communities. We observed a similar importance <strong>of</strong> <strong>the</strong> moss and litter layer in <strong>the</strong> range <strong>of</strong><br />

grasslands analysed in this paper.<br />

Properties <strong>of</strong> dominant species<br />

In all <strong>the</strong> grasslands compared, <strong>the</strong> family Linyphiidae was <strong>of</strong> greatest significance. Different<br />

members <strong>of</strong> this family dominated in natural and managed grasslands, and <strong>the</strong>re were<br />

only a few common species (Appendix 1). Those dominating in managed grasslands can be<br />

characterised according to HÄNGGI et al.(1995), as an eurytopic species. They are abundant<br />

in arable fields, urban areas, fens, shrubs, permanent meadows and leys. The species dominant<br />

in natural grasslands were categorised by HÄNGGI et al. (1995) as occurring in raised<br />

bogs, fens, wet meadows and <strong>the</strong> shores <strong>of</strong> inland waters. Among <strong>the</strong>m some endangered<br />

species were found.<br />

Mobility index<br />

6<br />

5<br />

4<br />

3<br />

2<br />

1<br />

0<br />

0,2<br />

NB3<br />

1<br />

0,3<br />

NA<br />

2<br />

0,52<br />

NB1<br />

3<br />

0,92<br />

MB1<br />

4<br />

1,09<br />

MA1<br />

5<br />

Intensity <strong>of</strong> management<br />

4,28<br />

MC3<br />

6<br />

3,32<br />

MB2<br />

7<br />

5,29<br />

MC1<br />

8<br />

Fig. 1. Relationship between<br />

mobility index (ratio <strong>of</strong> number<br />

<strong>of</strong> ind. captured per pitfall trap<br />

per 10 days to number <strong>of</strong> ind. per<br />

m 2 ) and intensity <strong>of</strong> grassland<br />

management. 1-8 – study sites;<br />

symbols A,B,C denote peat origin<br />

(explained in table 1), N –<br />

natural grasslands, M – managed<br />

grasslands.<br />

61


A p p e n d i x 1. Species composition. Dd – dominant species in drained fens; Dn – dominant species in<br />

natural fens; R – rare species<br />

MIMETIDAE Meioneta affinis (KULC.)<br />

Ero cambridgei KULC. R Meioneta rurestris (C.L. K.) Dd<br />

THERIDIIDAE Meioneta tenera (MENGE)<br />

Crustulina guttata (WIDER) Metopobactrus prominulus (O. P.-C.)<br />

Enoplognatha ovata (CL.) Micrargus subaequalis (WEST.)<br />

Euryopis flavomaculata (C. L. K.) Microlinyphia pusilla (SUND.)<br />

Robertus arundineti (O. P.-C.) Microneta viaria (BL.)<br />

Robertus insignis O. P.-C. R Notioscopus sarcinatus (O. P.-C.)<br />

Robertus neglectus (O. P.-C.) Oedothorax apicatus (BL.)<br />

Theridion bimaculatum (L.) Oedothorax fuscus (BL.)<br />

Theridion sisyphium (CL.) Oedothorax gibbosus (BL.) Dn<br />

LINYPHIIDAE Oedothorax retusus (WEST.)<br />

Agyneta decora (O. P.-C.) R Pelecopsis parallela (WIDER)<br />

Allomengea vidua (L. K.) Pocadicnemis juncea LOCK. ET MILL.<br />

Aphileta misera (O. P.-C.) Pocadicnemis pumila (BL.)<br />

Araeoncus crassiceps (WEST.) R Porrhomma pygmaeum (BL.) Dn<br />

Araeoncus humilis (BL.) Savignya frontata BL. Dn<br />

Baryphyma gowerense (LOCK.) R Silometopus elegans (O. P.-C.)<br />

Baryphyma trifrons (O. P.-C.) R Silometopus reussi (TH.)<br />

Bathyphantes approximatus (O. P.-C.) Tallusia experta (O. P.-C.)<br />

Bathyphantes gracilis (BL.) Dn Taranucnus setosus (O. P.-C.)<br />

Bathyphantes parvulus (WEST.) Tiso vagans (BL.) Dd<br />

Bathyphantes setiger O. P.-C. Walckenaeria kochi (O. P.-C.)<br />

Bolyphantes luteolus (BL.) Walckenaeria nodosa O. P.-C.<br />

Carorita limnaea (CROS. ET BISH.) R Walckenaeria nudipalpis (WEST.)<br />

Centromerita bicolor (BL.) Walckenaeria unicornis O. P.-C.<br />

Centromerus incilium (L. K.) Walckenaeria vigilax (BL.)<br />

Centromerus semiater (L. K.) TETRAGNATHIDAE<br />

Centromerus sylvaticus (BL.) Pachygnatha clercki SUND.<br />

Ceraticelus sibiricus ESKOV R Pachygnatha degeeri SUND. Dd<br />

Ceratinella brevipes (WEST.) Tetragnatha extensa (L.)<br />

Ceratinopsis stativa (SIMON) ARANEIDAE<br />

Dicymbium nigrum (BL.) Dd Araneus quadratus CL.<br />

Entelecara omissa O. P.-C. R Hypsosinga heri (HAHN)<br />

Erigone atra BL. Dd Hypsosinga pygmaea (SUND.)<br />

Erigone dentipalpis (WIDER) Dd Larinioides cornutus (CL.)<br />

Erigone longipalpis (SUND.) Mangora acalypha (WALC.)<br />

Glyphesis cottonae (LA TOUCHE) R Neoscona adianta (WALC.)<br />

Gnathonarium dentatum (WIDER) Singa hamata (CL.)<br />

Gongylidiellum murcidum SIMON Dn LYCOSIDAE<br />

Hypomma bituberculatum (WIDER) Dn Alopecosa cuneata (CL.)<br />

Kaestneria pullata (O. P.-C.) Alopecosa pulverulenta (CL.)<br />

Lophomma punctatum (BL.) Arctosa leopardus (SUND.)<br />

Maso gallicus SIMON R Hygrolycosa rubr<strong>of</strong>asciata (OHLE.)<br />

62


A p p e n d i x 1.<br />

Pardosa amentata (CL.) CLUBIONIDAE<br />

Pardosa lugubris (WALC.) Clubiona diversa O. P.-C.<br />

Pardosa maisa HIPPA ET MANN. R Clubiona rosserae LOCK. R<br />

Pardosa paludicola (CL.) Clubiona stagnatilis KULC.<br />

Pardosa palustris (L.) Dd Clubiona subtilis L. K.<br />

Pardosa prativaga (L. K.) GNAPHOSIDAE<br />

Pardosa pullata (CL.) Drassodes lapidosus (WALC.)<br />

Pardosa sphagnicola DAHL Zelotes electus (C. L. K.)<br />

Pirata latitans (BL.) Dn Zelotes latreillei (SIMON)<br />

Pirata piraticus (CL.) Dn ZORIDAE<br />

Pirata piscatorius (CL.) Zora armillata SIMON R<br />

Pirata tenuitarsis SIMON Zora spinimana (SUND.)<br />

Pirata uliginosus (TH.) Dn PHILODROMIDAE<br />

Trochosa ruricola (DE GEER) Thanatus striatus C. L. K.<br />

Trochosa spinipalpis (F. O. P.-C.) Tibellus maritimus (MENGE)<br />

Xerolycosa miniata (C.L. K.) THOMISIDAE<br />

PISAURIDAE Ozyptila gertschi KURA. R<br />

Dolomedes fimbriatus (CL.) Ozyptila trux (BL.)<br />

HAHNIIDAE Xysticus cristatus (CL.)<br />

Antistea elegans (BL.) Dn Xysticus erraticus (BL.)<br />

Hahnia pusilla C.L. K. Xysticus kochi TH.<br />

DICTYNIDAE Xysticus ulmi (HAHN)<br />

Argenna albopunctata (MENGE) R SALTICIDAE<br />

Argenna subnigra (O. P.-C.) Evarcha falcata (CL.)<br />

Dictyna arundinacea (L.) Heliophanus flavipes (HAHN)<br />

Dictyna uncinata TH. Neon reticulatus (BL.)<br />

LIOCRANIDAE Neon valentulus FALC. R<br />

Agraecina striata (KULC.) Phlegra fasciata (HAHN)<br />

Agroeca dentigera KULC. R Sitticus caricis (WEST.)<br />

Sitticus floricola (C.L. K.)<br />

Spiders occurring in natural fens are less mobile than those from managed grasslands.<br />

Mobility index values are


The diversity and density <strong>of</strong> <strong>spiders</strong> increase with soil moisture, and abundance <strong>of</strong> microhabitats<br />

in <strong>the</strong> ecosystem. They decrease with intensity <strong>of</strong> management, soil compactness, and<br />

increasing distance to shrubs. The diversity <strong>of</strong> <strong>spiders</strong> is hardly affected by plant species diversity.<br />

Diversity and density <strong>of</strong> spider communities can be improved by leaving grassland margins<br />

uncut and by increasing <strong>the</strong> heterogeneity <strong>of</strong> <strong>the</strong> landscape.<br />

References<br />

ANDRZEJEWSKA, L., 1991: Formation <strong>of</strong> Auchenorrhyncha communities in diversified structures <strong>of</strong> agricultural<br />

landscape? Pol. Ecol. Stud., 17, p. 267-287.<br />

DECLEER, K., 1990: Experimental cutting <strong>of</strong> remarsh vegetation and its influence on <strong>the</strong> spider (Araneae) fauna<br />

in <strong>the</strong> Blankaart Nature Reserve, Belgium. Biol. Conserv., 52., p. 161-185.<br />

De KEER, R., ALDERWEIRELDT, M., DECLEER, K., SEGERS, H., DESENDER, K., MAELFAIT, J.-P., 1989: Horizontal<br />

distrbution <strong>of</strong> <strong>the</strong> spider fauna <strong>of</strong> intensively grazed pastures under <strong>the</strong> influence <strong>of</strong> diurnal activity and grass<br />

height. J. Appl. Ent., 107, p. 455-473.<br />

DUFFEY, E. 1978: Ecological strategies in <strong>spiders</strong> including some characteristics <strong>of</strong> <strong>spiders</strong> in pioneer and mature<br />

habitats. Symp.zool. Soc. Lond., 42, p. 109-123.<br />

HÄNGGI, A., STÖCKLI, E., NENTWIG, W., 1995: Lebensräume mitteleuropäischer Spinnen – Habitats <strong>of</strong> Central<br />

<strong>European</strong> <strong>spiders</strong>. Misc. Faun. Helvet., 4, p. 1-459.<br />

KACZMAREK, M., 1991: Characteristics <strong>of</strong> <strong>the</strong> studied habitats in <strong>the</strong> Biebrza and Narew Old River Valleys. Pol.<br />

ecol Stud., 17, p.7-18.<br />

KAJAK, A., 1960: Changes in <strong>the</strong> abundance <strong>of</strong> <strong>spiders</strong> in several meadows. Ekol. pol., Ser.A, 9, p. 1-30.<br />

KAJAK, A., 1962: Comparison <strong>of</strong> spider fauna in artificial and natural meadows. Ekol. pol., Ser.A, 1, p. 1-20.<br />

KAJAK, A., 1987: Long term changes in <strong>the</strong> composition <strong>of</strong> grassland <strong>spiders</strong> and attempt to estimate role <strong>of</strong><br />

epigeic species. Zpravodaj ochrany prirody mesta Ostravy, p. 45-59. (In Polish)<br />

KAJAK, A.,1993: Long-term changes in spider communities <strong>of</strong> drained fens. In FŰRST, P.-A., MULHAUSER, G. (eds):<br />

XIIe Colloque Européen d’Arachnologie (116), Fascicule 1, p.125-131.<br />

KAJAK, A., KACZMAREK, M., 1994: Could wetland soil fauna be restored after restoration <strong>of</strong> fen habitats? In JANKOW-<br />

SKA-HUFLEJT, H., GOLUBIEWSKA, E. (eds): Proc. Int. Symposium Conservation and management <strong>of</strong> fens, p. 428-436.<br />

KAMIŃSKI, J.: Assessment <strong>of</strong> long tern changes in plant communities in natural and cultivated peat grasslands in<br />

<strong>the</strong> Biebrza Valley. Pol. J. Ecol. (in press)<br />

KOTOWSKA, J., PASTERNAK-KUŚMIERSKA, D., WILPISZEWSKA, I., 1998: Comparative analysis <strong>of</strong> hay-growing meadows<br />

on peat muck soils. Pol. ecol. Stud., 22, p. 141-159.<br />

MALEFAIT, J.-P., BAERT, L., DESENDER, K., 1997: Effects <strong>of</strong> groundwater catchment and grassland management on<br />

<strong>the</strong> spider fauna <strong>of</strong> <strong>the</strong> dune Nature Reserve ’De Westhoek’ (Belgium). In ŻABKA, M. (ed.): Proc.16 th Europ.<br />

Coll. Arachnol., Siedlce, 1996, p. 221-236<br />

MERKENS, S., 1997: Influence <strong>of</strong> environmental factors on <strong>the</strong> community structure <strong>of</strong> <strong>spiders</strong> in a humidity<br />

gradient <strong>of</strong> extensively managed, moist pastures. In ŻABKA, M. (ed.): Proc.16 th Europ. Coll. Arachnol., Siedlce,<br />

1996, p. 237-248.<br />

OKRUSZKO, H., 1990: Wetlands <strong>of</strong> <strong>the</strong> Biebrza Valley <strong>the</strong>ir value and future management. PAS, Warszawa, 107 pp.<br />

PASTERNAK-KUŚMIERSKA, D., WILPISZEWSKA, I., CIEŚLEWICZ, M., 1997: Structure and dynamics <strong>of</strong> plant biomass on<br />

drained peatlands <strong>of</strong> different peat origin (Inc. marginal valley <strong>of</strong> Biebrza River – Poland). Ekol. pol., 45, p.<br />

395-422.<br />

RUSHTON, S.P., EYRE, M.D., 1992: Grassland spider habitats in north-east England. Journal <strong>of</strong> Biogeography, 19,<br />

p. 99-108.<br />

STEPA, T., PAŁCZYŃSKI, A.1991: Effect <strong>of</strong> ecological zonation on diversification <strong>of</strong> soil conditions at various plant<br />

associations in <strong>the</strong> Biebrza Valley. Pol. ecol. Stud., 17, p.19-33.<br />

SZUNIEWICZ, J., CHRZANOWSKI, S.: Assessment <strong>of</strong> changes in moisture content in peat soils <strong>of</strong> natural and drained<br />

grasslands in <strong>the</strong> Biebrza Valley. Pol. J. Ecol. (in press)<br />

UETZ, G.W., 1979: The influence <strong>of</strong> variation in litter habitats on spider communities. Oecologia (Berlin), 40, p.<br />

29-42.<br />

64


Ekológia (Bratislava) Vol. 19, Supplement 4, 65-77, 2000<br />

HARVESTMEN AND SPIDERS IN THE AUSTRIAN<br />

WETLAND “HÖRFELD-MOOR”<br />

(ARACHNIDA: OPILIONES, ARANEAE)<br />

CHRISTIAN KOMPOSCH<br />

Ökoteam - Institute <strong>of</strong> Faunistics and Animal Ecology, Bergmanngasse 22, 8010 Graz, Austria.<br />

Introduction<br />

Abstract<br />

Komposch C.: Harvestmen and <strong>spiders</strong> in <strong>the</strong> Austrian wetland “Hörfeld-Moor” (Arachnida:<br />

Opiliones, Araneae). In GAJDOŠ P., PEKÁR S. (eds): Proceedings <strong>of</strong> <strong>the</strong> 18th <strong>European</strong> Colloquium<br />

<strong>of</strong> Arachnology, Stará Lesná, 1999. Ekológia (Bratislava), Vol. 19, Supplement 4/2000, p. 65-77.<br />

Aspects <strong>of</strong> <strong>the</strong> fauna <strong>of</strong> <strong>the</strong> montane wetland „Hörfeld-Moor“ were investigated with regard to<br />

taking an inventory <strong>of</strong> <strong>the</strong> nature reserve and determining its conservation value. The harvestmen<br />

and spider fauna was studied by means <strong>of</strong> pitfall traps, light-traps, soil-sifter and hand-collecting<br />

in nine sample areas representing typical biotope types within <strong>the</strong> wetland: alder forest, willow<br />

shrub, hay meadow, moist meadow, sedge swamp, reed bed, meadowsweet fen, floating mat and<br />

raised bog. The following noteworthy arachnids were found: Nemastoma schuelleri, Opilio dinaricus,<br />

Platybunus pinetorum, Enoplognatha caricis, Diplocephalus helleri, Drepanotylus uncatus,<br />

Maro lepidus, Pardosa fulvipes, Pirata tenuitarsis, Clubiona germanica and Gnaphosa nigerrima.<br />

19 <strong>of</strong> <strong>the</strong> spider species found are new to Carinthia. An interesting result is <strong>the</strong><br />

attractiveness <strong>of</strong> light-traps for particular harvestmen and spider species.<br />

The percentage <strong>of</strong> endangered arachnid species was not related to ei<strong>the</strong>r <strong>the</strong> diversity and evenness<br />

indices <strong>of</strong> <strong>the</strong> investigated biotope types or with <strong>the</strong> percentage <strong>of</strong> endangered plant species.<br />

Fur<strong>the</strong>rmore, <strong>the</strong> present analysis is a useful approach for applying zoological results obtained in<br />

particular places to an entire area.<br />

Fens belong to <strong>the</strong> most endangered biotope types <strong>of</strong> Central Europe. The Hörfeld-Moor<br />

is one <strong>of</strong> <strong>the</strong> largest near-natural fens <strong>of</strong> Austria. It has carried <strong>the</strong> status <strong>of</strong> a nature reserve<br />

since 1984 (Carinthia) and 1987 (Styria) respectively. In 1996 it became a Ramsar-area and<br />

it has been suggested as a Natura 2000-area.<br />

The arachnid fauna from Austrian wetlands is still poorly known; moreover only few<br />

data are available from wetlands above 900 metres altitude. The results are part <strong>of</strong> an integrated<br />

monitoring programme <strong>of</strong> <strong>the</strong> development <strong>of</strong> <strong>the</strong> ecosystem, including fauna and<br />

vegetation. Faunistical investigations have been carried out on Opiliones, Araneae, Odonata,<br />

65


T a b l e 1. Floral characterisation <strong>of</strong> <strong>the</strong> investigated biotope-types.<br />

no abbr. biotope type characterisation<br />

Auchenorrhyncha, Heteroptera (FRIESS, 1998), Coleoptera (Carabidae, Staphylinoidea) and<br />

Lepidoptera (HUEMER, WIESER, 1997) and vertebrates. The aim <strong>of</strong> <strong>the</strong> project is to prepare<br />

an inventory and evaluation <strong>of</strong> <strong>the</strong> nature reserve to derive recommendations for biotope<br />

management.<br />

Study area<br />

The area <strong>of</strong> investigation is <strong>the</strong> wetland „Hörfeld-Moor“ which extends over 133 hectares<br />

at a height <strong>of</strong> 930 metres in <strong>the</strong> Gurktaler Alps, a sou<strong>the</strong>rn part <strong>of</strong> <strong>the</strong> Central Alps (S<br />

Mühlen, N Hüttenberg, Carinthian and Styrian border, Austria; 47°00‘N, 14°30-31‘E).<br />

Material and methods<br />

The arachnid fauna was studied by means <strong>of</strong> pitfall traps, light-traps, soil-sifter and hand-collecting in <strong>the</strong><br />

vegetation period <strong>of</strong> 1996. Four pitfall traps in each biotope type were exposed from May until October: Data for<br />

harvestmen come from <strong>the</strong> whole period, but spider material was determined only from May/June (1.05.-<br />

13.06.1996)., because <strong>of</strong> <strong>the</strong> large amount <strong>of</strong> effort needed to process <strong>the</strong> samples. Faunistical investigations<br />

were carried out in nine representative biotope types (Table 1).<br />

66<br />

1 Alnus Alder forest<br />

Alnus incana dominates <strong>the</strong> tree layer, Scirpus sylvaticus, Caltha<br />

palustris, Filipendula ulmaria<br />

A late stage <strong>of</strong> succession <strong>of</strong> a former hay meadow: Salix cinerea, S.<br />

2 Salix Willow shrub repens, Betula pendula, B. pubescens beside a species spectrum similar<br />

to <strong>the</strong> moist meadow (4)<br />

3<br />

smead<br />

Hay meadow<br />

Typical species <strong>of</strong> fresh meadows: Holcus lanatus, Scirpus sylvaticus,<br />

Ranunculus acris, Juncus effusus, Leucan<strong>the</strong>mum vulgare, Cirsium<br />

palustre<br />

4 m-<br />

The cultivation <strong>of</strong> this oligotrophic meadow with a high species richness<br />

mead<br />

Moist meadow<br />

ended a few years ago: Carex acutiformis, C. paniculata, C. rostrata,<br />

Molinia coerulea, Menyan<strong>the</strong>s trifoliata, Persicaria bistorta, Briza<br />

media, Potentilla erecta, Succisa pratensis<br />

5 Carex Sedge swamp<br />

Formed as a floating mat on an acidic and oligotrophic substrate: Carex<br />

rostrata in high dominance, partly with hillocks <strong>of</strong> Carex elata<br />

6 Phrag Reed bed<br />

Large reed beds (Phragmites australis) with Carex elata-hillocks in<br />

between<br />

7 fen Meadowsweet fen Dominated by Filipendula ulmaria<br />

8 float Floating mat<br />

Dominated by Menyan<strong>the</strong>s trifoliata, Potentilla palustris, Carex<br />

paniculata, Carex rostrata, Caltha palustris<br />

A very small hummock area with mire spruces (Picea abies),<br />

9 bog Raised bog Eriophorum vaginatum, Vaccinium oxycoccos, Drosera rotundifolia,<br />

Andromeda polifolia, Vaccinium vitis-idaea


Beside biotopes and vegetation, parameters like soil type, water budget, distance from <strong>the</strong> ground water,<br />

cover <strong>of</strong> <strong>the</strong> herb-, shrub- and tree layer, thickness <strong>of</strong> <strong>the</strong> litter etc. were mapped in <strong>the</strong> whole area. The present<br />

analysis includes, in total, 13 harvestmen (209 specimens) and 111 spider species (2150 specimens).<br />

Results<br />

Method comparison<br />

It is a well-known fact, that <strong>the</strong> use <strong>of</strong> pitfall traps, soil-sifter and hand-collecting leads to<br />

a distinct species-spectrum; consequently every zoological inventory <strong>of</strong> a richly-structured area<br />

requires <strong>the</strong> application <strong>of</strong> different sampling-methods. The attractiveness <strong>of</strong> light-traps for<br />

particular harvestmen and spider species results in an interesting and characteristic coenosis <strong>of</strong><br />

phalangiids, <strong>the</strong>ridiids, linyphiids, tetragnathids, araneids, pisaurids, gnaphosids and clubionids.<br />

10 to 25% <strong>of</strong> <strong>the</strong> harvestmen and spider species <strong>of</strong> <strong>the</strong> Hörfeld-area were caught exclusively by<br />

light-traps (<strong>the</strong> low intensity <strong>of</strong> hand collecting must be mentioned). In <strong>the</strong> present case lighttraps<br />

caught rarely-collected arachnids such as Opilio dinaricus ŠILHAVÝ, Enoplognatha caricis<br />

(FICKERT), Cheiracanthium punctorium (VILLERS) and Clubiona germanica THORELL.<br />

Species assemblages<br />

Regarding <strong>the</strong> harvestmen-coenosis <strong>the</strong> dominance <strong>of</strong> Nemastoma schuelleri GRUBER ET M.<br />

in <strong>the</strong> litter <strong>of</strong> <strong>the</strong> alder forests and <strong>of</strong> Mitopus morio (FABRICIUS) in <strong>the</strong> raised bog is noteworthy;<br />

this phalangiid is a very common species in montane and alpine <strong>zone</strong>s above 1 500 metres but<br />

ra<strong>the</strong>r sporadic in lower regions <strong>of</strong> <strong>the</strong> Eastern Alps. The phenotype <strong>of</strong> M. morio (with its white<br />

stripe on <strong>the</strong> opisthosoma) from <strong>the</strong> cold bog – <strong>the</strong> temperature figure sensu ELLENBERG (1979)<br />

T = 3, – is similar to those <strong>of</strong> specimens <strong>of</strong> altitudes above 1 500/2 000 metres.<br />

The spider assemblages are characterised by <strong>the</strong> occurrence <strong>of</strong> hygro- and hydrophilous<br />

lycosids and linyphiids. The most frequent species in this area is Pirata hygrophilus THORELL,<br />

and <strong>the</strong> floating mat seems to be <strong>the</strong> optimal habitat for Pirata piscatorius (CLERCK). The<br />

sympatric occurrence <strong>of</strong> Trochosa terricola THORELL and Trochosa spinipalpis (F. O. P.-<br />

CAMBRIDGE) forms <strong>the</strong> spider-coenosis <strong>of</strong> <strong>the</strong> raised bog.<br />

Cluster analysis<br />

The hierarchical cluster analysis <strong>of</strong> harvestmen-coenoses based on species and dominance<br />

identity show both <strong>the</strong> isolated position <strong>of</strong> <strong>the</strong> raised bog (9) and a similarity between<br />

alder forests (1) and meadowsweet fens (7). Analysis <strong>of</strong> spider-coenoses led to a similar<br />

picture regarding <strong>the</strong> status <strong>of</strong> <strong>the</strong> raised bog. Concerning species identity a cluster <strong>of</strong> all<br />

wet biotope types is noticeable (Fig. 2); <strong>the</strong> dendrogram based on <strong>the</strong> dominance identity<br />

accentuates <strong>the</strong> high- and low vegetation associations willow shrub (2) - meadowsweet fen<br />

(7) and sedge swamp (5) - floating mat (8) respectively.<br />

67


40 40% -20% 20 0% 0 %<br />

20% 20<br />

40% 40 60% 60 80% 80 100 100%<br />

68<br />

pitfall traps<br />

light traps<br />

soil-sift. &<br />

hand-coll.<br />

similarity<br />

0<br />

10<br />

20<br />

30<br />

40<br />

50<br />

60<br />

70<br />

80<br />

90<br />

100<br />

5<br />

8<br />

9<br />

3<br />

2<br />

1<br />

1/ 31<br />

3/ 12<br />

1/ 28<br />

O piliones Araneae<br />

% 7<br />

fen<br />

8<br />

float<br />

5<br />

Carex<br />

6<br />

Phrag<br />

19<br />

35<br />

2<br />

Salix<br />

39<br />

3<br />

s-mead<br />

exclusiv.<br />

rest<br />

Fig. 1. Comparison <strong>of</strong> sampling methods: percentage <strong>of</strong> species recorded exclusively by pitfall traps, light-traps,<br />

soil-sifter and hand-collecting.<br />

4<br />

m-mead<br />

1<br />

Alnus<br />

Fig. 2. Hierarchical cluster analysis <strong>of</strong> spider-coenoses based on species identity. Dendrogram using Average<br />

Linkage (between groups) and Sörensen´s quotient <strong>of</strong> similarity.<br />

9<br />

bog


The majority <strong>of</strong> harvestmen recorded are eurytopic species; <strong>the</strong> single record <strong>of</strong> <strong>the</strong><br />

forest-inhabiting phalangiid Platybunus pinetorum (C. L. KOCH) in <strong>the</strong> hay meadow (3) can<br />

be regarded as an artefact. A richness <strong>of</strong> spider species in combination with a high percentage<br />

(58-73%) <strong>of</strong> endangered species is demonstrated for <strong>the</strong> biotope types floating mat (8),<br />

reed bed (6), meadowsweet fen (7) and sedge swamp (5) (Fig. 3); low values are presented<br />

for <strong>the</strong> moist meadow (4) and <strong>the</strong> small raised bog (9).<br />

High values concerning <strong>the</strong> evenness <strong>of</strong> <strong>the</strong> spider-communities show <strong>the</strong> alder forests<br />

(1), sedge swamps (5) and floating mats (8); <strong>the</strong> low value <strong>of</strong> <strong>the</strong> meadowsweet fen (7) is<br />

caused by <strong>the</strong> dominance <strong>of</strong> P. hygrophilus (51%).<br />

number <strong>of</strong> species<br />

40<br />

30<br />

20<br />

10<br />

0<br />

1<br />

Alnus<br />

2<br />

Salix<br />

3 4<br />

s-mead m-mead<br />

Aspects <strong>of</strong> nature conservation value<br />

5<br />

Carex<br />

6<br />

Phrag<br />

The percentage <strong>of</strong> endangered arachnid species (Table 5, 6, Fig. 3) shows no relationship<br />

with <strong>the</strong> diversity and evenness indices <strong>of</strong> <strong>the</strong> investigated biotope types (Table 5, 6) or<br />

with <strong>the</strong> percentage <strong>of</strong> endangered plant species (Fig. 4). Fig. 4 shows high divergences in<br />

<strong>the</strong> percentage <strong>of</strong> endangered species within one sample area between floristic and faunistic<br />

aspects, between zoophagous and phytophagous taxa (e.g. Araneae - Auchenorrhyncha)<br />

and even within zoophagous groups (e.g. Araneae - Carabidae). Striking differences between<br />

zoological and botanical results are obvious if we look at reed beds (6) and <strong>the</strong> raised<br />

bog (9). The Phragmites australis - “monoculture” contains a high diversity <strong>of</strong> carnivorous<br />

arthropods, <strong>the</strong> floristically interesting bog presents a contrary picture. The lack <strong>of</strong> endan-<br />

7<br />

fen<br />

rest (n=71)<br />

red data-list species (n=40)<br />

Fig. 3. Number <strong>of</strong> endangered spider species and total number <strong>of</strong> species <strong>of</strong> each sample area/biotope type.<br />

8<br />

float<br />

9<br />

bog<br />

69


T a b l e 2. Ecological characterisation <strong>of</strong> western Central Europe with regard to distinct environmental<br />

factors (ELLENBERG, 1979) and total number <strong>of</strong> plant species in <strong>the</strong> specific sample areas.<br />

70<br />

1<br />

Alnus<br />

2<br />

Salix<br />

3<br />

s-mead<br />

4<br />

m-mead<br />

5<br />

Carex<br />

6<br />

Phrag<br />

7<br />

fen<br />

8<br />

float<br />

Light value (L) 5.6 7.1 6.8 6.8 8.1 6.7 6.6 7.3 8.1<br />

Temperature value (T) 4 3.4 5 3.8 4 4.8 5 5 3<br />

Continentality value (K) 4.4 5.1 3.8 4 * 3.5 4.5 4.5 5.3<br />

Moisture value (F) 7.2 8.3 6.5 7.5 9.8 8.8 7.7 8.7 6.9<br />

Reaction value (R) 6.6 4.5 5.7 5.7 4 6.3 6 6 1.2<br />

Nitrogen value (S) 4.9 3.7 4.7 3.8 4.1 5.4 5.5 4.1 1.1<br />

number <strong>of</strong> plant species 20 14 24 31 4 10 14 13 11<br />

T a b l e 3. List <strong>of</strong> collected harvestmen species. The number <strong>of</strong> specimens in each biotope type is given. The<br />

total number <strong>of</strong> specimens and number caught by different collecting methods (pt: pitfall trap, ss: soil-sifter,<br />

hc: hand-collecting, lt: light-trap) are also given. Systematics after MARTENS (1978).<br />

Alnus<br />

Salix<br />

s-mead<br />

m-mead<br />

Carex<br />

Phrag<br />

fen<br />

float<br />

bog<br />

method<br />

family / species 1 2 3 4 5 6 7 8 9 total pt ss hc lt<br />

NEMASTOMATIDAE<br />

Nemastoma schuelleri GR. ET M. 29 1 30 12 16 2<br />

Nemastoma triste (C. L. K.) 3 3 3<br />

Paranemastoma<br />

quadripunctatum (PANZ.)<br />

PHALANGIIDAE<br />

4 1 1 2 9 17 10 4 3<br />

Amilenus aurantiacus (SIMON) 12 12 12<br />

Lacinius ephippiatus (C. L. K.) 4 4 3 1<br />

Lophopilio palpinalis (HERB.) 4 1 2 1 8 4 1 2 1<br />

Mitopus morio (FABR.) 1 39 40 4 36<br />

Nelima semproni SZAL. 1 1 1<br />

Oligolophus tridens (C. L. K.) 28 1 1 3 5 3 41 11 11 16 3<br />

Opilio dinaricus ŠILH. 3 3 3<br />

Phalangium opilio L. 4 7 2 2 1 11 27 14 3 10<br />

Platybunus pinetorum (C. L. K.) 1 1 1<br />

Rilaena triangularis (HERB.) 7 5 2 5 2 1 22 7 5 7 3<br />

Total 76 9 12 3 5 5 15 16 68 209 62 41 37 69<br />

gered arachnids and insects in <strong>the</strong> raised bog could be caused by <strong>the</strong> very low size and<br />

isolation <strong>of</strong> this area. NEET (1996) shows a significant correlation between <strong>the</strong> number <strong>of</strong><br />

tyrphobiont spider species influenced by habitat-size.<br />

9<br />

bog


percentage <strong>of</strong> endangered species<br />

80<br />

70<br />

60<br />

50<br />

40<br />

30<br />

20<br />

10<br />

0<br />

Opiliones<br />

Araneae<br />

Carabidae<br />

Auchenorrhyncha<br />

Spermatophyta<br />

1<br />

Alnus<br />

2<br />

Salix<br />

3<br />

s-mead<br />

4<br />

m-mead<br />

5<br />

Carex<br />

Low-scale mapping versus high-scale evaluation?<br />

6<br />

Phrag<br />

Fig. 4. Percentage <strong>of</strong> endangered species <strong>of</strong> Carinthia <strong>of</strong> each sample area/biotope type: Opiliones, Araneae,<br />

Carabidae, Auchenorrhyncha, Spermatophyta.<br />

Fig. 5. Potential map <strong>of</strong> distribution <strong>of</strong> Nemastoma schuelleri (dark areas), a litter inhabiting harvestman <strong>of</strong><br />

alder forests in <strong>the</strong> “Hörfeld-Moor”.<br />

Due to <strong>the</strong> large amount <strong>of</strong> time and effort involved, faunistical data concerning<br />

arthropods in general are derived from point sampling. A detailed zoological and botanical<br />

analysis <strong>of</strong> representative biotope types combined with mapping <strong>of</strong> biotopes<br />

7<br />

fen<br />

8<br />

float<br />

9<br />

bog<br />

71


and relevant structural parameters for <strong>the</strong> whole area can be calculated by modern s<strong>of</strong>tware<br />

(GIS) to map <strong>the</strong> potential distribution <strong>of</strong> selected stenotopic and sensitive<br />

bioindicators (Fig. 5). This method should be regarded as an instrument <strong>of</strong> estimating<br />

distribution and apparent abundance as well as evaluating divisions and biotopes <strong>of</strong><br />

large areas.<br />

Fur<strong>the</strong>r investigations would be worthwhile to check <strong>the</strong> similarities between potential<br />

maps <strong>of</strong> distribution <strong>of</strong> <strong>the</strong> particular species with <strong>the</strong> actual one.<br />

Notes on selected species<br />

Nemastoma schuelleri - This endemic species <strong>of</strong> <strong>the</strong> Eastern Alps is very numerous in<br />

alder forests.<br />

Opilio dinaricus - This rarely collected phalangiid shows that crepuscular and not epigeic<br />

animals seem to be under-represented in <strong>the</strong> majority <strong>of</strong> arachnological studies; <strong>the</strong>re are<br />

multiple records from Carinthia by means <strong>of</strong> light-traps.<br />

Platybunus pinetorum - This forest inhabiting species is one <strong>of</strong> <strong>the</strong> rarest harvestmen <strong>of</strong><br />

sou<strong>the</strong>rn Austria (KOMPOSCH, 1999) whereas in <strong>the</strong> Bavarian Alps it is much more common<br />

(MUSTER, in litt.).<br />

Enoplognatha caricis - The third record for Austria (KOMPOSCH, 1995a; ROTH, 1999: sub<br />

E. tecta) <strong>of</strong> this endangered <strong>the</strong>ridiid was made (using a light-trap ) on <strong>the</strong> 10 th June with<br />

one male in <strong>the</strong> sedge swamp. The nomenclature follows RŮŽIČKA, HOLEC (1998).<br />

Diplocephalus helleri (L. KOCH) - Constant occurrence in <strong>the</strong> high-alpine and nival <strong>zone</strong><br />

(THALER, 1992; THALER, KNOFLACH, 1997); <strong>the</strong> author knows <strong>of</strong> two fur<strong>the</strong>r records on <strong>the</strong><br />

Styrian rivers Enns and Teigitsch between 520 and 635 m. In <strong>the</strong> Hörfeld-Moor one male<br />

was found in <strong>the</strong> litter <strong>of</strong> <strong>the</strong> alder forest.<br />

Drepanotylus uncatus (O. P.-CAMBRIDGE) and Maro lepidus CASEMIR - Tyrphobiont species<br />

<strong>of</strong> <strong>the</strong> alder forest and reed bed (compare NEET, 1996).<br />

Pardosa fulvipes (COLLET) - „Perhaps fulvipes has in some degree been overlooked within<br />

its area <strong>of</strong> distribution“ (HOLM, KRONESTEDT, 1970: 423). This seems to be confirmed by<br />

ano<strong>the</strong>r record in Carinthia west <strong>of</strong> Spittal a.d. Drau (STEINBERGER, in litt.).<br />

Pirata tenuitarsis SIMON - The few records from Austria (Nor<strong>the</strong>rn Tyrol, Vorarlberg,<br />

Styria) are probably due to confusion with <strong>the</strong> sibling species P. piraticus (BUCHAR, THALER,<br />

1997).<br />

Clubiona germanica - A rare (collected ?) clubionid with an Eurosiberian distribution<br />

(MIKHAILOV, 1992).<br />

Gnaphosa nigerrima L. KOCH - In <strong>the</strong> Hörfeld-Moor this endangered species shows a high<br />

habitat preference for <strong>the</strong> Menyan<strong>the</strong>s - floating mat. A recent record in <strong>the</strong> Wörschacher<br />

Moor in Styria/Austria shows it occurs on hummocks in a former peat cutting area (RUPP,<br />

1999).<br />

72


Discussion<br />

The species spectrum <strong>of</strong> <strong>the</strong> Hörfeld-Moor is far from a complete inventory, but it could<br />

be regarded as a representative survey <strong>of</strong> <strong>the</strong> arachnocoenoses <strong>of</strong> this area. In comparison<br />

THALER (in LÖSER et al., 1982) published 158 spider species from <strong>the</strong> Bavarian nature reserve<br />

„Murnauer Moos“, RUPP (1999) recorded 119 spider species from <strong>the</strong> Styrian bog<br />

area “Wörschacher Moor” in Eastern Austria. 19 species are new to Carinthia (see Table 4)<br />

- so <strong>the</strong> total number <strong>of</strong> currently known species <strong>of</strong> this sou<strong>the</strong>rn federal country <strong>of</strong> Austria<br />

is 610 (KOMPOSCH, STEINBERGER, 1999). This high number <strong>of</strong> first recorded species is due to<br />

<strong>the</strong> insufficient knowledge about sou<strong>the</strong>rn Austrian wetlands - <strong>the</strong> Hörfeld-Moor is <strong>the</strong> third<br />

investigated wetland <strong>of</strong> Carinthia after <strong>the</strong> Sablatnigmoor (KOMPOSCH, 1995b) and <strong>the</strong><br />

Bleistätter Moor/Ossiacher See (KOMPOSCH, unpubl.) - as well as to <strong>the</strong> location <strong>of</strong> species<br />

rare all over Central Europe.<br />

Modern conservation work needs both stenotopic and sensitive bioindicators as conservation<br />

tools and striking flagship species, which may even become symbols and leading<br />

elements <strong>of</strong> entire conservation campaigns (compare MILASOWSZKY, ZULKA, 1998). Potential<br />

flagship species <strong>of</strong> <strong>the</strong> Hörfeld area are <strong>the</strong> <strong>spiders</strong> Araneus alsine (WALCKENAER), Pirata<br />

piscatorius, Dolomedes fimbriatus (CLERCK) and Gnaphosa nigerrima. Close cooperation<br />

between botanists and zoologists seems to be a basic requirement for effective nature conservation<br />

work. Inventories <strong>of</strong> selected arthropod groups lead to precise and detailed statements<br />

on small-scale areas in general. Connected with results <strong>of</strong> vertebrate investigations,<br />

geological, botanical, vegetational and structural mappings, a comprehensive picture and<br />

conservation value for <strong>the</strong> whole area can be given. A conservation value and derived recommendations<br />

for biotope management taking <strong>the</strong> complexity and patch connectivity <strong>of</strong><br />

ecosystems into consideration has to be based on adequate data <strong>of</strong> a representative spectrum<br />

<strong>of</strong> investigated taxa - both zoophagous and phytophagous indicator groups.<br />

Acknowledgements<br />

I am grateful to Dr K. Thaler for help with identification, Dr W. E. Holzinger for discussion and <strong>the</strong><br />

“Naturschutzverein Hörfeld-Moor”, especially mayor R. Schratter and Mag K. Krainer for <strong>the</strong>ir interest and<br />

financial assistance. Dr G. Egger and Mag M. Jungmeier kindly made <strong>the</strong> botanical data and maps <strong>of</strong> potential<br />

distribution available, Dr J. Dunlop helped to improve <strong>the</strong> English <strong>of</strong> <strong>the</strong> manuscript. Thanks to Mag T. Friess,<br />

Mag B. Komposch, Dr L. Neuhäuser-Happe, Mag W. Paill and Dr C. Wieser, who provided me with arachnid<br />

material.<br />

73


T a b l e 4. List <strong>of</strong> collected spider species. An asterisk (*) denotes species which are new to <strong>the</strong> fauna <strong>of</strong> Carinthia. The number <strong>of</strong> specimens in each<br />

biotope type is given. The total number <strong>of</strong> specimens and number caught by different collecting methods (pt: pitfall trap, ss: soil-sifter, hc: handcollecting,<br />

lt: light-trap) are also given. Systematics after KOMPOSCH, STEINBERGER (1999).<br />

74<br />

Alnus<br />

Salix<br />

s-mead<br />

m-mead<br />

Carex<br />

Phrag<br />

fen<br />

float<br />

bog<br />

method<br />

family / species 1 2 3 4 5 6 7 8 9 total pt ss hc lt<br />

THERIDIIDAE<br />

Crustulina guttata (WIDER) 1 1 1<br />

Enoplognatha ovata (CL.) 1 2 3 3<br />

Enoplognatha caricis (FICK.) 1 1 1<br />

Episinus angulatus (BL.) 1 1 1<br />

Euryopis flavomaculata (C. L. K.) 2 2 1 1<br />

Robertus lividus (BL.) 1 1 1<br />

Robertus scoticus JACK. 6 6 6<br />

Robertus truncorum (L. K.) 1 1 1<br />

Theridion sisyphium (CL.) 1 1 1<br />

LINYPHIIDAE<br />

Agyneta cauta (O. P.-C.) 2 1 1 1 5 4 1<br />

Araeoncus crassiceps (WEST.)* 1 25 1 6 38 71 71<br />

Bathyphantes approximatus (O. P.-C.)* 1 1 4 3 2 2 13 4 2 7<br />

Bathyphantes nigrinus (WEST.) 11 1 1 3 16 7 7 2<br />

Bathyphantes gracilis (BL.) 1 1 1<br />

Bolyphantes alticeps (SUND.) 1 1 1<br />

Centromerus arcanus (O.P.-C.)* 4 4 2 2<br />

Centromerus levitarsis (SIMON)* 1 1 1 1 1 1 6 4 2<br />

Centromerus pabulator (O. P.-C.) 1 1 1<br />

Centromerus sylvaticus (BL.) 1 1 2 2<br />

Ceratinella brevipes (WEST.) 4 1 5 5<br />

Ceratinella brevis (WIDER) 1 1 1<br />

Cnephalocotes obscurus (BL.)* 1 1 1<br />

Dicymbium brevisetosum LOCK. 1 1 1<br />

Diplocephalus helleri (L. K.) 1 1 1<br />

Diplocephalus latifrons (O. P.-C.) 2 2 2<br />

Diplostyla concolor (WIDER) 2 2 1 1<br />

Dismodicus bifrons (BL.) 1 1 2 1 1<br />

Drepanotylus uncatus (O. P.-C.)* 2 7 9 1 5 3<br />

Entelecara congenera (O. P.-C.) 1 1 1<br />

Erigone atra BL. 3 3 3<br />

Erigone dentipalpis (WIDER) 5 4 9 9<br />

Erigonella hiemalis (BL.) 1 1 1<br />

Erigonella ignobilis (O. P.-C.)* 1 9 8 18 18<br />

Floronia bucculenta (CL.) 1 1 2 1 1<br />

Gnathonarium dentatum (WIDER)* 5 5 2 2 1<br />

Helophora insignis (BL.) 16 16 4 5 7<br />

Hypomma bituberculatum (WIDER) 1 1 9 11 8 3<br />

Linyphia triangularis (CL.) 4 9 13 9 4<br />

Lophomma punctatum (BL.)* 2 4 7 4 17 9 8<br />

Maro lepidus CASE.* 2 2 2<br />

Maso sundevalli (WEST.) 1 1 1<br />

Neriene clathrata (SUND.) 1 1 1<br />

Oedothorax apicatus (BL.) 1 1 1<br />

Oedothorax fuscus (BL.) 1 1 1<br />

Oedothorax gibbosus (BL.) 21 28 43 15 107 106 1<br />

Oedothorax retusus (WEST.) 1 1 1<br />

Pelecopsis elongata (WIDER) 5 5 5<br />

Pocadicnemis pumila (BL.) 2 2 2<br />

Porrhomma oblitum (O. P.-C.)* 1 1 1<br />

Silometopus elegans (O. P.-C.)* 1 2 2 3 44 52 52<br />

Tallusia experta (O. P.-C.)* 1 1 2 4 2 2<br />

Tapinocyba insecta (L. K.) 4 4 4<br />

Walckenaeria alticeps (DENIS) 4 4 4<br />

Walckenaeria atrotibialis (O. P.-C.) 1 1 1<br />

Walckenaeria kochi (O. P.-C.) 1 1 8 2 12 10 2<br />

Walckenaeria nudipalpis (WEST.)* 1 2 3 2 1<br />

TETRAGNATHIDAE<br />

Metellina segmentata (CL.) 2 2 2<br />

Pachygnatha clercki SUND. 8 2 1 44 2 2 59 17 1 5 36<br />

Pachygnatha degeeri SUND. 37 37 37<br />

Pachygnatha listeri SUND. 4 21 1 26 21 2 3


T a b l e 4./Cont.<br />

Alnus<br />

Salix<br />

s-mead<br />

m-mead<br />

Carex<br />

Phrag<br />

fen<br />

float<br />

bog<br />

method<br />

family / species 1 2 3 4 5 6 7 8 9 total pt ss hc lt<br />

Tetragnatha extensa (L.) 3 2 2 1 3 11 5 6<br />

Tetragnatha montana SIMON 1 1 1 3 1 1 1<br />

Tetragnatha pinicola L. K. 1 1 1<br />

ARANEIDAE<br />

Aculepeira ceropegia (WALC.) 1 1 1<br />

Araneus alsine (WALC.) 1 1 2 1 1<br />

Araneus diadematus CL. 1 1 1<br />

Araneus marmoreus CL. 1 1 1<br />

Araneus quadratus CL. 1 2 1 4 1 9 5 4<br />

Araneus sturmi (HAHN) 1 1 1<br />

Hypsosinga heri (HAHN) 3 1 1 5 4 1<br />

Hypsosinga pygmaea (SUND.) 4 4 4<br />

Larinioides patagiatus (CL.) 1 1 1<br />

LYCOSIDAE<br />

Alopecosa cuneata (CL.) 1 1 1<br />

Alopecosa pulverulenta (CL.) 75 6 81 81<br />

Alopecosa trabalis (CL.) 1 1 2 2<br />

Pardosa amentata (CL.) 2 21 14 4 68 8 117 113 4<br />

Pardosa fulvipes (COLL.)* 3 1 2 1 21 31 59 59<br />

Pardosa paludicola (CL.) 1 1 1<br />

Pardosa palustris (L.) 138 2 1 141 141<br />

Pardosa prativaga (L. K.) 1 1 7 9 8 1<br />

Pardosa pullata (CL.) 132 1 133 133<br />

Pirata hygrophilus TH. 12 46 5 5 80 236 28 13 425 414 10 1<br />

Pirata latitans (BL.) 1 1 1 3 3<br />

Pirata piraticus (CL.) 19 1 20 20<br />

Pirata piscatorius (CL.) 1 3 8 53 65 63 2<br />

Pirata tenuitarsis SIMON* 4 5 47 3 22 81 79 2<br />

Trochosa ruricola (DE GEER) 20 1 1 22 21 1<br />

Trochosa spinipalpis (F. O. P.-C.) 13 11 12 2 8 29 75 74 1<br />

Trochosa terricola TH. 1 1 39 41 39 1 1<br />

PISAURIDAE<br />

Dolomedes fimbriatus (CL.) 2 2 12 3 22 33 3 77 57 1 19<br />

Pisaura mirabilis (CL.) 1 3 2 2 8 1 7<br />

AGELENIDAE<br />

Histopona torpida (C. L. K.) 1 1 1<br />

HAHNIIDAE<br />

Antistea elegans (BL.) 2 2 2<br />

Cryphoeca silvicola (C. L. K.) 2 2 2<br />

AMAUROBIIDAE<br />

Callobius claustrarius (HAHN) 1 1 1<br />

CLUBIONIDAE<br />

Cheiracanthium punctorium (VILL.) 2 2 2<br />

Clubiona germanica TH.* 1 1 1<br />

Clubiona lutescens WEST. 8 1 4 13 2 1 1 9<br />

Clubiona phragmitis C. L. K. 1 4 1 25 1 32 1 16 15<br />

Clubiona reclusa O. P.- C. 1 8 1 7 1 18 3 15<br />

Clubiona stagnatilis KULC. 5 6 11 1 7 3<br />

GNAPHOSIDAE<br />

Gnaphosa nigerrima L. K.* 2 8 10 10<br />

ZORIDAE<br />

Zora spinimana (SUND.) 2 1 2 2 7 3 4<br />

THOMISIDAE<br />

Ozyptila trux (BL.) 2 7 4 13 11 2<br />

Xysticus bifasciatus C. L. K. 2 1 3 3<br />

Xysticus cristatus (CL.) 13 1 14 13 1<br />

Xysticus ulmi (HAHN)* 2 6 4 12 6 6<br />

SALTICIDAE<br />

Evarcha arcuata (CL.) 4 4 4<br />

Evarcha falcata (CL.) 1 1 1<br />

Neon reticulatus (BL.) 2 2 2<br />

Sitticus floricola (C. L. K.) 1 4 3 1 8 17 2 15<br />

Total 87 142 479 60 106 309 462 375 130 2150 1780 65 157 148<br />

75


T a b l e 5. Number <strong>of</strong> species, diversity, evenness (Shannon index), and percentage <strong>of</strong> endangered species<br />

and dominant harvestman species (> 5 specimens) <strong>of</strong> <strong>the</strong> specific sample areas, and total number and average<br />

for <strong>the</strong> whole area <strong>of</strong> investigation.<br />

76<br />

No<br />

sp.<br />

div. even.<br />

%<br />

endang.<br />

sp.<br />

dominant species<br />

1 Alnus 6 1.42 0.79 17 N. schuelleri (38%), O. tridens (37%), R. triangularis (9%)<br />

2 Salix 2 – – 0<br />

3 s-mead 6 1.35 0.75 17 P. opilio (58%)<br />

4 m-mead 2 – – 0<br />

5 Carex 3 – – 0<br />

6 Phrag 3 – – 0<br />

7 fen 5 1.45 0.90 20 O. tridens (33%), R. triangularis (33%)<br />

8 float 3 0.83 0.76 0 P. opilio (69%)<br />

9 bog 7 1.29 0.66 0 M. morio (57%), A. aurantiacus (18%), P. quadripunctatum (13%)<br />

Total 13 – – 15<br />

average 4 1.27 0.77 6<br />

T a b l e 6. Number <strong>of</strong> species, diversity, evenness (Shannon index), percentage <strong>of</strong> endangered species and<br />

dominant spider species <strong>of</strong> <strong>the</strong> specific sample areas, and total number and average for <strong>the</strong> whole area <strong>of</strong><br />

investigation.<br />

No<br />

sp.<br />

div. even.<br />

%<br />

endang.<br />

sp.<br />

dominant species<br />

1 Alnus 33 2.93 0.84 39 H. insignis (18%), P. hygrophilus (14%), B. nigrinus (13%)<br />

2 Salix 29 2.52 0.75 48 P. hygrophilus (32%), O. gibbosus (15%), T. spinipalpis (9%)<br />

3 s-mead 26 2.02 0.62 31 P. palustris (29%), P. pullata (28%), A. pulverulenta (16%)<br />

4 m-mead 15 2.09 0.77 33 P. listeri (35%), T. spinipalpis (20%), A. pulverulenta (10%)<br />

5 Carex 27 2.75 0.83 67 A. crassiceps (24%), P. amentata (13%), D. fimbriatus (11%)<br />

6 Phrag 30 2.44 0.72 73 P. hygrophilus (26%), P. tenuitarsis (15%), P. clercki (14%)<br />

7 fen 33 1.89 0.54 58 P. hygrophilus (51%), P. amentata (15%), O. gibbosus (9%)<br />

8 float 39 2.96 0.81 59 P. piscatorius (14%), S. elegans (12%), A. crassiceps (10%)<br />

9 bog 24 2.34 0.74 17 T. terricola (30%), T. spinipalpis (22%), P. hygrophilus (10%)<br />

total 111 – – 36<br />

average 28 2.44 0.74 47


References<br />

BUCHAR, J., THALER, K., 1997: Die Wolfspinnen von Österreich 4 (Schluß): Gattung Pardosa max.p. (Arachnida,<br />

Araneae: Lycosidae) - Faunistisch-tiergeographische Übersicht. Carinthia II, 187, 107, p. 515-539.<br />

ELLENBERG, H., 1979: Zeigerwerte der Gefäßpflanzen Mitteleuropas. Scripta Geobotanica, 9, 122 pp.<br />

FRIESS, T., 1998: Die Wanzen (Heteroptera) des Naturschutzgebietes Hörfeld-Moor (Kärnten/Steiermark). Carinthia<br />

II, 188, 108, p. 589-605.<br />

HOLM, A., KRONESTEDT, T., 1970: A taxonomic study <strong>of</strong> <strong>the</strong> wolf <strong>spiders</strong> <strong>of</strong> <strong>the</strong> Pardosa pullata-group (Araneae,<br />

Lycosidae). Acta ent. bohemoslov., 67, p. 408-428.<br />

HUEMER, P., Wieser, C., 1997: Bemerkenswerte Nachweise von Schmetterlingen im Hörfeldmoor (Lepidoptera).<br />

Carinthia II, 187, 107, p. 401-408.<br />

KOMPOSCH, C., 1995a: Enoplognatha tecta (Keyserling) und Tetragnatha shoshone Levi neu für Österreich.<br />

(Araneae: Theridiidae, Tetragnathidae). Carinthia II, 185, 105, p. 729-734.<br />

KOMPOSCH, C., 1995b: Spinnen (Araneae). In WIESER, C., MILDNER, P., KOFLER, A. (eds): Naturführer Sablatnigmoor.<br />

Verl. Naturwiss. Ver. Kärnten, Klagenfurt, p. 75-89.<br />

KOMPOSCH, C., 1999: Rote Liste der Weberknechte Kärntens. Naturschutz in Kärnten, 15, p. 547-565.<br />

KOMPOSCH, C., STEINBERGER, K.-H., 1999: Rote Liste der Spinnen Kärntens. Naturschutz in Kärnten, 15, p. 567-618.<br />

LÖSER, S, MEYER, E., THALER, K., 1982: Laufkäfer, Kurzflügelkäfer, Asseln, Webespinnen, Weberknechte und<br />

Tausendfüßer des Naturschutzgebietes “Murnauer Moos” und der angrenzenden westlichen Talhänge (Coleoptera:<br />

Carabidae, Staphylinidae; Crustacea: Isopoda; Aranei; Opiliones; Diplopoda). Entom<strong>of</strong>auna, Suppl.<br />

1, p. 369-446.<br />

MARTENS, J., 1978: Spinnentiere, Arachnida: Weberknechte, Opiliones. In SENGLAUB, F., HANNEMANN, H.J., SCHU-<br />

MANN, H. (eds): Die Tierwelt Deutschlands, 64, Jena, 464 pp.<br />

MIKHAILOV, K.G., 1992: The spider genus Clubiona Latreille, 1804 (Arachnida, Aranei, Clubionidae) in <strong>the</strong><br />

USSR fauna: a critical review with taxonomical remarks. Arthropoda Selecta, 1, p. 3-34.<br />

MILASOWSZKY, N., ZULKA, K.P., 1998: Habitat requirements and conservation <strong>of</strong> <strong>the</strong> „flagship species“ Lycosa<br />

singoriensis (Laxmann 1770) (Araneae: Lycosidae) in <strong>the</strong> National Park Neusiedler See-Seewinkel (Austria).<br />

Z. Ökologie u. Naturschutz, 7, p. 111-119.<br />

NEET, C.R., 1996: Spiders as indicator species: lessons from two case studies. In MAHNERT, V. (ed.): Proceedings<br />

<strong>of</strong> <strong>the</strong> XIII th International Congress <strong>of</strong> Arachnology. Geneva, 1995. Revue suisse de Zoologie, hors serie, p.<br />

501-510.<br />

ROTH, A., 1999: Ök<strong>of</strong>aunistische Analyse der Spinnenzönosen (Arachnida, Araneae) zweier Enns-Inseln in Oberösterreich.<br />

Beitr. Naturk. Oberösterreichs, 7, p. 53-78.<br />

RUPP, B., 1999: Ök<strong>of</strong>aunistische Untersuchungen an der epigäischen Spinnenfauna (Arachnida: Araneae) des<br />

Wörschacher Moores (Steiermark, Bez. Liezen). Mitt. naturwiss. Ver. Steiermark, 129, p. 269-279.<br />

RŮŽIČKA, V., HOLEC, M., 1998: New records <strong>of</strong> <strong>spiders</strong> from pond littorals in <strong>the</strong> Czech Republic. Arachnol.<br />

Mitt., 16, p. 1-7.<br />

THALER, K., 1992: Weitere Funde nivaler Spinnen (Aranei) in Nordtirol und Beifänge. Ber. nat.-med. Verein<br />

Innsbruck, 79, p. 153-159.<br />

THALER, K., KNOFLACH, B., 1997: Funde hochalpiner Spinnen in Tirol 1992-1996 und Beifänge (Araneae, Opiliones,<br />

Pseudoscorpiones, Diplopoda, Coleoptera). Ber. nat.-med. Verein Innsbruck, 84, p. 159-170.<br />

77


Ekológia (Bratislava) Vol. 19, Supplement 4, 79-85, 2000<br />

SPIDERS (ARANEAE) ON SANDY ISLANDS IN THE<br />

SOUTHWESTERN ARCHIPELAGO OF FINLAND<br />

SEPPO KOPONEN<br />

Zoological Museum, University <strong>of</strong> Turku, FIN-20014 Turku, Finland. E-mail: sepkopo@utu.fi<br />

Introduction<br />

Abstract<br />

Koponen S.: Spiders (Araneae) on sandy islands in <strong>the</strong> southwestern archipelago <strong>of</strong> Finland. In<br />

Gajdoš P., Pekár S. (eds): Proceedings <strong>of</strong> <strong>the</strong> 18th <strong>European</strong> Colloquium <strong>of</strong> Arachnology, Stará<br />

Lesná, 1999. Ekológia (Bratislava), Vol. 19, Supplement 4/2000, p. 79-85.<br />

Spiders were studied on two sandy islands in <strong>the</strong> outermost part <strong>of</strong> <strong>the</strong> SW archipelago <strong>of</strong> Finland:<br />

Korppoo Jurmo (59 0 50’N, 21 0 37’E) and Dragsfjärd Örö (59 0 50’N, 22 0 20’E). The main<br />

collecting method was pitfall trapping. Typical, and <strong>of</strong>ten locally abundant, species on sandy and/<br />

or gravel shores were e.g. Arctosa cinerea, Alopecosa fabrilis, Pardosa agricola, Xerolycosa<br />

miniata, Zelotes longipes, Z. praeficus, Callilepis nocturna, Lasiargus hirsutus, Trichoncus hackmani,<br />

Microlinyphia impigra, Steatoda albomaculata, Philodromus fallax, Phlegra fasciata<br />

and Sitticus saltator. On dry heath meadows <strong>the</strong> following species, in addition to many <strong>of</strong> <strong>the</strong><br />

above-mentioned <strong>spiders</strong>, were typically caught: Zelotes electus, Alopecosa cuneata, Pardosa<br />

agrestis, P. palustris, Trichopterna cito and Lepthyphantes decolor. The material included three<br />

species listed in <strong>the</strong> Finnish Red Data Book, all in need <strong>of</strong> monitoring, i.e. Zelotes electus (abundant),<br />

Metapanamomops kaestneri (locally abundant) and Acartauchenius scurrilis. Also many<br />

o<strong>the</strong>r rare species, like Jacksonella falconeri, Argenna subnigra and Pseudicius encarpatus,<br />

were found.<br />

The southwestern archipelago <strong>of</strong> Finland consists <strong>of</strong> over 41 000 islands <strong>of</strong> different<br />

size. The spider fauna <strong>of</strong> this area has been studied by e.g. HACKMAN (1953), LEHTINEN,<br />

KLEEMOLA (1962), KLEEMOLA (1963), PALMGREN (1972), PALMGREN, LÖNNQVIST (1974),<br />

LEHTINEN et al. (1979).<br />

A large area (19 000 km 2 and 8 400 islands or islets) <strong>of</strong> <strong>the</strong> sou<strong>the</strong>rn part <strong>of</strong> <strong>the</strong> archipelago<br />

belongs nowadays to <strong>the</strong> joint working area <strong>of</strong> <strong>the</strong> Archipelago National Park, and<br />

investigation <strong>of</strong> fauna in <strong>the</strong> Park was carried out during <strong>the</strong> 1990s. In <strong>the</strong> present paper,<br />

data on <strong>the</strong> spider fauna on two ra<strong>the</strong>r large sandy islands are presented. The islands Jurmo<br />

and Örö are situated in <strong>the</strong> outer archipelago and facing <strong>the</strong> open Baltic Sea.<br />

79


Fig. 1. The study islands in <strong>the</strong> southwestern archipelago <strong>of</strong> Finland; 1 = Jurmo, 2 = Örö.<br />

Study area, material and methods<br />

The islands Jurmo (in Korppoo/Korpo; 59 0 50’N, 21 0 37’E) and Örö (in Dragsfjärd; 59 0 50’N, 22 0 20’E) are<br />

ra<strong>the</strong>r isolated sandy islands (Fig. 1). The area <strong>of</strong> Jurmo is 2.7 and <strong>of</strong> Örö 2.0 km 2 . The distance between <strong>the</strong><br />

islands is about 35 km. In Örö <strong>the</strong>re are forests <strong>of</strong> different types, with pine forests dominating naturally, whereas<br />

in Jurmo only a planted pine woodland can be found.<br />

Two main habitat types were studied: 1) sand/gravel sea shores 2) dry meadows and heaths. Two sea shores<br />

and a pond shore were studied in Jurmo and five sea shores in Örö. Three dry meadows or heaths were investigated<br />

in Jurmo and two in Örö island where, in addition, a man-made open sandy heath was studied.<br />

The shores were characterised by sand or gravel, sometimes also by larger stones. In some places wrack (drift<br />

<strong>of</strong> Fucus etc) was found. The sparse vegetation was formed by Leymus arenarius and several plants that are rare<br />

in Finland, like Elymus farctus, Crambe maritima, Isatis tinctoria, Salsola kali, Atriplex littoralis, Cakile maritima,<br />

and Honkenya peploides. In addition, some species <strong>of</strong> Carex, as well as <strong>of</strong> Poaceae, and Galium verum, Lathyrus<br />

japonicus, Thymus serpyllum, Tanacetum vulgare and Rosa rugosa are locally typical plants.<br />

In dry meadows and heaths e.g. Juniperus communis, Calluna vulgaris, Potentilla subarenaria, Linum<br />

catharcticum, Arctostaphylos uva-ursi, Thymus serpyllum, Empetrum nigrum, Antennaria dioica, Cardamine<br />

hirsuta, Artemisia campestris as well as Carex and Poaceae species are typical and at least locally common.<br />

The main collecting method was pitfall trapping. Plastic cups (diameter 70 mm) with covers against rainfall<br />

and litter, and with ethylene glycol and detergent as preservative, were used. The trapping period in Jurmo was<br />

29 June - 26 August 1995, and in Örö 25 May - 13 September 1996.<br />

The trapping sites (A-F), with characteristic plant species, were in Jurmo: 1) Shores (sou<strong>the</strong>rn and<br />

southwestern side), A: sand shore, Leymus, Empetrum, Galium verum; B: sand shore, Galium verum, Empetrum,<br />

Leymus, Juniperus; C: silty shore <strong>of</strong> temporary ponds, Agrostis stolonifera; 2) Dry meadows & heaths, D:<br />

calcareous heath, Festuca, Potentilla subarenaria, Antennaria, Linum, Juniperus, lichens; E: dry meadow,<br />

Poaceae, Juniperus; F: thymus heath, Poaceae, Thymus, Empetrum, Calluna, Juniperus.<br />

80


The trapping sites (A-H) in<br />

Örö were: 1) Shores (western<br />

side), A: sand dune, small pines,<br />

Galium verum, Isatis, Poaceae,<br />

Rosa rugosa, Cladonia; B:<br />

sand-gravel-stony shore, Leymus,<br />

Thymus, Galium verum,<br />

Poaceae; C: sand dune, Leymus,<br />

Galium verum, Sedum, Rosa,<br />

Poaceae; D: sand shore, Thymus,<br />

Galium verum, Anthriscus,<br />

Allium, Crambe, Chamenaerium,<br />

Tanacetum, Sedum, Rosa,<br />

Juniperus, Poaceae; E: sand-<br />

-gravel-stony shore, Leymus,<br />

Galium verum, Tanacetum,<br />

Crambe, Myosotis, Poaceae; 2)<br />

Heaths, F: warm heath, Thymys,<br />

Calluna, Cardamine hirsuta,<br />

Cirsium, Poaceae; G: warm<br />

heath, Calluna, Viola tricolor,<br />

Artemisia campestris, Poaceae;<br />

H: edge <strong>of</strong> man-made sand field<br />

and dry pine forest, open sand,<br />

Calamagrostis.<br />

The spider material from Jurmo<br />

and Örö consisted <strong>of</strong> about<br />

1 600 and 3 800 identifiable<br />

specimens, respectively. The<br />

material is deposited in <strong>the</strong><br />

Zoological Museum, University <strong>of</strong> Turku.<br />

Results and discussion<br />

Altoge<strong>the</strong>r, about 190 species <strong>of</strong> <strong>spiders</strong> were found in Jurmo and Örö islands in 1995-<br />

96. The most species-rich families were Linyphiidae (s.lat.; 67 species), Lycosidae (24),<br />

Theridiidae (19) and Gnaphosidae (17).<br />

Some species were frequently found both on shores and in dry meadow or heath habitats,<br />

i.e. <strong>the</strong>y were common in all open areas. These include e.g. Zelotes longipes (L. KOCH),<br />

Pardosa palustris (LINNAEUS), P. agrestis (WESTRING) and P. agricola (THORELL) in Jurmo,<br />

and Zelotes praeficus (L. KOCH), Z. electus (C. L. KOCH), Z. longipes, Callilepis nocturna<br />

(LINNAEUS), Phrurolithus festivus (C. L. KOCH) and Alopecosa fabrilis (CLERCK) in Örö.<br />

Spiders in shore habitats<br />

T a b l e 1. The most abundant <strong>spiders</strong> caught by pitfall traps on sea<br />

shores (sites A-B) and on a pond shore (site C) in Jurmo. Numbers are<br />

given for each species as a percentage <strong>of</strong> <strong>the</strong> total catch at <strong>the</strong><br />

respective site. Numbers in brackets denote that <strong>the</strong> species was not<br />

among <strong>the</strong> six most abundant ones, data for <strong>the</strong> dominant species are<br />

in bold; Aver- average percentage on sea shores. For description <strong>of</strong> <strong>the</strong><br />

sites, see <strong>the</strong> text.<br />

A B Aver C<br />

Lasiargus hirsutus (MENGE) 31 4 18 –<br />

Trichoncus hackmani MILL. (3) 27 15 –<br />

Zelotes subterraneus (C. L. K.) 29 – 15 –<br />

Alopecosa fabrilis (CL.) (1) 17 9 –<br />

Pardosa agricola (TH.) (2) 13 8 2<br />

Pardosa agrestis (WEST.) 8 – 4 (2)<br />

Oedothorax fuscus (BL.) 7 – 3 55<br />

Thanatus striatus C. L. K. 4 (2) 3 –<br />

Pachygnatha degeeri SUND. – 5 3 (0)<br />

Pirata piraticus (CL.) 3 – 2 (2)<br />

Oedothorax retusus (WEST.) – (1) . 15<br />

Oedothorax agrestis (BL.) (1) – . 7<br />

Erigone longipalpis (SUND.) – – . 6<br />

Number <strong>of</strong> species 23 20 . 14<br />

Number <strong>of</strong> individuals 258 114 . 454<br />

The most abundant species on sandy sea shores and on <strong>the</strong> silty pond shore in Jurmo<br />

island are shown in Table 1. Two erigonine species, Lasiargus hirsutus (MENGE) and<br />

81


T a b l e 2. The most abundant <strong>spiders</strong> caught by pitfall traps on shores in Örö (sites A-E). Numbers are given<br />

for each species as a percentage <strong>of</strong> <strong>the</strong> total catch at <strong>the</strong> respective site. Numbers in brackets denote that <strong>the</strong><br />

species was not among <strong>the</strong> six most abundant ones, data for <strong>the</strong> dominant species are in bold; Aver- average<br />

percentage on sea shores. For description <strong>of</strong> <strong>the</strong> sites, see <strong>the</strong> text.<br />

A B C D E Aver<br />

Lasiargus hirsutus (MENGE) 56 11 (1) 25 42 27<br />

Xerolycosa miniata (C. L. K.) 12 (3) 76 13 (1) 21<br />

Zelotes electus (C. L. K.) 5 (2) 4 11 (2) 5<br />

Pardosa agricola (TH.) 3 (1) (0) (4) 18 5<br />

Alopecosa fabrilis (CL.) 3 20 (0) (3) (0) 5<br />

Callilepis nocturna (L.) (1) 16 3 (1) 3 5<br />

Zelotes praeficus (L. K.) (2) (5) (2) 5 6 4<br />

Arctosa cinerea (FABR.) 3 – 4 (2) (2) 2<br />

Pardosa agrestis (WEST.) – 11 – – – 2<br />

Micaria nivosa L. K. – 10 (0) (0) – 2<br />

Zelotes longipes (L. K.) (0) 8 – – – 2<br />

Phrurolithus festivus (C. L. K.) (1) (2) 2 (0) (3) 2<br />

Trichoncus hackmani MILL. (2) (2) 2 (1) (2) 2<br />

Pachygnatha degeeri SUND. (1) (1) (1) 6 – 2<br />

Alopecosa pulverulenta (CL.) (0) – – 7 – 1<br />

Thanatus striatus C. L. K. (0) (1) (1) (0) 5 1<br />

Zelotes subterraneus (C. L. K.) (0) (2) – – 5 1<br />

Number <strong>of</strong> species 37 34 24 46 26 .<br />

Number <strong>of</strong> individuals 729 388 496 722 395 .<br />

Trichoncus hackmani MILLIDGE dominated on sea shores, and Oedothorax fuscus<br />

(BLACKWALL) and O. retusus (WESTRING) dominated <strong>the</strong> silty pond shore. O<strong>the</strong>r abundant<br />

species were e.g. Zelotes subterraneus (C. L. KOCH), A. fabrilis and P. agricola.<br />

In Örö, L. hirsutus, Xerolycosa miniata (C. L. KOCH) and A.fabrilis were dominant species<br />

in shore trap series (Table 2). O<strong>the</strong>r abundant species were Z. electus, P. agricola, C.<br />

nocturna, Z. praeficus and Arctosa cinerea (FABRICIUS).<br />

The most typical and abundant sand/gravel shore species in Jurmo and Örö islands was<br />

L. hirsutus. The species is known in Finland only from <strong>the</strong> outer part <strong>of</strong> <strong>the</strong> archipelago;<br />

HACKMAN (1953) reported it for <strong>the</strong> first time in Finland from Fucus heaps in Jurmo and<br />

from a few o<strong>the</strong>r localities.<br />

The shore material included many rare and interesting species: species on wide sandy<br />

shores were e.g. A. cinerea, A. fabrilis, X. miniata, Philodromus fallax SUNDEVALL, Xysticus<br />

sabulosus (HAHN), Microlinyphia impigra (O. P.-CAMBRIDGE), Steatoda albomaculata (DE<br />

GEER), Phlegra fasciata (HAHN) and Sitticus saltator (O. P.-CAMBRIDGE).<br />

Typical species on shores in <strong>the</strong> SW archipelago, and many <strong>of</strong> <strong>the</strong>m rare, were also Erigone<br />

longipalpis (SUNDEVALL), T. hackmani, Linyphia tenuipalpis SIMON, Argenna subnigra (O. P.-<br />

CAMBRIDGE), Micaria nivosa L. KOCH, Z. electus, Clubiona similis L. KOCH, Aelurillus vinsignitus<br />

(CLERCK), Myrmarachne formicaria (DE GEER), Thanatus striatus C. L. KOCH,<br />

Segestria senoculata (LINNAEUS), Dipoena hamata TULLGREN and D. prona (MENGE).<br />

82


Spiders in dry meadows<br />

and heaths<br />

Abundant <strong>spiders</strong><br />

caught by pitfall traps in<br />

dry meadows and in heaths<br />

in Jurmo island are listed<br />

in Table 3. Dominant in<br />

different habitats were Z.<br />

longipes, P. palustris and<br />

P. agrestis, o<strong>the</strong>r common<br />

species e.g. Drassodes<br />

lapidosus (WALCKENAER),<br />

Z. electus and locally<br />

Trichopterna cito (O. P.-<br />

CAMBRIDGE).<br />

Abundant species in dry<br />

heaths and in <strong>the</strong> manmade<br />

sandy heath in Örö<br />

island are given in Table 4.<br />

Dominant species in dry<br />

open heaths were Z.<br />

praeficus and Alopecosa<br />

cuneata (CLERCK), o<strong>the</strong>r<br />

common species were Z.<br />

electus, Z. longipes and<br />

Metapanamomops<br />

kaestneri (WIEHLE).<br />

Lepthyphantes decolor<br />

(WESTRING), P. festivus and<br />

X. miniata were <strong>the</strong> most<br />

abundant species in <strong>the</strong><br />

man-made heath where<br />

also <strong>the</strong> habitat resembled<br />

both heaths and <strong>the</strong> nearby<br />

sandy shore.<br />

Typical and abundant<br />

heath species in Jurmo and<br />

Örö islands were several<br />

species <strong>of</strong> <strong>the</strong> genera<br />

Zelotes (especially Z.<br />

T a b l e 3. The most abundant <strong>spiders</strong> caught by pitfall traps in dry<br />

meadows and heaths in Jurmo (sites D-F). Numbers for each species<br />

are given as a percentage <strong>of</strong> <strong>the</strong> total catch at <strong>the</strong> respective site.<br />

Numbers in brackets denote that <strong>the</strong> species was not among <strong>the</strong> six<br />

most abundant ones, data for <strong>the</strong> dominant species are in bold; Averaverage<br />

percentage in studied habitats. For description <strong>of</strong> <strong>the</strong> sites, see<br />

<strong>the</strong> text.<br />

D E F Aver<br />

Zelotes longipes (L. K.) 31 24 23 26<br />

Pardosa palustris (L.) 7 (4) 41 17<br />

Pardosa agrestis (WEST.) 37 7 5 16<br />

Drassodes lapidosus (WALC.) 7 7 5 6<br />

Zelotes electus (C. L. K.) 2 8 4 5<br />

Trichopterna cito (O. P.–C.) (0) 13 – 4<br />

Pardosa agricola (TH.) (1) 11 – 4<br />

Metopobactrus prominulus (O. P.–C.) (0) (1) 7 3<br />

Alopecosa pulverulenta (CL.) 4 (1) (1) 2<br />

Number <strong>of</strong> species 25 29 15 .<br />

Number <strong>of</strong> individuals 257 174 133 .<br />

T a b l e 4. The most abundant <strong>spiders</strong> caught by pitfall traps in dry<br />

heaths (sites F-G) and in <strong>the</strong> man-made sandy heath in Örö (site H).<br />

Numbers for each species are given as a percentage <strong>of</strong> <strong>the</strong> total catch<br />

at <strong>the</strong> respective site. Numbers in brackets denote that <strong>the</strong> species was<br />

not among <strong>the</strong> six most abundant ones, data for <strong>the</strong> dominant species<br />

are in bold; Aver- average percentage in studied heaths. For<br />

description <strong>of</strong> <strong>the</strong> sites, see <strong>the</strong> text.<br />

F G Aver H<br />

Zelotes praeficus (L. K.) 33 23 28 –<br />

Alopecosa cuneata (CL.) 13 30 22 –<br />

Zelotes electus (C. L. K.) 8 10 9 6<br />

Zelotes longipes (L. K.) 6 11 9 (1)<br />

Metapanamomops kaestneri (WIEH.) (3) 7 5 –<br />

Callilepis nocturna (L.) 7 (2) 5 –<br />

Alopecosa fabrilis (CL.) (2) 5 4 3<br />

Phrurolithus festivus (C. L. K.) 6 – 3 18<br />

Lepthyphantes decolor (WEST.) (4) – . 36<br />

Xerolycosa miniata (C. L. K.) (1) – . 10<br />

Pardosa lugubris (WALC.) (0) – . 6<br />

Number <strong>of</strong> species 36 23 . 18<br />

Number <strong>of</strong> individuals 503 246 . 67<br />

praeficus, Z. electus, Z. longipes), Alopecosa (A. cuneata, A. fabrilis, A. pulverulenta<br />

(CLERCK)) and Pardosa (P. agrestis, P. palustris).<br />

83


Worth mentioning are also L. decolor (found in Jurmo and Örö), Porrhomma montanum<br />

JACKSON (Örö), M. kaestneri (Örö), Micrargus subaequalis (WESTRING) (Jurmo), T. cito<br />

(Jurmo and Örö), Tapinocyboides pygmaea (MENGE) (Jurmo and Örö), Typhochrestes<br />

digitatus (O. P.-CAMBRIDGE) (Örö), Walckenaeria monoceros (WIDER) (Jurmo), Zelotes<br />

pusillus (C. L. KOCH) (Örö), C. nocturna (Örö), Micaria silesiaca L. KOCH (Örö),<br />

Poecilochroa variana (C. L. KOCH) (Jurmo and Örö), Phaeocedus braccatus (L. KOCH)<br />

(Örö), Pardosa nigriceps (THORELL) (Jurmo and Örö), and Xysticus erraticus (BLACKWALL)<br />

(Jurmo and Örö).<br />

In addition, <strong>the</strong> following noteworthy species were found in <strong>the</strong> field/shrub layer <strong>of</strong> dry<br />

heaths: Achaearanea riparia (BLACKWALL) (in Örö), A. saxatile (C. L. KOCH) (Jurmo and<br />

Örö), Theridion pallens BLACKWALL (Örö), T. tinctum (WALCKENAER) (Örö).<br />

Endangered species and faunistic rarities<br />

Three species amongst <strong>the</strong> present material have been included in <strong>the</strong> Finnish Red Data<br />

Book as species in need <strong>of</strong> monitoring (RASSI et al., 1992): Z. electus, M. kaestneri and<br />

Acartauchenius scurrilis (O. P.-CAMBRIDGE). All were found in Örö, and Z. electus also in<br />

Jurmo. Z. electus was <strong>the</strong> fourth most abundant species in Örö, and ra<strong>the</strong>r common also in<br />

dry heaths in Jurmo. M. kaestneri was also locally abundant in <strong>the</strong> dry heath in Örö. Only<br />

one specimen <strong>of</strong> A. scurrilis was found, also in dry heath in Örö. An interesting species is<br />

Pseudicius encarpatus (WALCKENAER), listed as extinct in Sweden (EHNSTRÖM et al., 1993)<br />

and which has also clearly declined in Finland during this century (cf. also PALMGREN, 1972);<br />

one specimen was found in Örö.<br />

Three species have recently been reported for <strong>the</strong> first time from Finland (KOPONEN,<br />

1999); two <strong>of</strong> <strong>the</strong>m (Jacksonella falconeri (WALCKENAER) from <strong>the</strong> gravel-sand shore in<br />

Örö and Enoplognatha thoracica (HAHN) from dry Thymus meadow in Jurmo) are based on<br />

<strong>the</strong> present material, and <strong>the</strong> third one (Ozyptila westringi (THORELL) from Jurmo) on previous<br />

museum material.<br />

Faunal comparisons<br />

The fauna found in sandy islands <strong>of</strong> Jurmo and Örö resembled, in general, that reported<br />

from corresponding habitats in Scania (ALMQUIST, 1973) and Öland (KRONESTEDT,<br />

1983), South Sweden, and from <strong>the</strong> nor<strong>the</strong>rn coast <strong>of</strong> Germany (SCHULTZ, FINCH, 1996).<br />

However, many species common ei<strong>the</strong>r on <strong>the</strong> North German coast or on dunes <strong>of</strong> Scania<br />

and in heaths <strong>of</strong> Öland are absent in <strong>the</strong> present area, probably due to <strong>the</strong> ra<strong>the</strong>r small<br />

size, marked isolation and nor<strong>the</strong>rn latitude <strong>of</strong> Jurmo and Örö. On <strong>the</strong> o<strong>the</strong>r hand, several<br />

common or characteristic species <strong>of</strong> <strong>the</strong> present material are absent or rare at more sou<strong>the</strong>rn<br />

Baltic Sea sites. Special characters <strong>of</strong> <strong>the</strong> present islands seem to be, for example, <strong>the</strong><br />

great number <strong>of</strong> species and individuals <strong>of</strong> Gnaphosidae and <strong>the</strong> dominance <strong>of</strong> Lasiargus<br />

hirsutus (MENGE) on shores (cf. ALMQUIST, 1973; VILBASTE, 1974; KRONESTEDT, 1983;<br />

SCHULTZ, FINCH, 1996).<br />

84


Acknowledgements<br />

The support by <strong>the</strong> Archipelago Park Area <strong>of</strong> <strong>the</strong> Finnish Forest and Park Service is greatly appreciated. The<br />

help in <strong>the</strong> field by Veikko Rinne and Tom Clayhills is gratefully acknowledged.<br />

References<br />

ALMQUIST, S., 1973: Spider associations in coastal sand dunes. Oikos, 24, p. 444-457.<br />

EHNSTRÖM, B., GARDENFORS, U., LINDELÖW, Å., 1993: Swedish red list <strong>of</strong> invertebrates 1993. Databanken för<br />

hotade arter, Uppsala, 69 pp. (In Swedish)<br />

HACKMAN, W., 1953: Spiders from Åland and <strong>the</strong> southwestern archipelago <strong>of</strong> Finland. Memoranda Societatis<br />

pro Fauna et Flora Fennica, 28, p. 70-78. (In Swedish)<br />

KLEEMOLA, A., 1963: On <strong>the</strong> zonation <strong>of</strong> <strong>spiders</strong> on stony shores <strong>of</strong> rocky islets in <strong>the</strong> southwestern archipelago<br />

<strong>of</strong> Finland. Aquilo (Zoologica), 1, p. 26-38.<br />

KOPONEN, S., 1999: Three species <strong>of</strong> <strong>spiders</strong> (Araneae) new to <strong>the</strong> fauna <strong>of</strong> Finland from <strong>the</strong> southwestern archipelago.<br />

Entomologica Fennica, 10, p. 6.<br />

KRONESTEDT, T., 1983: Spiders on <strong>the</strong> Great Alvar <strong>of</strong> <strong>the</strong> island <strong>of</strong> Öland, S Sweden. Entomologisk Tidskrift,<br />

104, p. 183-212. (In Swedish)<br />

LEHTINEN, P.T., KLEEMOLA, A., 1962: Studies on <strong>the</strong> spider fauna <strong>of</strong> <strong>the</strong> southwestern archipelago <strong>of</strong> Finland. I.<br />

Archivum Societatis Zoologicae Botanicae Fennicae ‘Vanamo’, 16, 1, p. 97-114.<br />

LEHTINEN, P.T., KOPONEN, S., SAARISTO, M., 1979: Studies on <strong>the</strong> spider fauna <strong>of</strong> <strong>the</strong> southwestern archipelago <strong>of</strong><br />

Finland II. The Aland mainland and <strong>the</strong> island <strong>of</strong> Eckerö. Memoranda Societatis pro Fauna et Flora Fennica,<br />

55, p. 33-52.<br />

PALMGREN, P., 1972: Studies on <strong>the</strong> spider populations <strong>of</strong> <strong>the</strong> surroundings <strong>of</strong> <strong>the</strong> Tvärminne Zoological Station,<br />

Finland. Societas Scientiarum Fennica, Commentationes Biologicae, 52, p. 1-133.<br />

PALMGREN, P., LÖNNQVIST, B., 1974: The <strong>spiders</strong> <strong>of</strong> some habitats at <strong>the</strong> Nåtö Biological Station (Åland, Finland).<br />

Societas Scientiarum Fennica, Commentationes Biologicae, 73, p. 1-10.<br />

RASSI, P., KAIPIAINEN, H., MANNERKOSKI, I., STÅHLS, G., 1992: Report on <strong>the</strong> monitoring <strong>of</strong> threatened animals and<br />

plants in Finland. Ministry <strong>of</strong> <strong>the</strong> Environment, Helsinki, 328 pp. (In Finnish)<br />

SCHULTZ, W., FINCH, O.-D., 1996: Biotoptypenbezogene Verteilung der Spinnenfauna der nordwestdeutschen<br />

Küstenregion. Cuvillier Verlag, Göttingen, 141 pp.<br />

VILBASTE, A., 1974: On <strong>the</strong> spider fauna <strong>of</strong> islets <strong>of</strong> Väinameri. Loodusvaatlusi, 1973, p. 132-145. (In Estonian)<br />

85


Ekológia (Bratislava) Vol. 19, Supplement 4, 87-96, 2000<br />

FAUNA OF SOIL-DWELLING PREDATORY<br />

GAMASINA MITES (ACARI: MESOSTIGMATA) IN<br />

SEASHORE HABITATS OF THE KURZEME COAST,<br />

LATVIA<br />

INETA SALMANE<br />

Institute <strong>of</strong> Biology, University <strong>of</strong> Latvia, Miera iela 3, LV-2169, Salaspils, Latvia. Fax: 371-9-345 412. Email:<br />

ineta_s@hotmail.com<br />

Introduction<br />

Abstract<br />

SALMANE I.: Fauna <strong>of</strong> soil-dwelling predatory Gamasina mites (Acari: Mesostigmata) in seashore<br />

habitats <strong>of</strong> <strong>the</strong> Kurzeme Coast, Latvia. In GAJDOŠ P., PEKÁR S. (eds): Proceedings <strong>of</strong> <strong>the</strong> 18th<br />

<strong>European</strong> Colloquium <strong>of</strong> Arachnology, Stará Lesná, 1999. Ekológia (Bratislava), Vol. 19, Supplement<br />

4/2000, p. 87-96.<br />

Because <strong>of</strong> <strong>the</strong> lack <strong>of</strong> data on <strong>the</strong> Gamasina mite fauna in coastal habitats <strong>of</strong> Latvia, sampling<br />

was made on <strong>the</strong> seashore <strong>of</strong> <strong>the</strong> Kurzeme Coast. An unexpectedly high total number (78) <strong>of</strong><br />

Gamasina species was recorded. Twenty-three species were found to be new for Latvia. A previously<br />

undescribed species (new to Science) from <strong>the</strong> genus Lasioseius was recorded from <strong>the</strong><br />

yellow dunes. Leioseius bicolor, Leioseius halophilus and Parasitus halophilus were recorded as<br />

<strong>the</strong> most widely distributed Gamasina species along <strong>the</strong> Kurzeme Coast.<br />

Driftline, primary and yellow dune Gamasina faunas were investigated separately. Fourteen Gamasina<br />

species were found to be common to all three habitats. Driftline habitats were <strong>the</strong> most<br />

diverse with 55 species. Twenty-two species were recorded from <strong>the</strong> primary dunes and 50 species<br />

from <strong>the</strong> yellow dunes.<br />

Comparison <strong>of</strong> Gamasina fauna along <strong>the</strong> coasts <strong>of</strong> <strong>the</strong> Baltic Sea and <strong>the</strong> Riga Gulf <strong>of</strong> <strong>the</strong> Kurzeme<br />

was made. Fifty species from coastal habitats <strong>of</strong> <strong>the</strong> Riga Gulf Coast and 55 from <strong>the</strong> Baltic<br />

Sea Coast were recorded. Twenty-seven Gamasina species were recorded as common for both<br />

sites, but 24 species for <strong>the</strong> Riga Gulf Coast and 29 for <strong>the</strong> Baltic Sea Coast were unique for <strong>the</strong>ir<br />

respective habitats.<br />

Seashore ecosystems vary in terms <strong>of</strong> ecological conditions and biological diversity, and<br />

can be characterised by an interaction between geomorphological and biological processes<br />

(JUNGERIUS, 1985). Biological processes in coastal habitats are complicated and <strong>the</strong> role <strong>of</strong><br />

<strong>the</strong> soil fauna in <strong>the</strong>m is important (MALLOW et al., 1984). Protozoa and Nematoda are<br />

87


attracted to <strong>the</strong> active rhizosphere and may feed on bacteria, as well as on living and dead<br />

plant material and soil algae and fungi. Collembola - bacterial and fungal grazers, and<br />

Gamasina mites as predators <strong>of</strong> Collembola, o<strong>the</strong>r soil dwelling mites, Nematoda, Insecta<br />

larvae etc. may control this system (KOEHLER et al., 1992). This complicated system is very<br />

important for soil processes generally, but for seashore habitats in particular. Unfortunately,<br />

little is known about <strong>the</strong> soil fauna in coastal habitats <strong>of</strong> Latvia and few data are available<br />

concerning <strong>the</strong> soil Gamasina mites that live <strong>the</strong>re.<br />

The fauna <strong>of</strong> soil Gamasina mites <strong>of</strong> seashore ecosystems in Latvia is poorly investigated.<br />

Some sampling was carried out by Kadite (Lithuania). She described 35 Gamasina<br />

species from various seashore habitats (EITMINAVICHUTE, 1976). Some case studies along <strong>the</strong><br />

seacoast <strong>of</strong> Latvia have been made by <strong>the</strong> author <strong>of</strong> <strong>the</strong> present article (MELECIS et al., 1994;<br />

SALMANE, 1996; PAULINA et al., 1999), <strong>the</strong> results <strong>of</strong> which stimulated <strong>the</strong> need for <strong>the</strong> sampling<br />

reported here, with <strong>the</strong> aim <strong>of</strong> obtaining a closer insight into <strong>the</strong> Gamasina fauna <strong>of</strong><br />

<strong>the</strong> seashore habitats <strong>of</strong> Latvia.<br />

Study Area<br />

A total <strong>of</strong> 8 sampling sites were selected along <strong>the</strong> seacoast <strong>of</strong> <strong>the</strong> Kurzeme (Engure<br />

(23°15'/57°10'), Roja (22°45'/57°30'), Kolkasrags (22°30'/57°40'), Luzna (21°55'/57°35'),<br />

Ventspils (21°30'/57°25'), Pavilosta (21°15'/56°55'), Liepaja (21°0'/56°30') and Pape (21°5'/<br />

56°15') in <strong>the</strong> driftline, primary and yellow dunes.<br />

The driftline habitats were characterised mostly by fine sand and material washed ashore,<br />

including algae and o<strong>the</strong>r jetsam deposited by <strong>the</strong> sea. Organic debris deposited by <strong>the</strong> sea<br />

was <strong>the</strong> main nutrient source here. Cakile maritima, Chenopodium rubrum or Salsola calii<br />

represented <strong>the</strong> vegetation in a few cases. The primary dunes were characterised by fine to<br />

medium sandy soils with minimal content <strong>of</strong> organics in <strong>the</strong> soil. Single Calamophila baltica,<br />

Ammodenia peploides, Amophila arenaria, Leymus arenarius, Festuca arenaria and Juncus<br />

balticus represented <strong>the</strong> vegetation here.The yellow dunes were characterised by medium<br />

sandy soils with a relatively high content <strong>of</strong> organics and more abundant vegetation represented<br />

by Calamophila baltica, Amophila arenaria, Festuca arenaria, Hieracium<br />

umbellatum, Carex arenarius, Ammodenia pepoloides, Anthyllis maritima, Lathyrus<br />

japonicus and Salix sp.<br />

Material and methods<br />

We focused on qualitative sampling to investigate <strong>the</strong> spectrum <strong>of</strong> Gamasina species. The sampling was<br />

performed in 8 sites along <strong>the</strong> Kurzeme Coast (Western part <strong>of</strong> Latvia), which includes <strong>the</strong> western part <strong>of</strong> <strong>the</strong><br />

Riga Gulf Coast and <strong>the</strong> western part <strong>of</strong> <strong>the</strong> Latvian sea coast washed by <strong>the</strong> Baltic Sea. Three sampling sites in<br />

Riga Gulf Coast <strong>of</strong> <strong>the</strong> Kurzeme Coast and 5 at Baltic Sea Coast were chosen. At each site sampling was carried<br />

out by hand or by using a soil corer (23cmþ x 10cm). A single sample included approximately 300-400 g <strong>of</strong><br />

88


substrate. Altoge<strong>the</strong>r 120 soil samples were taken from <strong>the</strong> organic debris <strong>of</strong> <strong>the</strong> driftline or <strong>the</strong> rhizosphere <strong>of</strong><br />

plants in primary and yellow dunes. The collected material was taken to <strong>the</strong> laboratory in plastic bags.<br />

Extraction was carried out using Tullgren funnels, where samples were exposed for a period <strong>of</strong> 14 days.<br />

Determination and nomenclature <strong>of</strong> Gamasina species are based upon <strong>the</strong> keys <strong>of</strong> BREGETOVA (1977), HIRSHMANN<br />

(1971), KARG (1993), KOLODOCHKA (1978) and LAPINA (1976 a, b). The quantitative comparison <strong>of</strong> Gamasina<br />

mites among sampling sites was not possible because <strong>of</strong> <strong>the</strong> unequal number <strong>of</strong> samples taken.<br />

Results<br />

Seventy-eight Gamasina species were recorded in <strong>the</strong> collected material, 23 <strong>of</strong> which<br />

were found for <strong>the</strong> first time in <strong>the</strong> fauna <strong>of</strong> Latvia (Table 1). One, previously undescribed<br />

species (new to Science) from <strong>the</strong> genus Lasioseius was found. Leioseius bicolor (BERLESE)<br />

(8 sampling sites), L. halophilus (WILLMANN) and Parasitus halophilus (SELLNICK) (7) and<br />

Thinoseius spinosus (WILLMANN) and Leioseius insignis HIRSCHMANN (6) were <strong>the</strong> most<br />

widely distributed species in <strong>the</strong> seashore habitats <strong>of</strong> <strong>the</strong> Kurzeme Coast (Table 2).<br />

Comparison <strong>of</strong> Gamasina mites’ fauna among <strong>the</strong> habitats was made and 14 species<br />

were revealed as common for all habitats (Table 1). Species found <strong>the</strong>re were mainly ubiquitous,<br />

forest and seashore inhabitants. The driftline communities were found to be <strong>the</strong><br />

most diverse with 55 species, 22 <strong>of</strong> which differed from <strong>the</strong> dune fauna. At <strong>the</strong> dune habitats<br />

22 and 50 species in primary and yellow dunes, respectively, were recorded.<br />

Fourteen species were common for all three investigated habitat types, 3 species common<br />

for driftline and primary dune, 15 species for driftline and yellow dune. Three Gamasina<br />

species were common for both primary and yellow dunes. Forty-three species were recorded<br />

only in one habitat type. Twenty-two <strong>of</strong> <strong>the</strong>m were found as typical only for <strong>the</strong><br />

driftline, 2 species for <strong>the</strong> primary and 18 species for <strong>the</strong> yellow dune habitats.<br />

Comparison between <strong>the</strong> fauna <strong>of</strong> Gamasina mites <strong>of</strong> <strong>the</strong> Baltic Sea Coast and Riga Gulf<br />

Coast <strong>of</strong> Kurzeme was made. In <strong>the</strong>se two sites 55 and 50 species, respectively, could be<br />

determined. About 1/3 <strong>of</strong> <strong>the</strong>m was common for both sites, but <strong>the</strong> rest <strong>of</strong> <strong>the</strong> species were<br />

unique for one <strong>of</strong> <strong>the</strong> sites.<br />

Discussion<br />

Fifty-five Gamasina were recorded in <strong>the</strong> driftline habitats and <strong>the</strong> most abundant species<br />

<strong>the</strong>re found were those with demands for wet soils with a high amount <strong>of</strong> organic<br />

material. Several species (Parasitus kempersi OUDEMANSI, Halolaelaps balticus WILLMANN,<br />

H. incisus HYATT, Thinoseius spinosus), known as common driftline inhabitants (KARG,<br />

1993), were found in high numbers in <strong>the</strong> material washed ashore. Also some hygrophilous<br />

Gamasina (Gamasolaelaps excisus (C. L. KOCH), Neojordensia levis (OUDEMANS ET VOIGTS),<br />

Cheiroseius necorniger (OUDEMANS) and Hypoaspis vacua (MICHAEL)), and species from<br />

<strong>the</strong> genus Macrocheles, preferring habitats with high organic content, were numerous <strong>the</strong>re.<br />

89


T a b l e 1. Occurrence <strong>of</strong> Gamasina species on <strong>the</strong> seashore <strong>of</strong> <strong>the</strong><br />

Kurzeme Coast. (* - species recorded for <strong>the</strong> first time in Latvia).<br />

Gamasina (Acari) Driftline Primary<br />

dune<br />

90<br />

Yellow<br />

dune<br />

Parasitus halophilus (SELL.)* x x x<br />

Holoparasitus excipuliger (BERL.) x x x<br />

Pergamasus vagabundus KARG x x x<br />

Veigaia nemorensis (C. L. K.) x x x<br />

Leioseius bicolor (BERL.) x x x<br />

Leioseius halophilus (WILL.) x x x<br />

Leioseius insignis HIRS.* x x x<br />

Amblyseius marinus (WILL.)* x x x<br />

Amblyseius agrestis (KARG)* x x x<br />

Dendrolaelaps nostricornutus HIRS. ET<br />

WISN.*<br />

x x x<br />

Asca bicornis (CANE. ET FANZ.) x x x<br />

Halolaelaps balticus WILL.* x x x<br />

Thinoseius spinosus (WILL.)* x x x<br />

Parazercon sarekensis WILL. x x x<br />

Veigaia cervus (KRAM.) x x<br />

Macrocheles glaber (MULL.) x x<br />

Prozercon trägardhi (HALB.) x x<br />

Parasitus kempersi OUDE.* x x<br />

Pergamasus crassipes (L.) x x<br />

Pergamasus septentrionalis (OUDE.) x x<br />

Leioseius minutus (HALB.) x x<br />

Pergamasus teutonicus WILL. x x<br />

Pergamasus wasmanni (OUDE.) x x<br />

Amblyseius bicaudus WAIN. x x<br />

Amblyseius messor WAIN. x x<br />

Amblyseius meridionalis (BERL.) x x<br />

Dendrolaelaps foveolatus LEIT. x x<br />

Macrocheles tardus (C. L. K.) x x<br />

Hypoaspis aculeifer (CANE.) x x<br />

Hypoaspis praesternalis WILL. x x<br />

Hypoaspis vacua (MICH.) x x<br />

Zercon carpathicus (SELL.) x x<br />

Parasitus kraepelini BERL. x<br />

Parasitus lunaris BERL. x<br />

Parasitus fimetorum BERL. x<br />

Pergamasus truncus SCHW.* x<br />

Gamasodes bispinosus (HALB.)* x<br />

Pergamasus lapponicus TRAG. x<br />

Veigaia exigua (BERL.) x<br />

Gamasolaelaps excisus (C. L. K.)* x<br />

Neojordensia levis (OUDE. ET VOIG.) x<br />

The high abundance<br />

<strong>of</strong> <strong>the</strong>se species could<br />

be explained by <strong>the</strong><br />

presence <strong>of</strong> very favourable<br />

ecological<br />

conditions. Driftline<br />

habitats are rich in <strong>the</strong><br />

organic material (nutrients)<br />

deposited by <strong>the</strong><br />

sea and, thus, <strong>the</strong> most<br />

favourable environmental<br />

conditions for<br />

various invertebrates,<br />

on which Gamasina are<br />

known to prey (COLE-<br />

MAN, CROSSLEY, 1996;<br />

PUGH, 1985), were<br />

formed. Fresh organic<br />

material attracts various<br />

Insecta, which feed and<br />

lay eggs <strong>the</strong>re. Their<br />

eggs, larvae and some<br />

specialised driftline<br />

Collembola species and<br />

o<strong>the</strong>r small adult Insecta<br />

form <strong>the</strong> main<br />

food source for predatory<br />

Gamasina mites.<br />

Useful food for Gamasina<br />

is also o<strong>the</strong>r soil<br />

mite groups, Polychaeta,<br />

Nematoda and<br />

Enchytraeidae, dwelling<br />

in <strong>the</strong> material<br />

washed ashore. These<br />

favourable ecological<br />

conditions for Gamasina<br />

mites enables <strong>the</strong>m<br />

to achieve a high abundance<br />

in <strong>the</strong> driftline.<br />

Favourable conditions<br />

determine <strong>the</strong> ex-


istence <strong>of</strong> many Gamasina<br />

species, which are not typical<br />

driftline inhabitants.<br />

O<strong>the</strong>r groups recorded in<br />

<strong>the</strong> driftline comprised species<br />

characteristic mainly <strong>of</strong><br />

various inland ecosystems<br />

(e.g. some ubiquitous species<br />

(Pergamasus vagabundus<br />

KARG, Holoparasitus<br />

excipuliger (BERLESE)<br />

and Veigaia nemorensis (C.<br />

L. KOCH)), forest species<br />

(Pergamasus lapponicus<br />

TRAGARDH, Pergamasus<br />

crassipes (LINNAEUS), P.<br />

wasmanni (OUDEMANS),<br />

Hypoaspis aculeifer<br />

(CANESTRINI) and Parazercon<br />

sarekensis WILLMANN)<br />

and inland meadow species<br />

(Cheiroseius borealis<br />

(BERLESE), Leioseius minutus<br />

(HALBERT), Asca bicornis<br />

(CANESTRINI ET FANZAGO),<br />

Hypoaspis praesternalis<br />

WILLMANN, H. vacua,<br />

Veigaia exigua (BERLESE)).<br />

Some common dune inhabitants<br />

(Leioseius bicolor,<br />

Parasitus halophilus) were<br />

also recorded in <strong>the</strong> material<br />

from <strong>the</strong> driftline. Species<br />

<strong>of</strong> this group were not<br />

as numerous as <strong>the</strong> abovementioned<br />

typical driftline<br />

inhabitants.<br />

Fifteen species were recorded<br />

as common for <strong>the</strong><br />

driftline and yellow dunes,<br />

T a b l e 1.<br />

Gamasina (Acari) Driftline Primary<br />

dune<br />

Yellow<br />

dune<br />

Cheiroseius borealis (BERL.) x<br />

Cheiroseius necorniger (OUDE.) x<br />

Amblyseius obtusus (C. L. K.) x<br />

Amblyseius herbarius WAIN. x<br />

Dendrolaelaps latior (LEIT.)* x<br />

Dendrolaelaps fallax (LEIT.) x<br />

Halolaelaps incisus HYATT* x<br />

Halolaelaps marinus (BRADY)* x<br />

Macrocheles montanus (WILL.) x<br />

Alliphis siculus (OUDE.) x<br />

Eviphis ostrinus (C. L. K.) x<br />

Prozercon sellnicki HALA. x<br />

Zercon montanus WILL. x<br />

Zercon fageticola HALA.* x<br />

Rhodacarellus silesiacus WILL. x x<br />

Rhodacarus reconditus ATHIAS-H. x x<br />

Dendrolaelaps arenarius KARG* x x<br />

Zercon zelawaiensis SELL. x<br />

Leioseius montanulus HIRS. x<br />

Lasioseius sp. nov. x<br />

Hypoaspis claviger (BERL.) x<br />

Hypoaspis sclerotarsa COSTA* x<br />

Hypoaspis similisetae KARG* x<br />

Hypoaspis kargi COSTA x<br />

Laelaspis astronomicus L. K. x<br />

Zercon spatulatus (C. L. K.) x<br />

Leioseius minusculus (BERL.) x<br />

Platyseius italicus (BERL.) x<br />

Antenoseius delicatus BERL. x<br />

Amblyseius aurescens ATHIAS-H. x<br />

Amblyseius andersoni (CHANT) x<br />

Amblyseius bakeri (GARM.) x<br />

Amblyseius graminis CHANT x<br />

Rhodacarus mandibularis BERL.* x<br />

Rhodacarus haarlovi SHCH.* x<br />

Minirhodacarellus minimus (KRAG)* x<br />

Dendrolaelaspis angulosus WILL.* x<br />

Totally 78 species 55 22 50<br />

and this could be explained by <strong>the</strong> relatively high organic matter content in <strong>the</strong> soils <strong>of</strong><br />

yellow dunes. In turn, <strong>the</strong> driftline and primary dunes have only 3 common Gamasina species<br />

because <strong>of</strong> <strong>the</strong> totally different ecological conditions for soil animals.<br />

91


T a b l e 2. Distribution <strong>of</strong> Gamasina species in <strong>the</strong> seashore habitats <strong>of</strong> <strong>the</strong> Kurzeme Coast. Sampling sites:<br />

1-Engure, 2- Roja, 3- Kolkasrags, 4- Lūžņa, 5- Ventspils, 6- Pāvilosta, 7- Liepāja, 8- Pape. Nr- number <strong>of</strong><br />

sampling sites where <strong>the</strong> respective species occur.<br />

Riga Gulf Baltic Sea Nr<br />

Gamasina species 1 2 3 4 5 6 7 8<br />

Leioseius bicolor (BERL.) x x x x x x x x 8<br />

Parasitus halophilus (SELL.) x x x x x x x 7<br />

Leioseius halophilus (WILL.) x x x x x x x 7<br />

Thinoseius spinosus (WILL.) x x x x x x 6<br />

Leioseius insignis HIRS. x x x x x x 6<br />

Hypoaspis aculeifer (CANE.) x x x x x 5<br />

Halolaelaps balticus WILL. x x x x x 5<br />

Dendrolaelaps nostricornutus HIRS. ET<br />

WISN.<br />

x x x x x 5<br />

Cheiroseius necorniger (OUDE.) x x x x 4<br />

Amblyseius marinus (WILL.) x x x x 4<br />

Veigaia nemorensis (C. L. K.) x x x x 4<br />

Pergamasus crassipes (L.) x x x 3<br />

Pergamasus vagabundus KARG x x x 3<br />

Amblyseius bicaudus WAIN. x x x 3<br />

Hypoaspis vacua (MICH.) x x x 3<br />

Parazercon sarekensis WILL. x x x 3<br />

Halolaelaps incisus HYATT x x x 3<br />

Pergamasus lapponicus TRAG. x x 2<br />

Leioseius minutus (HALB.) x x 2<br />

Rhodacarellus silesiacus WILL. x x 2<br />

Rhodacarus mandibularis BERL. x x 2<br />

Rhodacarus reconditus ATHIAS-H. x x 2<br />

Macrocheles tardus (C. L. K.) x x 2<br />

Asca bicornis (CANE. ET FANZ.) x x 2<br />

Hypoaspis praesternalis WILL. x x 2<br />

Hypoaspis sclerotarsa COSTA x x 2<br />

Zercon spatulatus (C. L. K.) x x 2<br />

Macrocheles glaber (MULL.) x x 2<br />

Prozercon trägardhi (HALB.) x x 2<br />

Lasioseius sp.nov. x 1<br />

Parasitus kraepelini BERL. x 1<br />

Parasitus lunaris BERL. x 1<br />

Parasitus fimetorum BERL. x 1<br />

Pergamasus truncus SCHW. x 1<br />

Gamasodes bispinosus (HALB.) x 1<br />

Veigaia exigua (BERL.) x 1<br />

Gamasolaelaps excisus (C. L. K.) x 1<br />

Neojordensia levis (OUDE. ET VOIG.) x 1<br />

Cheiroseius borealis (BERL.) x 1<br />

92


T a b l e 2.<br />

Riga Gulf Baltic Sea Nr<br />

Gamasina species 1 2 3 4 5 6 7 8<br />

Amblyseius agrestis (KARG) x 1<br />

Amblyseius bakeri (GARM.) x 1<br />

Amblyseius graminis CHANT x 1<br />

Dendrolaelaspis angulosus WILL. x 1<br />

Dendrolaelaps latior (LEIT.) x 1<br />

Dendrolaelaps fallax (LEIT.) x 1<br />

Macrocheles montanus (WILL.) x 1<br />

Alliphis siculus (OUDE.) x 1<br />

Eviphis ostrinus (C. L. K.) x 1<br />

Prozercon sellnicki HALA. x 1<br />

Zercon montanus WILL. x 1<br />

Rhodacarus haarlovi SHCH. x x x x 4<br />

Minirhodacarellus minimus (KRAG) x x x x 4<br />

Holoparasitus excipuliger (BERL.) x x x 3<br />

Dendrolaelaps arenarius KARG x x x 3<br />

Parasitus kempersi OUDE. x x 2<br />

Pergamasus septentrionalis (OUDE.) x x 2<br />

Pergamasus teutonicus WILL. x x 2<br />

Pergamasus wasmanni (OUDE.) x x 2<br />

Amblyseius messor WAIN. x x 2<br />

Amblyseius meridionalis (BERL.) x x 2<br />

Dendrolaelaps foveolatus LEIT. x x 2<br />

Zercon carpathicus (SELL.) x x 2<br />

Veigaia cervus (KRAM.) x 1<br />

Leioseius minusculus (BERL.) x 1<br />

Leioseius montanulus HIRS. x 1<br />

Platyseius italicus (BERL.) x 1<br />

Antenoseius delicatus BERL. x 1<br />

Amblyseius obtusus (C. L. K.) x 1<br />

Amblyseius aurescens ATHIAS-H. x 1<br />

Amblyseius andersoni (CHANT) x 1<br />

Amblyseius herbarius WAIN. x 1<br />

Halolaelaps marinus (BRADY) x 1<br />

Hypoaspis claviger (BERL.) x 1<br />

Hypoaspis similisetae KARG x 1<br />

Hypoaspis kargi COSTA x 1<br />

Laelaspis astronomicus L. K. x 1<br />

Zercon zelawaiensis SELL. x 1<br />

Zercon fageticola HALA. x 1<br />

In total 78 species 50 55<br />

93


Gamasina species in dune habitats, in comparison with driftline habitats, were not so<br />

abundant, with <strong>the</strong> exception <strong>of</strong> two species (Minirhodacarellus minimus (KRAG) and<br />

Dendrolaelaps arenarius KARG). Gamasina species occurring in <strong>the</strong> dune habitats were<br />

ra<strong>the</strong>r different from those in <strong>the</strong> driftline habitats. That is not surprising, if we take into<br />

account <strong>the</strong> different ecological conditions <strong>the</strong>re. The impact <strong>of</strong> <strong>the</strong> sea decreases roughly<br />

in an inland direction, which leads to <strong>the</strong> absence <strong>of</strong> organic material deposited by <strong>the</strong> sea in<br />

<strong>the</strong> dune habitats. Vegetation in <strong>the</strong> primary dunes was poorly represented, on <strong>the</strong> whole<br />

only single plants were found and <strong>the</strong>re were few places where <strong>the</strong>y formed small communities.<br />

Thus vegetation is <strong>the</strong> main factor, which determines <strong>the</strong> organic matter content in<br />

<strong>the</strong> soil (JUNGERIUS, 1990). The production <strong>of</strong> organics in <strong>the</strong> soil is relatively slow and <strong>the</strong><br />

primary dunes are poor in nutrients. As known from <strong>the</strong> literature (ANDRÉ et al., 1994), <strong>the</strong><br />

dispersion <strong>of</strong> Gamasina in sandy habitats shows aggregation to <strong>the</strong> rhizosphere <strong>of</strong> plants,<br />

and <strong>the</strong> density <strong>of</strong> individuals in bare sand is very low. As is clear from Table 1, <strong>the</strong> fauna <strong>of</strong><br />

<strong>the</strong> primary dunes was poor. The number <strong>of</strong> species recorded in <strong>the</strong> primary dunes was <strong>the</strong><br />

lowest among <strong>the</strong> habitats investigated. The species Rhodacarus reconditus ATHIAS-HENRIOT,<br />

found <strong>the</strong>re, is known as being characteristic for <strong>the</strong> pioneer stage <strong>of</strong> succession (CHRISTIAN,<br />

1995). This gives evidence <strong>of</strong> <strong>the</strong> initiation <strong>of</strong> soil-forming processes <strong>the</strong>re.<br />

In <strong>the</strong> dunes occur species like Leioseius bicolor, Dendrolaelaps arenarius and plant<br />

inhabitants from <strong>the</strong> genus Amblyseius, which are more or less adapted to <strong>the</strong> dry soil conditions<br />

with low organic matter content. However, <strong>the</strong>re are also species common for variable<br />

habitats like <strong>the</strong> ubiquitous Gamasina species (Holoparasitus excipuliger, Rhodacarellus<br />

silesiacus WILMANN, Veigaia nemorensis and Pergamasus vagabundus); species inhabiting<br />

various agroecosystems (Rhodacarus mandibularis BERLESE, R. haarlovi SHCHERBAK, R.<br />

reconditus); forest species (Pergamasus crassipes, P. wasmanni, Hypoaspis aculeifer and<br />

Parazercon sarekensis) and meadow species (Hypoaspis vacua, H. praesternalis and<br />

Dendrolaelaps angulosus WILMANN).<br />

Twenty-three species were found as typical only for <strong>the</strong> primary and yellow dunes (Table<br />

1). The difference in species composition between <strong>the</strong> primary and yellow dune fauna is<br />

obvious. Twenty-two species were found in <strong>the</strong> primary dunes, most <strong>of</strong> <strong>the</strong>m common also<br />

to <strong>the</strong> driftline or yellow dune fauna. Two species were found to be common only to <strong>the</strong><br />

primary dunes. From <strong>the</strong> yellow dunes a total <strong>of</strong> 50 Gamasina species were collected, 18 <strong>of</strong><br />

which were recorded only <strong>the</strong>re.<br />

The great differences between <strong>the</strong> fauna <strong>of</strong> <strong>the</strong> primary and yellow dunes can be explained<br />

by variability <strong>of</strong> <strong>the</strong> ecological conditions. At <strong>the</strong> yellow dunes more abundant<br />

vegetation was found, which explains <strong>the</strong> formation <strong>of</strong> a larger amount <strong>of</strong> organic material<br />

in <strong>the</strong> soil. That, in turn, creates favourable environmental conditions for Gamasina mites<br />

and <strong>the</strong> number <strong>of</strong> species recorded was almost as high as in <strong>the</strong> driftline. The very high<br />

abundances <strong>of</strong> microarthropods in yellow dunes were also found by KOEHLER et al. (1992).<br />

Comparison between <strong>the</strong> fauna <strong>of</strong> Gamasina mites <strong>of</strong> <strong>the</strong> Baltic Sea Coast and Riga<br />

Gulf Coast <strong>of</strong> Kurzeme was made. In <strong>the</strong>se two sites 55 and 50 species, respectively, were<br />

recorded (Table 2). About 1/3 <strong>of</strong> Gamasina species were found to be common to both<br />

sites. The rest <strong>of</strong> <strong>the</strong> species were found only in one <strong>of</strong> <strong>the</strong> Kurzeme Coast sites. The<br />

94


Baltic Sea Coast and Riga Gulf Coast <strong>of</strong> Kurzeme had 28 and 22 species, respectively.<br />

Some species, such as Rhodacarus haarlovi and Minirhodacarellus minimus, occurred<br />

in 4 sampling sites in <strong>the</strong> yellow dunes, Dendrolaelaps arenarius in 3 sampling sites it<br />

<strong>the</strong> primary and yellow dunes <strong>of</strong> <strong>the</strong> Baltic Sea Coast, and <strong>the</strong>y could be considered as<br />

characteristic for <strong>the</strong> Baltic Sea Coast <strong>of</strong> Latvia. Holoparasitus excipuliger is known as<br />

ubiquitous in <strong>the</strong> fauna <strong>of</strong> Latvia. The rest <strong>of</strong> <strong>the</strong> species do not have a wide range <strong>of</strong><br />

distribution (Table 2).<br />

The species in <strong>the</strong> material from <strong>the</strong> Riga Gulf Coast <strong>of</strong> <strong>the</strong> Kurzeme were ra<strong>the</strong>r rare<br />

and could be found in one sampling site only, with <strong>the</strong> exception <strong>of</strong> Macrocheles glaber<br />

(MULLER) and Prozercon trägardhi (HALBERT), which were recorded in 2 sampling sites.<br />

The differences between <strong>the</strong> Riga Gulf Coast and <strong>the</strong> Baltic Sea Coast <strong>of</strong> <strong>the</strong> Kurzeme<br />

could be explained by <strong>the</strong> differing ecological conditions, which are more severe in <strong>the</strong><br />

Baltic Sea Coast habitats. They are swept by <strong>the</strong> prevailing West winds and are more exposed<br />

to sea floods, which leads to more dynamic soils with a less stable organic content<br />

and a higher salt content. The Riga Gulf Coast climate is milder. There are fewer strong<br />

storms, <strong>the</strong> water temperature is higher, and <strong>the</strong> salt content <strong>of</strong> <strong>the</strong> water is lower, and <strong>the</strong><br />

West winds are not so strong <strong>the</strong>re. Because <strong>of</strong> such differences, <strong>the</strong> diversity <strong>of</strong> Gamasina<br />

mites in both sides <strong>of</strong> <strong>the</strong> Kurzeme Coast differs greatly. Species occurring only on one <strong>of</strong><br />

<strong>the</strong>se Coasts have selected <strong>the</strong> most favourable habitats for <strong>the</strong>m.<br />

Data from <strong>the</strong> previously poorly investigated Coast <strong>of</strong> Latvia provides an explanation<br />

for such a large number (23) <strong>of</strong> new species. Thirteen new species from <strong>the</strong> family<br />

Rhodacaridae were recorded, because <strong>of</strong> <strong>the</strong> weak investigation <strong>of</strong> this family in Latvia so<br />

far. The rest <strong>of</strong> <strong>the</strong> new species were common seashore inhabitants, such as Parasitus<br />

halophilus and Parasitus kempersi, or species typical <strong>of</strong> various habitats. A new Lasioseius<br />

sp. was found only in one sampling site <strong>of</strong> Kolkasrags in <strong>the</strong> yellow dunes and its distribution<br />

is currently unknown.<br />

Leioseius bicolor can be considered as <strong>the</strong> most widely distributed Gamasina mite species<br />

in <strong>the</strong> Kurzeme Coast habitats (Tables 1, 2). It was found in all <strong>the</strong> investigated habitats<br />

and sampling sites. Leioseius halophilus and Parasitus halophilus and Thinoseius spinosus<br />

and Leioseius insignis were found in all habitat types and in 7 and 6 sampling sites, respectively.<br />

The rest <strong>of</strong> <strong>the</strong> species were found in less than 6 sampling sites.<br />

The highest numbers <strong>of</strong> Gamasina mites were found in <strong>the</strong> habitats with well-aerated and<br />

humus-enriched soils, but dry and sandy habitats had a smaller number <strong>of</strong> species. The<br />

most numerous species were those characteristic <strong>of</strong> specific habitats, but also a high number<br />

<strong>of</strong> various species known to be common in inland ecosystems was recorded.<br />

Thus this investigation gives an insight into <strong>the</strong> diverse groups <strong>of</strong> Gamasina mites inhabiting<br />

coastal ecosystems and shows <strong>the</strong> great value <strong>of</strong> <strong>the</strong> biological diversity <strong>of</strong> soil fauna<br />

<strong>of</strong> <strong>the</strong> seashore habitats in Latvia.<br />

95


Acknowledgements<br />

This study was supported by <strong>the</strong> Swedish project “Areas with high biodiversity on <strong>the</strong> Latvian Baltic Sea<br />

Coast”, as well as by <strong>the</strong> German project “Biogeography and communities <strong>of</strong> Collembola (Insecta) and Gamasina<br />

(Acari) in coastal dunes <strong>of</strong> <strong>the</strong> Sou<strong>the</strong>rn Baltic”. The author is very grateful to Dr. Lars Lundquist from <strong>the</strong><br />

Department <strong>of</strong> Systematic Zoology, Lund University for <strong>the</strong> help given in <strong>the</strong> determination <strong>of</strong> some Gamasina<br />

species.<br />

References<br />

ANDRE, H.M., NOTI, M.-I., LEBRUN, P., 1994: The soil fauna: <strong>the</strong> o<strong>the</strong>r last biotic frontier. Biodiversity and Conservation,<br />

3, p. 45-56.<br />

BREGETOVA, N.G., 1977: Identification key <strong>of</strong> soil inhabiting mites. Mesostigmata. Nauka, Leningrad, 717 pp.<br />

(In Russian).<br />

CHRISTIAN, A., 1995: Succession <strong>of</strong> Gamasina in coal mined areas in Eastern Germany. Acta Zoologica Fennica,<br />

196, p. 380-381.<br />

COLEMAN, D.C., CROSSLEY, D.A. Jr., 1996: Fundamentals <strong>of</strong> soil ecology. Academic Press, San Diego, 205 pp.<br />

EITMINAVICHUTE, I.S. (ed.), 1976: Soil invertebrate fauna <strong>of</strong> <strong>the</strong> coastal area in <strong>the</strong> east Baltic region. Vilnius, 172<br />

pp. (In Russian)<br />

HIRSCHMANN, W., 1971: Gangsystematik der Parasitiformes. Acarologie, 82-88, 15, p. 10-42.<br />

JUNGERIUS, P.D., 1990: The characteristics <strong>of</strong> dune soils. Catena, Suplement 18, (Cremlingen), p. 155-162.<br />

KARG, W., 1993: Acari (Acarina), Milben Parasitiformes (Anactinochaeta) Cohors Gamasina Leach. Raubmilben.<br />

2., überarbeitete Auflage. Gustav Fischer Verlag, Jena, 524 pp.<br />

KOEHLER, H., HOFMANN, S., MUNDERLOH, E., 1992: The soil mes<strong>of</strong>auna <strong>of</strong> white-, grey- and brown-dune sites in<br />

Jutland (Denmark) with special reference to <strong>the</strong> Gamasina (Acari, Parasitiformes). In CARTER, R.W.G., CUR-<br />

TIS, T.G.F., SHEEHY-SKEFFINGTON, M.J. (eds.): Coastal dunes. Balkema, Roterdam, Brookfield, p. 273-281.<br />

KOLODOCHKA, L.A., 1978: Handbook on identifying <strong>of</strong> plant inhabiting phytoseiid mites. Naukova Dumka, Kiev,<br />

78 pp. (In Russian)<br />

LAPINA, I., 1976a: Gamasin mites <strong>of</strong> <strong>the</strong> family Aceosejidae Baker et Wharton, 1952 in <strong>the</strong> fauna <strong>of</strong> <strong>the</strong> Latvian<br />

SSR. Latvijas Entomologs, 19, p. 65-90. (In Russian)<br />

LAPINA, I., 1976b: Free-living gamasin mites <strong>of</strong> <strong>the</strong> family Laelaptidae Berlese, 1892 in <strong>the</strong> fauna <strong>of</strong> <strong>the</strong> Latvian<br />

SSR. Latvijas Entomologs, 19, p. 20-64. (In Russian)<br />

LAPINA, I., 1988: Gamasin mites <strong>of</strong> Latvia. Zinatne, Riga, 198 pp. (In Russian)<br />

MALLOW, D., LUDWIG, D., CROSSLEY, D.A. JR., 1984: Microarthropod community structure in a coastal dune<br />

ecosystem on Jekyll Island, Georgia U.S.A. Pedobiologia, 27, p. 365-376.<br />

MELECIS, V., SPOTE, I., PAULINA, E., 1994: Soil microarthropods as potential bioindicators for coastal monitoring.<br />

In GUDELIS, V., PAVILONSKAS, R., ROEPSTORFF, A. (eds): Abstracts <strong>of</strong> <strong>the</strong> International Conference “Coastal<br />

conservation and management in <strong>the</strong> Baltic region. Klaipedos Universitetas, Klaipeda (Lithuania), p. 111-<br />

115.<br />

PAULINA, E., SALMANE, I., 1999: Collembola and gamasin mites <strong>of</strong> <strong>the</strong> restricted area Lake Engure, Latvia. In<br />

ELBERG, K., MARTIN, M., PEKKARINEN, A. (eds): Proceedings <strong>of</strong> <strong>the</strong> XXIV Nordic Congress <strong>of</strong> Entomology.<br />

Eesti Loodusfoto, Tartu (Estonia), p. 145-150.<br />

PUGH, P.J.A., 1985: Studies on <strong>the</strong> biology <strong>of</strong> British littoral Acari. Ph. D. <strong>the</strong>sis, University <strong>of</strong> Wales.<br />

SALMANE, I., 1996: Gamasin mites (Acari, Gamasina) <strong>of</strong> Kurzeme coast <strong>of</strong> <strong>the</strong> Baltic Sea. Latvijas Entomologs,<br />

35, p. 28-34.<br />

96


Ekológia (Bratislava) Vol. 19, Supplement 4, 97-104, 2000<br />

SPIDERS (ARANEAE) OF THE PEATBOG NATIONAL<br />

NATURE RESERVE ŠVIHROVSKÉ RAŠELINISKO<br />

(SLOVAKIA)<br />

JAROSLAV SVATOŇ 1 , ROMAN PRÍDAVKA 2<br />

1 Kernova 8, 036 01 Martin, Slovakia.<br />

2 Novákova 5, 036 01 Martin, Slovakia.<br />

SVATOŇ J., PRÍDAVKA R.: Spiders (Araneae) <strong>of</strong> <strong>the</strong> peatbog National Nature Reserve Švihrovské<br />

rašelinisko (Slovakia). In GAJDOŠ P., PEKÁR S. (eds): Proceedings <strong>of</strong> <strong>the</strong> 18th <strong>European</strong> Colloquium<br />

<strong>of</strong> Arachnology, Stará Lesná, 1999. Ekológia (Bratislava), Vol. 19, Supplement 4/2000, p.<br />

97-104.<br />

Wetlands and peatbogs belong to <strong>the</strong> most rare and critically threatened ecosystems in<br />

Slovakia. Their protection became <strong>of</strong> prime interest in land conservation recently. Some 40<br />

to 50 years ago <strong>the</strong>re were 578 peatbogs registered in Slovakia with an area <strong>of</strong> more than<br />

4 000 ha. Most <strong>of</strong> <strong>the</strong>m were located in <strong>the</strong> lowland Podunajská nížina, Záhorie, in <strong>the</strong><br />

valley Horehronské podolie, in <strong>the</strong> Oravská and Liptovská kotlina Basin as well as in <strong>the</strong><br />

High Tatras. During <strong>the</strong> last 50 years <strong>the</strong> number and <strong>the</strong> area <strong>of</strong> <strong>the</strong>se habitats have dramatically<br />

decreased as a result <strong>of</strong> intensive agriculture and pollution. All this resulted in <strong>the</strong><br />

patchy distribution <strong>of</strong> such habitats.<br />

From <strong>the</strong> arachnological point <strong>of</strong> view, very little attention has been paid to wetland<br />

habitats in Slovakia. An exception is a study <strong>of</strong> JEDLIČKOVÁ (1988) which summarised <strong>the</strong><br />

seasonal occurrence <strong>of</strong> 283 species <strong>of</strong> <strong>spiders</strong> collected from six biotopes <strong>of</strong> Jurský Šúr in<br />

<strong>the</strong> lowland <strong>of</strong> Podunajská nížina, and <strong>the</strong> paper <strong>of</strong> SVATOŇ, PRÍDAVKA (1997) which deals<br />

with <strong>the</strong> arachn<strong>of</strong>auna <strong>of</strong> <strong>the</strong> Kláštorské lúky National Nature Reserve located in <strong>the</strong><br />

Turčianska kotlina Basin. A number <strong>of</strong> papers have treated <strong>the</strong>se habitats only superficially<br />

(GAJDOŠ, 1988, 1994; GAJDOŠ et al., 1984a, b, 1988, 1992; MILLER, 1935, 1936, 1937, 1958,<br />

1967; MILLER, KRATOCHVÍL, 1939, 1940; MILLER, SVATOŇ, 1974; SVATOŇ, 1981, 1983a, b, c,<br />

1984, 1985; SVATOŇ et al., 1998; SVATOŇ, MAJKUS, 1988; SVATOŇ, MILLER, 1979; ŽITŇANSKÁ,<br />

1977, 1981a, b).<br />

Stimulated by <strong>the</strong> Slovak Conservation Agency, residing in Liptovský Mikuláš, we began<br />

to investigate <strong>the</strong> spider fauna <strong>of</strong> <strong>the</strong> National Nature reserve Švihrovské rašelinisko in<br />

1995 and continued until 1999.<br />

97


This National Nature Reserve is situated at <strong>the</strong> border <strong>of</strong> <strong>the</strong> Liptovská kotlina Basin in<br />

<strong>the</strong> western part <strong>of</strong> <strong>the</strong> High Tatras near <strong>the</strong> village Jamník at 600-800 m a.s.l. (grid no.<br />

6884). The peatbog originated from <strong>the</strong> alluvium <strong>of</strong> <strong>the</strong> brook Čierny potok, in <strong>the</strong> middle<br />

<strong>of</strong> a spruce forest. Phytocenologically it is a transitional peatbog characterised by Caricion<br />

fuscae and Caricion lasiocarpae vegetation types. The few trees which grow on <strong>the</strong> peatbog<br />

are Picea excelsa, Pinus silvestris and Alnus sp.<br />

The <strong>spiders</strong> were collected at 6 sites (S1- moor biotope, S2- Alnetum incanae biotope,<br />

S3- central peatbog, S4- border <strong>of</strong> <strong>the</strong> spruce forest, S5- spruce forest, S6- meadows surrounding<br />

<strong>the</strong> brook) by means <strong>of</strong> pitfall traps, sweeping, beating <strong>of</strong> tree branches, sieving<br />

and individual collecting in order to obtain as many species as possible. The study sites<br />

were visited at one month intervals between May and October when <strong>the</strong> traps were emptied.<br />

Species nomenclature is according to PLATNICK (1997).<br />

During five years, 3 564 individuals <strong>of</strong> <strong>spiders</strong> belonging to 180 species (20 families)<br />

were collected in total (Table 1). 694 individuals were juvenile, and thus could not be<br />

identified into a species level. According to BUCHAR’S (1992) classification <strong>of</strong><br />

<strong>the</strong>rmopreference, 59 species (32.7%) were psychrophilous (P), 43 species (23.9%) were<br />

mesophilous (M), 67 species (37.8%) were unspecified (N), and 5 species (2.2%), namely<br />

Entelecara congenera (O. P.-CAMBRIDGE), Metopobactrus ascitus (KULCZYŃSKI), Talavera<br />

sp., Tegenaria domestica (CLERCK), and Xysticus sp. could not be classified. Remarkable is<br />

<strong>the</strong> occurrence <strong>of</strong> 6 species (3.3%) which are characterised as <strong>the</strong>rmophilous (T): Alopecosa<br />

trabalis (CLERCK), Araniella opisthographa (KULCZYŃSKI), Enoplognatha thoracica (HAHN),<br />

Meioneta fuscipalpis (C. L. KOCH), Steatoda castanea (CLERCK) and Xysticus lanio C. L.<br />

KOCH.<br />

Of <strong>the</strong> six study sites, <strong>the</strong> central part <strong>of</strong> <strong>the</strong> peatbog (S3) was found to be most diverse<br />

in spider species as 138 (76.7%) species were recorded <strong>the</strong>re. On <strong>the</strong> o<strong>the</strong>r sites only 20-70<br />

species were found. The poorest species composition (14 species) was observed on <strong>the</strong><br />

Alnetum incanae biotope (S2).<br />

From <strong>the</strong> faunistic point <strong>of</strong> view several spider species, such as Bolyphantes luteolus<br />

(BLACKWALL), Ceratinopsis stativa (SIMON), Emblyna brevidens (KULCZYŃSKI), Entelecara<br />

erythropus (WESTRING), Entelecara media KULCZYŃSKI, Hilaira excisa (O. P.-CAMBRIDGE),<br />

Pirata uliginosus (THORELL), Poeciloneta variegata (BLACKWALL), Sitticus caricis (WESTRING)<br />

and Theridion mystaceum L. KOCH are <strong>of</strong> a remarkable importance because <strong>the</strong>y are known<br />

only from few localities in Slovakia. Two species, namely Gnaphosa nigerrima L. KOCH<br />

and Heliophanus dampfi SCHENKEL, are new to Slovakia.<br />

The investigation <strong>of</strong> <strong>the</strong> Švihrovské rašelinisko peatbog will continue. We plan to focus<br />

on <strong>the</strong> surrounding wet biotopes. It is important to stress that arachnological research should<br />

be focussed on o<strong>the</strong>r peatbogs in Slovakia as well, particularly in <strong>the</strong> Orava region and <strong>the</strong><br />

western part <strong>of</strong> Slovakia.<br />

98


T a b l e 1. List <strong>of</strong> species collected from 6 sites (S1-S6) <strong>of</strong> <strong>the</strong> peatbog. Numbers represent ♂/♀. TP stands<br />

for <strong>the</strong>rmopreference classification after BUCHAR (1992). See text for explanation <strong>of</strong> classifiation letters.<br />

Species S-1 S-2 S-3 S-4 S-5 S-6 TP<br />

ULOBORIDAE<br />

Hyptiotes paradoxus (C. L. K.) –/1 P<br />

THERIDIIDAE<br />

Enoplognatha ovata (CL.) –/4 11/16 7/7 6/3 3/2 N<br />

Enoplognatha thoracica (HAHN) –/2 T<br />

Euryopis flavomaculata (C. L. K.) –/1 –/1 N<br />

Neottiura bimaculata (L.) –/2 –/4 –/2 N<br />

Robertus arundineti (O. P.-CBR.) 1/– N<br />

Steatoda bipunctata (L.) 1/2 M<br />

Steatoda castanea (CL.) –/1 T<br />

Theridion impressum L. K. 4/6 N<br />

Theridion mystaceum L. K. –/1 M<br />

Theridion pinastri L. K. 1/3 M<br />

Theridion sisyphium (CL.) –/1 6/14 1/13 1/1 –/2 N<br />

Theridion tinctum (WALCK.) 1/9 –/6 –/2 –/2 N<br />

Theridion varians HAHN 5/17 N<br />

LINYPHIIDAE<br />

Agyneta subtilis (O. P.- CBR.) 1/5 1/5 –/1 P<br />

Bathyphantes approximatus (O. P.- CBR.) –/1 P<br />

Bathyphantes nigrinus (WESTR.) –/3 N<br />

Bolyphantes alticeps (SUND.) 3/4 P<br />

Bolyphantes luteolus (BL.) –/1 P<br />

Centromerus arcanus (O. P.- CBR.) –/1 3/5 P<br />

Centromerus levitarsis (SIM.) 2/1 P<br />

Centromerus sylvaticus (BL.) –/1 N<br />

Ceratinopsis stativa (SIM.) –/2 P<br />

Cnephalocotes obscurus (BL.) 1/– 5/– N<br />

Dicymbium nigrum (BL.) 1/– N<br />

Dicymbium tibiale (BL.) –/1 –/2 N<br />

Diplocephalus latifrons (O. P.- CBR.) –/2 N<br />

Diplocephalus permixtus (O. P.- CBR.) –/1 P<br />

Diplostyla concolor (WID.) –/1 N<br />

Dismodicus bifrons (BL.) 1/– P<br />

Dismodicus elevatus (C. L. K.) 1/1 P<br />

Drapetisca socialis (SUND.) –/1 P<br />

Entelecara acuminata (WID.) –/1 –/2 M<br />

Entelecara congenera (O. P.- CBR.) –/3 –/1 –/1 3/5 ?<br />

Entelecara erythropus (WESTR.) –/2 –/3 M<br />

Entelecara media KULCZ. –/1 P<br />

Erigone atra BL. 1/– A<br />

Erigone dentipalpis (WID.) 1/– A<br />

Erigonella ignobilis (O. P.- CBR.) –/2 P<br />

Hilaira excisa (O. P.- CBR.) 2/– P<br />

Kaestneria dorsalis (WID.) –/1 M<br />

Lepthyphantes alacris (BL.) 2/6 P<br />

Lepthyphantes cristatus (MGE.) 3/2 2/8 P<br />

Lepthyphantes crucifer (MGE.) –/3 M<br />

Lepthyphantes mengei KULCZ. 1/– A<br />

Lepthyphantes obscurus (BL.) –/1 P<br />

Lepthyphantes tenebricola (WID.) 2/1 P<br />

Lepthyphantes zimmermanni BERTH. –/1 P<br />

99


T a b l e 1./2 Cont.<br />

Species S-1 S-2 S-3 S-4 S-5 S-6 TP<br />

Leptorhoptrum robustum (WESTR.) 3/– P<br />

Linyphia hortensis SUND. –/1 M<br />

Linyphia triangularis (CL.) 4/3 9/22 7/7 1/1 1/1 N<br />

Lophomma punctatum (BL.) 5/3 P<br />

Macrargus rufus (WID.) 2/1 N<br />

Maso sundevalli (WESTR.) 2/– P<br />

Meioneta fuscipalpis (C. L. K.) –/1 T<br />

Meioneta rurestris (C. L. K.) –/3 N<br />

Metopobactrus ascitus (KULCZ.) 1/– ?<br />

Micrargus herbigradus (BL.) 1/1 1/1 P<br />

Microlinyphia pusilla (SUND.) 1/13 N<br />

Neriene peltata (WID.) –/1 M<br />

Neriene radiata (WALCK.) 1/4 –/1 M<br />

Notioscopus sarcinatus (O. P.- CBR.) –/1 15/28 –/4 P<br />

Oedothorax agrestis (BL.) 2/– M<br />

Oedothorax apicatus (BL.) 1/– 1/– M<br />

Oedothorax gibbosus (BL.) 1/4 3/3 7/21 2/3 P<br />

Oedothorax retusus (WEST.) 1/– P<br />

Pelecopsis radicicola (L. K.) 1/– N<br />

Pityohyphantes phrygianus (C. L. K.) 2/– 1/5 1/1 –/2 P<br />

Pocadicnemis pumila (BL.) –/3 1/– N<br />

Poeciloneta variegata (BL.) –/3 P<br />

Tallusia experta (O. P.- CBR.) 5/– P<br />

Tapinopa longidens (WID.) 1/– P<br />

Walckenaeria acuminata BL. –/1 1/1 N<br />

Walckenaeria antica (WID.) 1/– N<br />

Walckenaeria atrotibialis (O. P.- CBR.) 2/2 6/13 –/2 M<br />

Walckenaeria furcillata (MGE.) –/1 N<br />

Walckenaeria kochi (O. P.- CBR.) 1/1 4/8 –/2 P<br />

Walckenaeria mitrata (MGE.) –/1 N<br />

Walckenaeria nudipalpis (WESTR.) –/1 7/2 P<br />

TETRAGNATHIDAE<br />

Metellina mengei (BL.) 1/4 P<br />

Metellina segmentata (CL.) 2/2 P<br />

Pachygnatha listeri SUND. 3/– –/2 6/9 1/4 1/– –/1 M<br />

Tetragnatha extensa (L.) 2/5 –/2 M<br />

Tetragnatha montana SIM. 1/1 M<br />

Tetragnatha obtusa C. L. K. 2/1 –/3 –/2 M<br />

Tetragnatha pinicola L. K. 4/6 –/1 –/1 N<br />

ARANEIDAE<br />

Aculepeira ceropegia (WALCK.) 3/27 1/1 1/4 P<br />

Araneus alsine (WALCK.) –/1 2/6 1/7 M<br />

Araneus diadematus CL. 1/2 8/30 –/1 –/2 N<br />

Araneus marmoreus CL. 1/11 6/75 1/1 2/5 –/2 M<br />

Araneus quadratus CL. –/2 15/43 –/2 –/1 –/1 N<br />

Araneus sturmi (HAHN) P<br />

Araniella alpica (L. K.) 4/10 1/1 –/1 P<br />

Araniella cucurbitina (CL.) 3/4 1/3 1/1 1/– N<br />

Araniella displicata (HENTZ) –/1 N<br />

Araniella opisthographa (KULCZ.) –/3 T<br />

Cyclosa conica (PALL.) 1/– 1/4 –/3 1/– P<br />

Gibbaranea omoeda (THOR.) –/1 P<br />

Hypsosinga sanguinea (C. L. K.) –/2 N<br />

100


T a b l e 1./3 Cont.<br />

Species S-1 S-2 S-3 S-4 S-5 S-6 TP<br />

Larinioides patagiatus (CL.) –/6 M<br />

Mangora acalypha (WALCK.) 1/4 –/1 N<br />

LYCOSIDAE<br />

Alopecosa aculeata (CL.) –/1 –/1 M<br />

Alopecosa pulverulenta (CL.) –/3 1/– –/4 1/3 N<br />

Alopecosa trabalis (CL.) –/1 1/1 T<br />

Pardosa amentata (CL.) 1/6 P<br />

Pardosa lugubris (WALCK.) –/1 –/1 N<br />

Pardosa monticola (CL.) –/1 N<br />

Pardosa palustris (L.) –/1 N<br />

Pardosa prativaga (L. K.) –/1 P<br />

Pardosa pullata (CL.) –/8 15/16 56/98 30/23 2/3 N<br />

Pirata hygrophilus THOR. 3/10 1/20 40/65 13/43 P<br />

Pirata latitans (BL.) 1/9 M<br />

Pirata piraticus (CL.) 6/10 P<br />

Pirata piscatorius (CL.) 2/– M<br />

Pirata uliginosus (THOR.) 1/5 25/6 –/3 –/1 P<br />

Trochosa spinipalpis (O. P.- CBR.) –/3 54/24 –/5 P<br />

Trochosa terricola THOR. –/1 1/7 –/2 N<br />

Xerolycosa nemoralis (WESTR.) 1/2 –/1 N<br />

PISAURIDAE<br />

Dolomedes fimbriatus (CL.) –/9 2/72 –/1 –/16 P<br />

Pisaura mirabilis (CL.) 2/2 N<br />

AGELENIDAE<br />

Agelena labyrinthica (CL.) 2/– 1/– M<br />

Tegenaria domestica (CL.) 1/– ?<br />

Tegenaria silvestris L. K. –/1 N<br />

CYBAEIDAE<br />

Cybaeus angustiarum L. K. 10/3 1/– P<br />

HAHNIIDAE<br />

Antistea elegans (BL.) 21/7 13/8 116/99 67/54 P<br />

Cryphoeca silvicola (C. L. K.) 1/2 P<br />

DICTYNIDAE<br />

Cicurina cicur (FABR.) –/2 N<br />

Dictyna arundinacea (L.) 1/1 N<br />

Dictyna pusilla THOR. –/5 1/1 1/2 –/2 P<br />

Emblyna brevidens (KULCZ.) –/1 1/– M<br />

Nigma flavescens (WALCK.) –/1 N<br />

AMAUROBIIDAE<br />

Callobius claustrarius (HAHN) 1/2 P<br />

Coelotes inermis (L. K.) 12/4 P<br />

Coelotes terrestris (WID.) 5/3 1/– 12/4 8/2 N<br />

LIOCRANIDAE<br />

Agroeca brunea (BL.) 2/– –/1 N<br />

Phrurolithus festivus (C. L. K.) –/2 N<br />

CLUBIONIDAE<br />

Cheiracanthium erraticum (WALCK.) 2/44 1/5 2/10 M<br />

Clubiona caerulescens L. K. –/1 N<br />

Clubiona diversa O. P.- CBR. –/2 N<br />

Clubiona germanica THOR. 1/1 1/1 –/1 M<br />

Clubiona lutescens WESTR. –/1 1/32 –/3 –/2 M<br />

Clubiona neglecta O. P.- CBR. 1/3 N<br />

101


T a b l e 1./4 Cont.<br />

Species S-1 S-2 S-3 S-4 S-5 S-6 TP<br />

Clubiona pallidula (CL.) –/1 –/1 M<br />

Clubiona reclusa O. P.- CBR. –/4 1/33 2/29 P<br />

Clubiona stagnatilis KULCZ. –/2 M<br />

Clubiona subsultans THOR. 3/5 P<br />

Clubiona subtilis L. K. –/1 M<br />

Clubiona terrestris WESTR. –/1 N<br />

Clubiona trivialis C. L. K. 4/– 15/10 2/2 1/– –/1 N<br />

GNAPHOSIDAE<br />

Drassodes pubescens (THOR.) 2/– N<br />

Gnaphosa nigerrima L. K. 1/5 M<br />

Zelotes clivicola (L. K.) 1/– P<br />

Zelotes latreillei (SIM.) 1/– A<br />

ZORIDAE<br />

Zora spinimana (SUND.) –/1 2/1 –/2 A<br />

HETEROPODIDAE<br />

Micrommata virescens (CL.) –/2 2/33 A<br />

PHILODROMIDAE<br />

Philodromus aureolus (CL.) –/1 –/1 M<br />

Philodromus cespitum (WALCK.) –/2 M<br />

Philodromus collinus C. L. K. 18/18 2/4 2/3 1/2 A<br />

Philodromus margaritatus (CL.) –/1 1/25 –/2 M<br />

Tibellus oblongus (WALCK.) –/1 9/29 –/2 –/4 M<br />

THOMISIDAE<br />

Diaea dorsata (FABR.) 1/4 –/1 M<br />

Misumena vatia (CL.) –/1 2/13 –/1 –/1 –/1 A<br />

Ozyptila trux (BL.) 1/– 4/2 P<br />

Xysticus audax (SCHR.) 2/6 A<br />

Xysticus bifasciatus C. L. K. –/1 A<br />

Xysticus cristatus (CL.) –/1 1/3 –/3 1/2 A<br />

Xysticus lanio C. L. K. 1/1 T<br />

Xysticus sp. –/3 4/29 –/5 –/8 M<br />

Xysticus ulmi (HAHN) 1/– M<br />

SALTICIDAE<br />

Bianor aurocinctus (OHL.) 1/– 1/– A<br />

Dendryphantes rudis (SUND.) 2/– 10/21 4/9 –/6 A<br />

Euophrys frontalis (WALCK.) –/1 A<br />

Evarcha arcuata (CL.) 1/1 M<br />

Evarcha falcata (CL.) 5/2 26/20 2/1 3/3 2/1 A<br />

Heliophanus dampfi SCHENK. –/2 P<br />

Heliophanus dubius C. L. K. –/4 M<br />

Neon reticulatus (BL.) 1/4 M<br />

Salticus cingulatus (PANZ.) –/2 M<br />

Sitticus caricis (WESTR.) 1/– 8/3 P<br />

Talavera sp. 1/– 2/– P<br />

102


References<br />

BUCHAR, J., 1992: Komentierte Artenliste der Spinnen Böhmens (Araneida). Acta Univ. Carol., Biol. (Praha), 36,<br />

p. 383-428.<br />

GAJDOŠ, P., 1988: Composition <strong>of</strong> <strong>spiders</strong> (Aranei) <strong>of</strong> <strong>the</strong> locality Úkropová in <strong>the</strong> Ponitrie Protected Landscape<br />

Area. Rosalia (Nitra), 5, p. 117-127. (In Slovak)<br />

GAJDOŠ, P., 1994: The epigeic spider communities <strong>of</strong> lowlands forests in <strong>the</strong> surrouding <strong>of</strong> <strong>the</strong> Morava river.<br />

Ekológia (Bratislava), 13, Supplement 1, p. 135-144.<br />

GAJDOŠ, P., SVATOŇ, J., KRUMPÁL, M., 1984a: New and unusual records <strong>of</strong> <strong>spiders</strong> from Slovakia I. (Araneae:<br />

Atypidae, Dictynidae, Gnaphosidae, Clubionidae, Zoridae, Salticidae, Lycosidae). Biológia (Bratislava), 39,<br />

2, p. 223-225.<br />

GAJDOŠ, P., SVATOŇ, J., KRUMPÁL, M., 1984b: New and unusual records <strong>of</strong> <strong>spiders</strong> from Slovakia II. (Araneae:<br />

Linyphiidae, Micryphantidae). Biológia (Bratislava), 39, 6, p. 633-635.<br />

GAJDOŠ, P., SVATOŇ, J., MAJKUS, Z., 1988: Spiders (Araneae) <strong>of</strong> <strong>the</strong> surroundings <strong>of</strong> Nová Sedlica (East Carpathian).<br />

Zborník Východoslovenského múzea v Košiciach, Prírodné vedy, (Košice), 29, p. 73-90. (In Slovak)<br />

GAJDOŠ, P., SVATOŇ, J., ŽITŇANSKÁ, O., KRUMPÁLOVÁ, Z., 1992: Spiders (Araneae) <strong>of</strong> <strong>the</strong> Danubian plain. Entom.<br />

Probl., (Bratislava), 23, p. 39-60.<br />

JEDLIČKOVÁ, J., 1988: Spiders (Aranei) <strong>of</strong> <strong>the</strong> Jurský šúr Nature Reserve (Czechoslovakia). Biol. Práce (Bratislava),<br />

34, 3, p. 1-170.<br />

MILLER, F., 1935: Contribution to <strong>the</strong> arachnological research <strong>of</strong> south part <strong>of</strong> Bohemia. Věda přír. (Praha), 16, 1,<br />

p. 9-21. (In Czech)<br />

MILLER, F., 1936: Ano<strong>the</strong>r contribution to <strong>the</strong> spider fauna <strong>of</strong> <strong>the</strong> south part <strong>of</strong> Czech. Věda přír. (Praha), 17, 4,<br />

p. 98. (In Czech)<br />

MILLER, F., 1937: Neue Spinnenarten (Araneae) aus der Čechoslovakischen Republik II. Festschr. Strand (Riga),<br />

2, p. 563-570.<br />

MILLER, F., 1958: Beitrag zur Kenntnis der tschechoslovakischen Spinnenarten aus der Gattung Centromerus<br />

Dahl. Čas. českoslov. Společ. ent. (Praha), 55, 1, p. 71-91.<br />

MILLER, F., 1967: Studien über die Kopulationsorgane der Spinnengattung Zelotes, Micaria, Robertus und Dipoena<br />

nebst Beschreibung einiger neuen oder unvollkommen bekannten Spinnenarten. Přírodov. Pr. Úst. ČSAV<br />

Brno, N. S. (Praha), 1, 7, p. 251-298.<br />

MILLER, F., KRATOCHVÍL, J., 1939: Several new <strong>spiders</strong> for Czechoslovakia. Sbor. ent. Odd. Nár. Mus. (Praha), 17,<br />

p. 234-244. (In Czech)<br />

MILLER, F., KRATOCHVÍL, J., 1940: Ein Beitrag zur Revision der mitteleuropäischen Spinnenarten aus der Gattung<br />

Porrhomma E. Sim. Zool. Anz. (Leipzig), 130, 7-8, p. 161-190.<br />

MILLER, F., SVATOŇ, J., 1974: Contribution to <strong>the</strong> knowledge <strong>of</strong> spider fauna <strong>of</strong> Súľovské skaly. In: Štollman, A.<br />

(ed.), Súľovské skaly – Štátna prírodná rezervácia. Monogr. Vlastiv. zbor. Považia (Martin), 1, p. 243-284.<br />

(In Slovak, summary in German).<br />

PLATNICK, N.I., 1997: Advances in Spider Taxonomy 1992-1995, with Redescriptions 1940-1980. New York<br />

Entom. <strong>Society</strong> and Amer. Mus. <strong>of</strong> Nat. Hist. Publ., New York, 976 pp.<br />

SVATOŇ, J., 1981: Einige neue oder unvollkommen bekannte Spinnenarten aus der Slowakei. Biológia (Bratislava),<br />

36, 2, p. 167-177.<br />

SVATOŇ, J., 1983a: Spider fauna (Arachnida, Araneae) <strong>of</strong> <strong>the</strong> State Nature Reserve Čierny kameň in Veľká Fatra.<br />

Ochr. Prír. (Bratislava), 4, p.119-134. (In Slovak, summary in German, English and Russian.)<br />

SVATOŇ, J., 1983b: Spiders (Araneida) <strong>of</strong> <strong>the</strong> central part <strong>of</strong> <strong>the</strong> High Tatras. Zbor. Prác o Tatran. nár. Parku<br />

(Martin), 24, p. 95-153. (In Slovak, summary in German, English and Russian.)<br />

SVATOŇ, J., 1983c: Weitere neue oder unvollkommen bekannte Spinnenarten aus der Slowakei. Biológia (Bratislava),<br />

38, 6, p. 569-580.<br />

SVATOŇ, J., 1984: Spiders (Araneida) <strong>of</strong> Turčianská kotlina Basin, 1. part (Mygalomorpha: Atypidae. Cribellatae:<br />

Amaurobiidae, Dictynidae, Uloboridae). Kmetianum (Martin), 7, p. 217-225. (In Slovak)<br />

SVATOŇ, J., 1985: Outline <strong>of</strong> <strong>the</strong> spider fauna (Araneida) <strong>of</strong> <strong>the</strong> proposed protected site Urpín near Banská<br />

Bystrica. Stredné Slovensko (Martin), 4, p. 237-259. (In Slovak)<br />

103


SVATOŇ, J., FRANC, V., KRAJČA, A., KRUMPÁLOVÁ, Z., KRÍŽOVÁ, V., PEKÁR, S., STAŇKOVÁ, E., SVATOŇOVÁ, E., 1998:<br />

To <strong>the</strong> contribution <strong>of</strong> <strong>spiders</strong> (Araneae) <strong>of</strong> Nature Reserve Kysuce. Vlast. zborník Považia (Žilina), 19, p.<br />

101-115. (In Slovak, summary in English.)<br />

SVATOŇ, J., MAJKUS, Z., 1988: Contribution to <strong>the</strong> knowledge <strong>of</strong> <strong>spiders</strong> (Araneae) <strong>of</strong> Plešivská planina. Ochr.<br />

Prír. – Výsk. Práce z ochr. prír. (Bratislava), 6B, p. 203-242. (In Slovak, summary in German, English and<br />

Russian.)<br />

SVATOŇ, J., MILLER, F., 1979: Spider fauna <strong>of</strong> <strong>the</strong> State Nature Reserve Rozsutec. Kmetianum (Martin), 5, p. 177-<br />

198. (In Slovak, summary in German and Russian.)<br />

SVATOŇ, J., PRÍDAVKA, R, 1997: Spider fauna (Araneae) <strong>of</strong> <strong>the</strong> State Nature Reserve Kláštorské lúky in <strong>the</strong> basin<br />

Turčianska kotlina. In KADLEČÍK, J. (ed.): Zborník „Turiec 1996“, MŽP SR, Bratislava, p. 131-143. (In Slovak)<br />

ŽITŇANSKÁ, O., 1977: Spider fauna <strong>of</strong> <strong>the</strong> surroundings <strong>of</strong> Zemplínska Šírava. Acta Fac. rer. nat. Univ. Comen.,<br />

Zool. (Bratislava), 22, p. 69-85. (In Slovak, summary in Russian.)<br />

ŽITŇANSKÁ, O., 1981a: Studie über die Lebensgemeinschaften der Spinnen in dem Waldtyp Querco-carpinetum<br />

in Báb bei Nitra. Acta Fac. rer. nat. Univ. Comen., Zool. (Bratislava), 25, p. 39-59.<br />

ŽITŇANSKÁ, O., 1981b: Zusammensetzung der Lebensgemeinschaften der Spinnen (Araneida) in dem Gebiet<br />

Liptovská Mara. Acta Fac. rer. nat. Univ. Comen., Zool. (Bratislava), 25, p. 61-81.<br />

104


Ekológia (Bratislava) Vol. 19, Supplement 4, 105-110, 2000<br />

DATA ON THE BIOLOGY OF LARINIA JESKOVI<br />

MARUSIK, 1986 (ARANEAE: ARANEIDAE) FROM<br />

THE REED BELTS OF LAKE BALATON<br />

CSABA SZINETÁR<br />

Department <strong>of</strong> Zoology Berzsenyi College, H-9701 Szomba<strong>the</strong>ly, Károlyi Gáspár tér 4. Hungary. E-mail:<br />

szcsaba@fs2.bdtf.hu<br />

Introduction<br />

Abstract<br />

SZINETÁR C.: Data on <strong>the</strong> biology <strong>of</strong> Larinia jeskovi Marusik, 1986 (Araneae: Araneidae) from <strong>the</strong><br />

reed belts <strong>of</strong> Lake Balaton. In GAJDOŠ P., PEKÁR S. (eds): Proceedings <strong>of</strong> <strong>the</strong> 18th <strong>European</strong> Colloquium<br />

<strong>of</strong> Arachnology, Stará Lesná, 1999. Ekológia (Bratislava), Vol. 19, Supplement 4/2000, p.<br />

105-110.<br />

Observations were made <strong>of</strong> Larinia jeskovi Marusik, 1986 in Hungary (Balatongyörök, UTM<br />

XM87). The study describes <strong>the</strong> habitat, activity and phenological characteristics <strong>of</strong> this rare orb<br />

web spider observed in <strong>the</strong> reed belts <strong>of</strong> Lake Balaton.<br />

As part <strong>of</strong> a complex research project into <strong>the</strong> fauna <strong>of</strong> Hungarian reeds, <strong>the</strong> <strong>spiders</strong> <strong>of</strong> <strong>the</strong><br />

reed belt <strong>of</strong> Lake Balaton have been studied by <strong>the</strong> author since 1992. Some interesting observations<br />

were previously reported on <strong>the</strong> fauna in 1995 (SZINETÁR, 1995). Several zoologists<br />

dealt with <strong>the</strong> research <strong>of</strong> <strong>the</strong> surroundings <strong>of</strong> Lake Balaton in <strong>the</strong> nineties. The observations<br />

<strong>of</strong> this research, toge<strong>the</strong>r with an account <strong>of</strong> <strong>the</strong> collections made by Imre Loksa and István<br />

Loksa in 1990-91, were summarised by SZATHMÁRY (1995). In <strong>the</strong> summer <strong>of</strong> 1996 two female<br />

and two male Larinia jeskovi were collected during nocturnal observations and 9 fur<strong>the</strong>r female<br />

specimens were observed. This rare species was described from <strong>the</strong> Amur River basin<br />

(Russia) by MARUSIK (1986). In Europe L. jeskovi has been discovered and investigated by<br />

KUPRYJANOWICZ (1995, 1997). The <strong>European</strong> population <strong>of</strong> L. jeskovi could belong to a different<br />

species (MARUSIK, pers. com.). One female specimen has been kept under experimental conditions<br />

to obtain a better understanding <strong>of</strong> <strong>the</strong> process <strong>of</strong> web building. In <strong>the</strong> summer <strong>of</strong> 1997<br />

data on <strong>the</strong> species were collected at <strong>the</strong> same habitat for a longer time. During this period<br />

several hundred specimens were observed along <strong>the</strong> section <strong>of</strong> lakeshore under investigation.<br />

In this study I summarise <strong>the</strong> data collected during <strong>the</strong>se two years.<br />

105


Study area<br />

The study area is situated in <strong>the</strong> north-western region <strong>of</strong> Lake Balaton, in <strong>the</strong> vicinity <strong>of</strong><br />

Balatongyörök (Lat.47°10’ N, Long. 17°20’ E., UTM XM 78).<br />

The habitat where observations were made is a typical reedy part <strong>of</strong> <strong>the</strong> nor<strong>the</strong>rn shore.<br />

The homogeneous reed belt has virtually disappeared from this shore section. Only some<br />

metre-wide spots can be sporadically found. This discontinuous reedy <strong>zone</strong> is completely<br />

washed by <strong>the</strong> waves and it creates a debris barrier beach parallel to <strong>the</strong> shore. Outwards,<br />

a sedge-reed strip <strong>of</strong> land <strong>of</strong> variable width can be found, which turns into a marsh meadow<br />

and fen meadow. The strip between <strong>the</strong> barrier beach and <strong>the</strong> fen meadow is a permanently<br />

flooded area, even in <strong>the</strong> summer. In some places this <strong>zone</strong> is one hundred metres wide. Its<br />

water is cooler than elsewhere and has a brownish colour caused by humic acids. In <strong>the</strong><br />

sedge-reed strip Typha angustifolia is frequent and Cladium mariscus can be found sporadically<br />

as well. In some places T. angustifolia forms almost homogenous, reed-free stands.<br />

Typha latifolia can also be found in limited numbers in <strong>the</strong> reedy area. On <strong>the</strong> clumps <strong>of</strong><br />

Carex elata, Hydrocotyle vulgaris and Pedicularis palustris are frequent. In <strong>the</strong> fragments<br />

<strong>of</strong> <strong>the</strong> swampy meadow several orchid species (Dactylorhiza incarnata, Orchis laxiflora,<br />

Epipactis palustris) and Eriophorum latifolium can be found. The major part <strong>of</strong> <strong>the</strong> area<br />

marked out for data collection was covered by Caricetum elatae typhaetosum angustifoliae.<br />

Material and methods<br />

Since <strong>the</strong> species is exclusively nocturnal, it was only investigated at night. Probably, this is <strong>the</strong> reason<br />

why <strong>the</strong> species has only recently been found. The research was carried out with <strong>the</strong> help <strong>of</strong> a torch, generally<br />

between 10 and 12 p.m. The field observations were made on 21-23 August, 1996. In <strong>the</strong> summer <strong>of</strong> 1996<br />

a total <strong>of</strong> 13 specimens were found and observed (11 female, 2 male) in <strong>the</strong> examined reed belt. Data for <strong>the</strong><br />

webs <strong>of</strong> eight females were collected in <strong>the</strong> surveyed habitat. From 24 August, 1996 a female specimen was<br />

kept in an artificial habitat for 5 days to observe web-building and feeding at night. A stem <strong>of</strong> T. angustifolia<br />

was planted in a pot filled with water. The pot had a diameter <strong>of</strong> 40 cm and height <strong>of</strong> 15 cm. The spider was<br />

acclimatised here. In <strong>the</strong> summer <strong>of</strong> 1997, between 14 July and 28 August, <strong>the</strong> research was carried out in <strong>the</strong><br />

same location as in <strong>the</strong> previous year and in <strong>the</strong> surroundings along about 2-3 kilometres <strong>of</strong> a shore section. In<br />

<strong>the</strong> area several hundreds <strong>of</strong> specimens <strong>of</strong> L. jeskovi were observed. In order to get exact data, an area was<br />

marked out that was undisturbed by anglers and ba<strong>the</strong>rs. Data were collected six times here between 19 July<br />

and 29 August. The sampling area was a 2 metre-wide and 90 metre-long strip, perpendicular to <strong>the</strong> lake. The<br />

area was marked out with a rope at a height <strong>of</strong> 1 metre. The designated area was thoroughly examined at<br />

night, using torches for illumination. During observation periods in <strong>the</strong> summer <strong>of</strong> 1997, data on <strong>the</strong> web sites<br />

<strong>of</strong> 163 specimens were recorded. On <strong>the</strong> basis <strong>of</strong> this, we have factual information on <strong>the</strong> webs <strong>of</strong> 176 specimens<br />

(1996-97). In addition, at least <strong>the</strong> same number <strong>of</strong> specimens were observed along <strong>the</strong> section <strong>of</strong> shore<br />

examined. I recorded <strong>the</strong> exact location <strong>of</strong> <strong>the</strong> Larinia specimens, <strong>the</strong> distance between <strong>the</strong> hub <strong>of</strong> <strong>the</strong> web and<br />

<strong>the</strong> water level, <strong>the</strong> plant species <strong>the</strong> web was fastened to, and <strong>the</strong> behaviour <strong>of</strong> <strong>the</strong> animals. In <strong>the</strong> designated<br />

area no animals were collected. Two persons carried out <strong>the</strong> research each time, examining <strong>the</strong> sample area<br />

with torches. Only rainless and windless nights were adequate for data collection because <strong>the</strong> animals do not<br />

build <strong>the</strong>ir webs when <strong>the</strong> wind blows or it rains, and <strong>the</strong>y quickly demolish <strong>the</strong>ir webs when <strong>the</strong> wea<strong>the</strong>r<br />

changes and <strong>the</strong>y withdraw to <strong>the</strong> vegetation <strong>zone</strong>. During <strong>the</strong> research period (July and August) we did not<br />

manage to catch L. jeskovi specimens during <strong>the</strong> daytime. During nocturnal collection with sweep-netting<br />

106


some specimens (non-quantitative sample) were caught. In <strong>the</strong> autumn <strong>of</strong> 1996 and 1997 daytime research<br />

has been carried out for finding <strong>the</strong> egg sacs.<br />

Results and discussion<br />

Phenology<br />

My observation data relate to <strong>the</strong> period between 26 June and 10 October only. Between<br />

26 June and 24 July only juvenile specimens were found. During July <strong>the</strong>se were<br />

generally in <strong>the</strong> subadult stage (on <strong>the</strong> male <strong>spiders</strong> <strong>the</strong> swollen palpal organs were conspicuous).<br />

On 29 July fully developed males were also found. The majority <strong>of</strong> female<br />

<strong>spiders</strong> were still subadults. The adult male <strong>spiders</strong> were typical vagrants, but a fully<br />

developed male was found in a small web as well, and it was in a typical position on <strong>the</strong><br />

hub. During August males were found in <strong>the</strong> webs <strong>of</strong> females on several occasions (for<br />

instance from <strong>the</strong> <strong>spiders</strong> observed on 29 August, 9 were males. 5 were vagrants, 2 were<br />

in <strong>the</strong>ir own web, and 2 at <strong>the</strong> edge <strong>of</strong> <strong>the</strong> web <strong>of</strong> females). The cocoon <strong>of</strong> <strong>the</strong> species<br />

could not be found. It is presumed that <strong>the</strong> females lay <strong>the</strong>ir egg sacs in September. During<br />

October 1997 daytime research was carried out in <strong>the</strong> area using sweep-netting. With<br />

sweep-netting at a height <strong>of</strong> 50 cm I managed to catch 3 young L. jeskovi. On <strong>the</strong> basis <strong>of</strong><br />

<strong>the</strong>ir colour, shape and markings it was obvious that <strong>the</strong>y were juvenile specimens from<br />

<strong>the</strong> 1. or 2. stage <strong>of</strong> L. jeskovi.<br />

Daily activity<br />

According to my observations, in <strong>the</strong> testing period (subadult and adult phase) L. jeskovi<br />

builds its web only at night. In <strong>the</strong> test area I did not manage to observe <strong>the</strong> animals during<br />

<strong>the</strong> daytime. The female specimen reared under experimental conditions spent <strong>the</strong> day near<br />

<strong>the</strong> water level, motionless, in a resting position. It became active during <strong>the</strong> half-hour after<br />

sunset. Firstly only slow stretching (smaller changes <strong>of</strong> position) was observed. Web building<br />

began 40-50 minutes after sunset and lasted for about 15-25 minutes. The building <strong>of</strong><br />

<strong>the</strong> main and temporary spirals took place very quickly. After building <strong>the</strong> main spiral, <strong>the</strong><br />

spider takes an upside-down position on <strong>the</strong> hub <strong>of</strong> <strong>the</strong> web. Like <strong>the</strong> o<strong>the</strong>r cross <strong>spiders</strong>, it<br />

wraps its prey and takes it to <strong>the</strong> hub. The web is relatively weak, and is easily damaged by<br />

<strong>the</strong> wind and by prey animals. The observed spider dismantled <strong>the</strong> web before dawn. 1.5-2<br />

hours before sunrise <strong>the</strong> web could no longer be found. Between 17-24 July 1997 (sunset<br />

was 8.42 p.m. on 19 July) <strong>the</strong> web was actively built between 9.15 and 9.30 p.m. Between<br />

27-29 August (sunset was 7.38 p.m.) <strong>the</strong> webs were ready after 8.45 p.m. When it was<br />

windy or rainy, <strong>the</strong>y did not build webs. When <strong>the</strong> wind strength was increasing during <strong>the</strong><br />

night, <strong>the</strong>y quickly dismantled <strong>the</strong>ir webs. This prevented us from collecting data on several<br />

occasions.<br />

107


108<br />

Typha angustifolia Phragmites australis<br />

Carex elata Typha latifolia<br />

30%<br />

16%<br />

1%<br />

53%<br />

Fig.1. Web-site selection <strong>of</strong> Larinia jeskovi (14.07.-<br />

29.08.1997, Balatongyörök).<br />

Height <strong>of</strong> hub (cm)<br />

250<br />

200<br />

150<br />

100<br />

50<br />

0<br />

21.07-24.07 29.07-28.08<br />

Fig. 2. Mean height (± SD) <strong>of</strong> web hubs (<strong>of</strong> Larinia<br />

jeskovi (21.07-24.07: only juveniles, 29.07-28.08:<br />

adult males and subadult and adult females).<br />

Population density<br />

14<br />

12<br />

10<br />

8<br />

6<br />

4<br />

2<br />

0<br />

21.07. 24.07. 29.07. 28.08.<br />

Fig.3. Mean population density (± SD) <strong>of</strong> Larinia jeskovi<br />

at Lake Balaton (number <strong>of</strong> specimens/20m 2 ).<br />

Website selection<br />

The webs <strong>of</strong> female specimens found in<br />

<strong>the</strong> summer <strong>of</strong> 1996 were all on T.<br />

angustifolia. Some <strong>of</strong> <strong>the</strong> webs were fastened<br />

to bulrush and reed at <strong>the</strong> same time.<br />

In <strong>the</strong> area designated in <strong>the</strong> summer <strong>of</strong> 1997<br />

we managed to observe <strong>the</strong> choice <strong>of</strong> plants<br />

by 159 specimens. Between 14 July and 29<br />

August, 52% <strong>of</strong> <strong>the</strong> observed adult and subadult<br />

specimens fastened <strong>the</strong>ir webs to T.<br />

angustifolia, 30% to reeds, 17% to C. elata,<br />

1% to T. latifolia. From this it is clear that<br />

this species prefers T. angustifolia (Fig. 1).<br />

This choice can be explained by <strong>the</strong> fact that<br />

<strong>the</strong> closing <strong>of</strong> <strong>the</strong> upper level <strong>of</strong> <strong>the</strong> vegetation<br />

is disadvantageous for <strong>the</strong> species. The<br />

closing <strong>of</strong> <strong>the</strong> vegetation was more significant<br />

in <strong>the</strong> case <strong>of</strong> <strong>the</strong> reed in <strong>the</strong> examined<br />

habitat than at places where <strong>the</strong> bulrush was<br />

dominant at <strong>the</strong> upper level. The distance<br />

between <strong>the</strong> hub and <strong>the</strong> water level depends,<br />

<strong>of</strong> course, on <strong>the</strong> plant. Adults were usually<br />

found on bulrush and reed. In 28% <strong>of</strong> cases<br />

<strong>the</strong> height <strong>of</strong> <strong>the</strong> webs observed up to 24<br />

July was less than 100cm, after 29 July it<br />

was only 3.4%. In <strong>the</strong> case <strong>of</strong> <strong>the</strong> webs examined<br />

in 1996 <strong>the</strong> average distance between<br />

<strong>the</strong> hub and water level was 113.7<br />

(±17.4) cm. In 1997 <strong>the</strong> height <strong>of</strong> 158 webs<br />

was recorded in <strong>the</strong> test area between 19<br />

July and 29 August. The distance between<br />

<strong>the</strong> hub <strong>of</strong> <strong>the</strong> web and <strong>the</strong> water level was<br />

139cm (138.89 ±44.54). The height <strong>of</strong> <strong>the</strong><br />

web found in <strong>the</strong> highest place was 225cm,<br />

<strong>the</strong> height <strong>of</strong> <strong>the</strong> web found in <strong>the</strong> lowest<br />

place was 40cm. The average height <strong>of</strong> <strong>the</strong><br />

webs observed between 29 July and 28<br />

August (<strong>the</strong>y were already adults) was<br />

greater (159.15 ±36.65). On <strong>the</strong> basis <strong>of</strong> this<br />

observation it can be concluded that webs<br />

<strong>of</strong> adults were higher than those <strong>of</strong> subadults<br />

(133.96 ±41.72) (P


Web-structure and building behaviour<br />

L. jeskovi builds its web exclusively at night. Every night it builds its typical web, and in <strong>the</strong><br />

morning it recycles <strong>the</strong> web by ingesting it toge<strong>the</strong>r with <strong>the</strong> frame threads. If it is disturbed by<br />

wind or rain during <strong>the</strong> night, it demolishes <strong>the</strong> web. With artificial illumination <strong>the</strong> dismantling<br />

<strong>of</strong> <strong>the</strong> web was also witnessed. This is a typical, vertical orb web. Its shape is generally<br />

oval and extended vertically, <strong>the</strong> shape depends on <strong>the</strong> plant to which <strong>the</strong> spider has fastened<br />

<strong>the</strong> web. Webs fastened to bulrush and reed are more stretched vertically than those fastened<br />

to sedge. The web has relatively few radii. Webs with 18 radii (17.77 ±1.78) are <strong>the</strong> most<br />

frequent. The maximum was 21, and <strong>the</strong> minimum was 15 radii. Usually <strong>the</strong>re were some thin<br />

threads across <strong>the</strong> centre <strong>of</strong> <strong>the</strong> web hubs. But sometimes <strong>the</strong> hub had a hole <strong>of</strong> irregular shape<br />

in <strong>the</strong> centre. There is a relatively wide free <strong>zone</strong> between <strong>the</strong> hub and <strong>the</strong> main spirals. The<br />

diameter <strong>of</strong> <strong>the</strong> whole capture area <strong>of</strong> <strong>the</strong> webs built by females on T. angustifolia was 38 cm<br />

vertically (38.2 ±6.7), and 27 cm horizontally (26.7 ±4.5). The capture area was wider under<br />

<strong>the</strong> hub. Its development also depends on <strong>the</strong> plant to which it is attached.<br />

Population density<br />

The density <strong>of</strong> L. jeskovi in <strong>the</strong> sample area designated in 1997 is given in Fig. 3. The<br />

density <strong>of</strong> L. jeskovi (specimens/20 m 2 ) decreased between 29 July and 28 August. The<br />

number <strong>of</strong> observed Larinia specimens in five <strong>zone</strong>s <strong>of</strong> reed belt (from <strong>the</strong> swampy meadow<br />

to <strong>the</strong> water) is shown in Fig. 4.<br />

Fur<strong>the</strong>r orb web species <strong>of</strong> <strong>the</strong> examined reed belt<br />

Since 1992 <strong>the</strong> following orb web species have been found in <strong>the</strong> examined reed belt<br />

(from <strong>the</strong> water to <strong>the</strong> swampy meadow): Tetragnatha striata L. KOCH, T. shoshone (LEVI),<br />

Fig. 4. The number <strong>of</strong> observed<br />

Larinia specimens in five <strong>zone</strong>s <strong>of</strong><br />

reed belts at four different dates.<br />

Number <strong>of</strong> specimens<br />

16<br />

14<br />

12<br />

10<br />

8<br />

6<br />

4<br />

2<br />

0<br />

21.07.1997 24.07.1997<br />

29.07.1997 27.08.1997<br />

1-10 m 10-20 m 20-30 m 30-40 m 40-50 m<br />

109


T. reimoseri (ROSCA), T. extensa (LINNAEUS), T. nigrita LENDL, Larinioides ixobolus (THORELL),<br />

Larinioides folium (SCHRANK) (=L. suspicax (O.P.-CAMBRIDGE), Larinia jeskovi MARUSIK,<br />

Larinia bonneti SPASSKY, Singa nitidula (C. L. KOCH), Argiope bruennichi (SCOPOLI), Cyclosa<br />

oculata (WALCKENAER), Araneus quadratus CLERCK, Cercidia prominens (WESTRING). The<br />

species were differentiated from each o<strong>the</strong>r in terms <strong>of</strong> horizontal and vertical web site<br />

locations, and in relation to daily activity. The distribution and activity <strong>of</strong> L. jeskovi overlapped<br />

with that <strong>of</strong> only T. reimoseri, L. folium, S. nitidula and L. bonneti.<br />

Acknowledgements<br />

The author would like to express his thanks to Yuri Marusik and Janus Kupryjanowicz for help in connection<br />

with Larinia jeskovi, to Samuel Zschokke in connection with web building <strong>of</strong> this species, as well as to his wife<br />

and fa<strong>the</strong>r for technical assistance, and to Ferenc Samu for his constructive comments on <strong>the</strong> manuscript.<br />

The author was Bolyai Fellow <strong>of</strong> HAS.<br />

This work was supported by Scientific Committee <strong>of</strong> Berzsenyi College.<br />

References<br />

KUPRYJANOWICZ, J., 1995: Larinia jeskovi Marusik, 1986, a spider species new to Europe (Araneae: Araneidea).<br />

Bull. Br. arachnol. Soc., 10, 2, p. 78-80.<br />

KUPRYJANOWICZ, J., 1997: Spiders <strong>of</strong> <strong>the</strong> Biebrza National Park - species new and rare to Poland. In ŻABKA, M.<br />

(ed.): Proc. 16th Europ. Coll. Arachnol., Siedlce, 1996, p. 183-194.<br />

MARUSIK, Yu.M., 1986: The orb-weaver genus Larinia Simon in <strong>the</strong> USSR (Aranei, Araneidea). Spixiana, 3, p.<br />

245-254.<br />

SZATHMÁRY, K., 1995: The spider (Araneae) fauna <strong>of</strong> <strong>the</strong> shore <strong>of</strong> Lake Balaton, Hungary. Opusc. Zool. Budapest,<br />

27-28, p. 65-70.<br />

SZINETÁR, Cs., 1995: Some data on <strong>the</strong> spider fauna <strong>of</strong> reeds in Hungary. I. Interesting faunistic data from <strong>the</strong><br />

reeds <strong>of</strong> Lake Balaton. Folia ent. Hung., 56, p. 205-209.<br />

110

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!