26.08.2013 Views

Evotec Munich

Evotec Munich

Evotec Munich

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>Evotec</strong> <strong>Munich</strong><br />

Building innovative<br />

drug discovery alliances<br />

Chemical Proteomics and Quantitative Mass Spectrometry<br />

to Support the Discovery & Development of Targeted Drugs<br />

<strong>Evotec</strong> AG, <strong>Evotec</strong> <strong>Munich</strong>, May 2012


About <strong>Evotec</strong> <strong>Munich</strong><br />

A leader in chemical proteomics and quantitative mass spectrometry<br />

• <strong>Evotec</strong>’s Center of Excellence for Proteomics and Oncology<br />

• Emerged from Kinaxo Biotechnologies GmbH, a Max Planck spin-off founded by the renowned cancer<br />

researcher Prof. Axel Ullrich<br />

• Collaborates with leading academic research laboratories including the lab of Prof. Matthias Mann at the<br />

Max Planck Institute<br />

• Combines highest service quality standards with powerful technological innovation developed by leading<br />

proteomics scientists such as Dr. Henrik Daub, <strong>Evotec</strong>’s VP Technology & Science<br />

PAGE 1 Selected publications by <strong>Evotec</strong> <strong>Munich</strong> scientists and <strong>Evotec</strong> <strong>Munich</strong> scientific advisors


PAGE 2<br />

<strong>Evotec</strong> <strong>Munich</strong><br />

Technology Offering


PAGE<br />

State of the art proteomics technologies<br />

Support development of targeted drugs<br />

Cellular Target Profiling ® Subproteomic Cellular Target Profiling ®<br />

3<br />

Target<br />

discovery<br />

Target ID &<br />

validation<br />

Scaffold<br />

selection /<br />

HT<br />

screens<br />

Screening<br />

Early stop-loss<br />

decision for scaffold<br />

selection<br />

On/off<br />

target<br />

profiling<br />

Mode of<br />

Action<br />

analysis<br />

(KinAffinity ® , Epigenetics Target Profiling ® )<br />

Response<br />

Prediction<br />

Biomarker<br />

Assays<br />

H2L LO Preclinic PhI/II<br />

Cellular Profiling to<br />

accompany H2L<br />

Selectivity analysis of lead<br />

compounds<br />

PTM signatures as<br />

predictive biomarkers<br />

Omics Technologies (Phosphoproteomics, Acetylomics)


PAGE 4<br />

Cellular Target Profiling <br />

Revelation of a compound’s cellular target spectrum<br />

• Determinates a compound‘s proteome-wide binding affinities in any cell line or<br />

tissue of choice<br />

• State-of-the-art chemical proteomics facilitates unbiased native profiling against<br />

endogenously expressed, full length proteins in the presence of cellular co-factors and complex partners<br />

• Adresses previously unavailable targets in combination with phenotypic screens and thus broadens the<br />

available chemical space for drug discovery<br />

• Leads to compounds with a relevant efficacy profile, ready for in vivo POC studies<br />

• Extensive, non-target class restricted track record in target deconvolution and profiling of various small<br />

molecule compounds (e.g. kinase inhibitors, antibiotics, epigenetic drugs, small molecules targeting<br />

metabolic enzymes, ligases, reductases, transferases, heat shock proteins, cyclooxygenases)


PAGE<br />

Light Medium Heavy<br />

Cellular Target Profiling <br />

Workflow<br />

Arg6 /Lys4 Arg0 /Lys0 Arg10 /Lys8 LC-MS/MS (1)<br />

Proteome labeling<br />

Metabolic<br />

Chemical<br />

Compound / target binding<br />

Labeled lysates are incubated with<br />

immobilized compound at different densities<br />

of coupled compound.<br />

Different concentrations of soluble compound<br />

are added to the mixture of labeled lysate at a<br />

fixed density of coupled compound.<br />

Identification and quantification of proteins<br />

Identification and determination of the relative amounts of the<br />

captured proteins by liquid chromatography and quantitative mass<br />

spectrometry<br />

Determination of K d,free values<br />

Generation of compound/target curves for immobilized and free<br />

compound. Application of Cheng-Prusoff equation to determine<br />

the K d,free values of all target proteins<br />

Light Medium Heavy<br />

Arg6 /Lys4 Arg0 /Lys0 Arg10 /Lys8 LC-MS/MS (2)<br />

5 Sharma et al., Nat Methods. 2009 Oct;6(10): 741-4<br />

Patent Protection EP2045332B1


Kd [µM]<br />

0.01<br />

0.1<br />

1.0<br />

10<br />

PAGE 6<br />

PI3-kinase catalytic subunit delta (PIK3CD)<br />

PI3-kinase catalytic subunit beta (PIK3CB)<br />

PI3-kinase regulatory subunit beta (PIK3R 2)<br />

PI3-kinase regulatory subunit gamma (PIK3R3)<br />

Beclin-1 (BECN1)<br />

PI3-kinase regulatory subunit 4 (PIK3R4)<br />

PI3-kinase catalytic subunit type 3 (PIK3C3)<br />

UV radiation resistance-assoc. gene protein (UVRAG)<br />

PI4-kinase catalytic subunit alpha (PI4KA)<br />

PI3-kinase catalytic subunit alpha (PIK3CA)<br />

Glycogen synthase kinase-3 alpha (GSK3A)<br />

Adenosine kinase (ADK)<br />

Zn-bdg alcohol dehydrogenase domain-cont. prot. 2<br />

Diphthine synthase (DPH5)<br />

Glycogen synthase kinase-3 beta (GSK3B)<br />

Serine/threonine-protein kinase RIO2 (RIOK2)<br />

Ketosamine-3-kinase (FN3KRP)<br />

Pyridoxal kinase (PDXK)<br />

Lactoylglutathione lyase (GLO1)<br />

Isochorismatase domain-containing protein 2 (ISOC2)<br />

Phospholipase D3 (PLD3)<br />

Deoxycytidine kinase (DCK)<br />

DNA-dep. protein kinase catalytic subunit (PRKDC)<br />

Cellular Target Profiling <br />

Profiling of a kinase inhibitor<br />

Protein kinases<br />

Kinase assoc. proteins<br />

Non-kinase proteins<br />

PIK3CD<br />

PIK3CB<br />

PIK3C3<br />

PIK3CA<br />

K d,free = 87 nM<br />

K d,free = 300 nM<br />

K d,free = 800 nM<br />

K d,free = 1366 nM<br />

UCB’s cpd discriminates PI3K isoforms within a<br />

cancer cell line


0,01<br />

0,1<br />

1<br />

10<br />

K d [µM]<br />

PAGE 7<br />

UNC0638 BIX-01294<br />

N<br />

O<br />

O<br />

N<br />

WIZ<br />

GLP<br />

G9a<br />

Protein X<br />

OCR<br />

NH<br />

N<br />

N<br />

Cellular Target Profiling <br />

Profiling of methyltransferase inhibitors<br />

N<br />

H<br />

N<br />

WIZ<br />

GLP<br />

G9A<br />

N N<br />

N<br />

O<br />

O<br />

Cellular target proteins for the published G9a selective<br />

methyltransferase inhibitors UNC0638 and BIX-01294 were<br />

identified in human CML (K562) cells<br />

Comparison with published in vitro data revealed known as well<br />

as previously unknown target proteins for both compounds<br />

Protein UNC0638<br />

K dµM<br />

<strong>Evotec</strong><br />

UNC0638<br />

IC 50µM<br />

Vedadi et al<br />

BIX-01294<br />

K dµM<br />

<strong>Evotec</strong><br />

BIX-01294<br />

IC 50µM<br />

Vedadi et al<br />

WIZ 0,039 - 0,056 -<br />

GLP 0,099 0,019 0,101 0,034<br />

Protein X 0,270 - -<br />

G9A 0,152 < 0,015 0,294 0,180<br />

OCR 4,524 - - -<br />

WIZ Widely-interspaced zinc finger-containing protein, mediating EHMT1 / EHMT2 interaction<br />

Protein X Possible UNC0638 off-target protein, validation experiments ongoing<br />

OCR Spindlin-1 / Ovarian cancer-related protein<br />

Vedadi et al, 2007, Nat Chem Biol., 7:566-74


0,1<br />

1<br />

10<br />

K d [µM]<br />

PAGE 8<br />

Parafibromin (CDC73)<br />

HSP90alpha (HSP90AA1)<br />

Probable Xaa-Pro aminopeptidase 3 (XPNPEP3)<br />

Putative HSP90beta 4 (HSP90AB4P)<br />

HSP90beta (HSP90AB1)<br />

Endoplasmin (HSP90B1)<br />

1-phosphatidylinositol-4,5-bisphosphate<br />

phosphodiesterase eta-1 (PLCH1)<br />

Adenosine kinase (ADK)<br />

Cellular Target Profiling <br />

Profiling of the geldanamycin derivative 17-DMAG<br />

HSP90 protein family<br />

Other protein<br />

Cellular Target Profiling confirmed Hsp90 as prime target for<br />

17-DMAG, which is consistent with literature data<br />

In total, four members of the Hsp90 family were identified and<br />

K d values of the highly homologous isoforms Hsp90-alpha and<br />

Hsp90-beta were determined. Only very few other protein<br />

targets were identified, indicating high specificity of 17-DMAG<br />

for Hsp90.<br />

17-DMAG<br />

(17-dimethyl-amino-ethylamino-17-demethoxygeldanamycin)


Protein<br />

Name<br />

PAGE 9<br />

Sequence<br />

Coverage<br />

[%]<br />

Cellular Target Profiling <br />

Target deconvolution of 3 related compounds with different cellular activity<br />

Cancer cell viability Compound 1 < Compound 2 < Compound 3<br />

EC 50 ~ 50 nM ~ 150 nM ~ 1µM<br />

Binding Curve<br />

(Linker<br />

Compound)<br />

120<br />

100<br />

80<br />

Competition<br />

Cpd 1<br />

K dfree [M]<br />

Cpd 1<br />

Competition<br />

Cpd 2<br />

K dfree [M]<br />

Cpd 2<br />

Competition<br />

Cpd 3<br />

60<br />

60<br />

60<br />

60<br />

Protein Y 64,9 40<br />

40<br />

0,146 40<br />

1,06 1,3<br />

40<br />

% Bound<br />

20<br />

0<br />

-20<br />

120<br />

100<br />

80<br />

10 1<br />

Conc [µM]<br />

10 2<br />

K dfree [M]<br />

Cpd 3<br />

60<br />

60<br />

60<br />

60<br />

40<br />

Protein E 66,9 40<br />

40<br />

0,195 40<br />

0,308 0,329<br />

% Bound<br />

% Bound<br />

20<br />

0<br />

-20<br />

120<br />

100<br />

80<br />

10 1<br />

Conc [µM]<br />

10 2<br />

60<br />

80<br />

80<br />

60<br />

40<br />

60<br />

60<br />

40<br />

Protein F 60,7 - 3,2 3,42<br />

20<br />

40<br />

40<br />

0<br />

-20<br />

120<br />

100<br />

80<br />

10 1<br />

Conc [µM]<br />

10 2<br />

80<br />

Protein G 71,3<br />

60<br />

40<br />

60<br />

40<br />

-<br />

60<br />

40<br />

3,63<br />

60<br />

40<br />

3,91<br />

% Bound<br />

20<br />

0<br />

-20<br />

10 1<br />

Conc [µM]<br />

10 2<br />

% Bound<br />

% Bound<br />

% Bound<br />

% Bound<br />

120<br />

100<br />

80<br />

20<br />

0<br />

-20<br />

120<br />

100<br />

80<br />

20<br />

0<br />

-20<br />

140<br />

120<br />

100<br />

20<br />

0<br />

-20<br />

120<br />

100<br />

20<br />

0<br />

-20<br />

10 -2<br />

10 -2<br />

10 -2<br />

10 -2<br />

10 -1<br />

10 0<br />

Conc [µM]<br />

10 -1<br />

10 0<br />

Conc [µM]<br />

10 -1<br />

10 0<br />

Conc [µM]<br />

10 -1<br />

10 0<br />

Conc [µM]<br />

10 1<br />

10 1<br />

10 1<br />

10 1<br />

Protein Y is most likely the relevant cellular target<br />

Observed phenotypes are consistent with literature data about target MoA<br />

% Bound<br />

% Bound<br />

% Bound<br />

% Bound<br />

120<br />

100<br />

80<br />

20<br />

-20<br />

120<br />

100<br />

80<br />

20<br />

0<br />

-20<br />

140<br />

120<br />

100<br />

-20<br />

120<br />

100<br />

0<br />

20<br />

80<br />

20<br />

-20<br />

0<br />

0<br />

10 -2<br />

10 -2<br />

-2<br />

10<br />

-2<br />

10<br />

10 -1<br />

10 0<br />

Conc [µM]<br />

10 -1<br />

10 0<br />

Conc [µM]<br />

-1<br />

10<br />

Conc [µM]<br />

-1<br />

10<br />

Conc [µM]<br />

10 1<br />

10 1<br />

0 1<br />

10 10<br />

0 1<br />

10 10<br />

% Bound<br />

% Bound<br />

% Bound<br />

% Bound<br />

120<br />

100<br />

80<br />

20<br />

-20<br />

120<br />

100<br />

80<br />

20<br />

0<br />

-20<br />

0<br />

120<br />

100<br />

80<br />

20<br />

0<br />

-20<br />

120<br />

100<br />

80<br />

20<br />

0<br />

-20<br />

10 -2<br />

10 -2<br />

10 -2<br />

10 -2<br />

10 -1<br />

10 0<br />

Conc [µM]<br />

10 -1<br />

10 0<br />

Conc [µM]<br />

10 -1<br />

10 0<br />

Conc [µM]<br />

10 -1<br />

10 0<br />

Conc [µM]<br />

10 1<br />

10 1<br />

10 1<br />

10 1


PAGE 10<br />

Cellular Target Profiling in sub-proteomes<br />

Cellular profiling of kinase inhibitors and epigenetics drugs<br />

• Fast, reliable profiling of sub-proteomes of interest<br />

• High quality native selectivity data for kinase inhibitors or epigenetic drugs<br />

• Correlation of in vivo data with native target information to support the selection of drug candidates in a<br />

variety of medical indications<br />

• KinAffinity ® facilitates profiling against more than 300 native kinases<br />

• KinAffinity ® allows for identification of additional kinase targets not<br />

detectable by kinase panel screening<br />

• Epigenetics Target Profiling ® facilitates profiling of epigenetics<br />

drugs under native conditions<br />

Extensive kinome coverage


Extensive Kinome Coverage<br />

PAGE 11<br />

KinAffinity <br />

Fast profiling of endogenously expressed kinases using a generic matrix<br />

Using KinAffinity , more than<br />

300 protein kinases from all<br />

kinase families can be enriched<br />

for cellular profiling (red dots).<br />

On average, 100-200 kinases<br />

can be profiled in one cell-line /<br />

per single experiment<br />

Kinase domain sequences were taken from Manning, G. et al., The protein kinase complement of<br />

the human genome. Science, 298 (2002), 1912-34. The kinome tree was constructed using<br />

ClustalW2 [Larkin, MA. et al., Clustal W and Clustal X version 2.0., Bioinformatics, 23 (2007),<br />

2947-8] and Dendroscope [Huson, DH. et al., Dendroscope: An interactive viewer for large<br />

phylogenetic trees. BMC Bioinformatics, 8 (2007), 460].


0,01<br />

0,1<br />

1<br />

10<br />

K d[µM]<br />

PAGE 12<br />

MAP4K5<br />

GAK<br />

ABL2<br />

ABL1<br />

LYN<br />

MAP4K3<br />

FYN<br />

SRC<br />

MAP4K4<br />

FRK<br />

CSK<br />

QIK<br />

EphA2<br />

EphB4<br />

MAP2K2<br />

ACK<br />

TNIK<br />

QSK<br />

SLK<br />

MAP2K1<br />

MAP3K2<br />

LOK<br />

YES<br />

MYT1<br />

ZAK<br />

EphB2<br />

FAK<br />

MAP3K4<br />

GCN2<br />

CK1d<br />

FER<br />

IKKe<br />

MST4<br />

MST3<br />

MST1<br />

SYK<br />

MAP2K6<br />

PYK2<br />

LRRK2<br />

ILK<br />

MST2<br />

TLK2<br />

Target profile of bosutinib in PC3 cells<br />

KinAffinity <br />

Native kinome profiling<br />

Bosutinib (SKI606, Wyeth) is currently tested in breast<br />

cancer and CML<br />

KinAffinity ® enriched nearly 200 endogenously expressed<br />

kinases from human prostate cancer (PC3) cells<br />

45 of these kinases were identified as molecular targets of<br />

bosutinib<br />

N<br />

O<br />

N O N<br />

Cl Cl<br />

HN O<br />

N


0,01<br />

0,1<br />

1<br />

K d[µM]<br />

PAGE 13<br />

DDR1<br />

BCR<br />

ABL1<br />

ABL2<br />

PIP4K2A<br />

PIP4K2C<br />

Target profile of imatinib in K562 cells<br />

KinAffinity <br />

Native kinome profiling of type II inhibitors<br />

Imatinib (Gleevec , Novartis) is approved for the treatment of<br />

CML and GIST and is known to inhibit several tyrosine<br />

kinases<br />

KinAffinity identified imatinib’s main kinase targets with the<br />

exception of PDGFR, which is not expressed in K562 cells<br />

N<br />

N<br />

N<br />

N NH<br />

H<br />

O<br />

N<br />

N


0,1<br />

1<br />

10<br />

K d M<br />

PAGE 14<br />

K d [µM]<br />

MIER3<br />

C16orf87<br />

SIN3A<br />

SIN3B<br />

MIER1<br />

NCOR1<br />

RCOR2<br />

NCOR2<br />

MIER2<br />

CHD3<br />

GPS2<br />

BHC80<br />

ZNF217<br />

GSE1<br />

BRAF35<br />

CoREST<br />

HDAC1<br />

RERE<br />

ZNF261<br />

AOF2<br />

GATAD2A<br />

RCOR3<br />

HDAC2<br />

IRA1<br />

WDR5<br />

MTA3<br />

TBL1<br />

GATAD2B<br />

CHD4<br />

MTA1<br />

MBD3<br />

RBBP4<br />

HMG20A<br />

HDAC3<br />

MTA2<br />

ISOC2<br />

ZNF198<br />

RBBP7<br />

HDAC6<br />

DBP5<br />

MBD2<br />

KPNA3<br />

PP3476<br />

HDAC10<br />

KPNA4<br />

LAMB2<br />

ALDH2<br />

MBLAC2<br />

CK2a1<br />

ALDH1B1<br />

TTC38<br />

HDAC8<br />

Epigenetics Target Profiling <br />

Profiling of SAHA (Vorinostat) using a generic matrix<br />

80<br />

80<br />

60<br />

60<br />

40<br />

40<br />

HDAC1 20<br />

20<br />

0,19<br />

120<br />

100<br />

100<br />

80<br />

80<br />

60<br />

60<br />

40<br />

HDAC4 40<br />

-<br />

20<br />

20<br />

% Bound<br />

0<br />

-20<br />

120<br />

20<br />

0<br />

-20<br />

1<br />

10 102<br />

Conc [µM]<br />

120<br />

120<br />

100<br />

100<br />

80<br />

80<br />

60<br />

60<br />

40<br />

HDAC5 40<br />

-<br />

20<br />

20<br />

100<br />

100<br />

80<br />

80<br />

60<br />

60<br />

HDAC7 -<br />

40<br />

40<br />

% Bound<br />

% Bound<br />

0<br />

-20<br />

120<br />

20<br />

0<br />

-20<br />

1<br />

10 102<br />

Conc [µM]<br />

120<br />

100<br />

100<br />

80<br />

80<br />

60<br />

60<br />

HDAC6 40<br />

0,43<br />

40<br />

1<br />

10 102<br />

Conc [µM]<br />

120<br />

100<br />

100<br />

80<br />

80<br />

60<br />

60<br />

HDAC8 6,5<br />

40<br />

40<br />

% Bound<br />

120<br />

20<br />

0<br />

-20<br />

1<br />

10 102<br />

Conc [µM]<br />

100<br />

100<br />

80<br />

80<br />

60<br />

60<br />

HDAC10 0,79<br />

40<br />

40<br />

% Bound<br />

% Bound<br />

% Bound<br />

120<br />

100<br />

0<br />

-20<br />

120<br />

100<br />

0<br />

-20<br />

120<br />

20<br />

0<br />

-20<br />

1<br />

10 102<br />

Conc [µM]<br />

80<br />

80<br />

60<br />

60<br />

40<br />

40<br />

HDAC2 0,24<br />

20<br />

20<br />

% Bound<br />

120<br />

100<br />

0<br />

-20<br />

1<br />

10 102<br />

Conc [µM]<br />

80<br />

80<br />

60<br />

60<br />

40<br />

40<br />

HDAC3 0,35<br />

20<br />

20<br />

HDAC<br />

Known HDAC complex partner<br />

Other proteins<br />

Target profile in human ovarian cancer (A2780) cells<br />

% Bound<br />

Binding Competition K d M<br />

1<br />

10 102<br />

Conc [µM]<br />

1<br />

10 102<br />

Conc [µM]<br />

1<br />

10 102<br />

Conc [µM]<br />

% Bound<br />

% Bound<br />

% Bound<br />

% Bound<br />

% Bound<br />

% Bound<br />

% Bound<br />

% Bound<br />

% Bound<br />

120<br />

100<br />

0<br />

-20<br />

120<br />

100<br />

0<br />

-20<br />

120<br />

100<br />

0<br />

-20<br />

120<br />

0<br />

-20<br />

0<br />

-20<br />

20<br />

0<br />

-20<br />

120<br />

20<br />

0<br />

-20<br />

20<br />

0<br />

-20<br />

120<br />

20<br />

0<br />

-20<br />

-2<br />

10 10-1 100 101<br />

Conc [µM]<br />

-2<br />

10 10-1 100 101<br />

Conc [µM]<br />

-2<br />

10 10-1 100 101<br />

Conc [µM]<br />

-2<br />

10 10-1 100 101<br />

Conc [µM]<br />

-2<br />

10 10-1 100 101<br />

Conc [µM]<br />

-2<br />

10 10-1<br />

Conc [µM]<br />

100 101<br />

-2<br />

10 10-1 100 101<br />

Conc [µM]<br />

-2<br />

10 10-1 100 101<br />

Conc [µM]<br />

-2<br />

10 10-1 100 101<br />

Conc [µM]<br />

Epigenetics Target Profiling allows for<br />

maximum HDAC coverage and constitutes<br />

a native assay under conditions that<br />

preserve the integrity of HDAC complexes


PAGE 15<br />

Quantitative proteomics and in vivo PTM analysis<br />

Mode of Action analysis of targeted drugs & biomarker identification<br />

• High-end mass spectrometry and software applications facilitate quantitative analyses of the complete<br />

proteome or protein modifications such as phosphorylation or acetylation in living cells, tissue or<br />

patient samples<br />

• Monitoring of global protein expression changes and comprehensive investigation of signaling<br />

pathways to determine the influence of drug treatment, age, disease state or mutation status on<br />

biological systems<br />

• Applications include mode of action analysis of targeted<br />

drugs and discovery of biomarkers (protein<br />

expression, phosphorylation, acetylation) for patient<br />

stratification<br />

Non-responder Responder<br />

P<br />

P<br />

P<br />

P<br />

P<br />

gene expression<br />

proliferation<br />

P<br />

P<br />

Biomarker<br />

P<br />

P<br />

P<br />

P<br />

P<br />

P<br />

gene expression<br />

proliferation<br />

P<br />

P<br />

Biomarker<br />

P


PAGE 16<br />

Complete Proteome Analysis<br />

Large-scale, label-free quantification of proteins<br />

Recent advances in sample processing and mass spectrometry enables fast<br />

identification of ~7,000 proteins per cell line<br />

In a comparative proteomics analysis co-published by <strong>Evotec</strong> <strong>Munich</strong> scientists,<br />

more than 10,000 proteins were identified across 11 cell lines (this corresponds to<br />

51% of the human genes)<br />

Comparisons with deep sequencing data indicate this<br />

covers most of the proteome expressed in human cancer<br />

cell lines<br />

Proteome profiling has thus reached a level of<br />

comprehensiveness similar to mRNA profiling<br />

Geiger et al, 2012,, MCP, 11, M111 014050<br />

Schaab et al., 2012, MCP, 11, M111 014068


PAGE 17<br />

PhosphoScout ®<br />

Mode of Action analysis of targeted drugs & biomarker identification<br />

Quantitative mass spectrometry to facilitate unbiased monitoring of dynamic phosphorylation events in vivo<br />

on a global scale<br />

Reliable measurement of more than 15,000 phosphorylation sites in a single experiment<br />

Isotopic labeling<br />

protein<br />

preparation<br />

P<br />

enzymetic<br />

cleavage<br />

SCX<br />

Global phosphoproteome<br />

enrichment<br />

LC-MS/MS Data Analysis<br />

I<br />

MS<br />

m/z<br />

MaxQuant Software<br />

(Dept. M. Mann, MPI)<br />

Unbiased, global quantitative<br />

phosphoproteome analysis<br />

I<br />

MS/MS<br />

m/z<br />

G-V-S-P-A-W-R<br />

P<br />

PhosphoScout ® Workflow<br />

P


PAGE 18<br />

PhosphoScout ® - Case Study Sorafenib (Nexavar ® )<br />

Experimental design & Identification of regulated phosphorylation sites<br />

Control Treated (30 min) Treated (90 min)<br />

PhosphoScout ® workflow<br />

Sorafenib<br />

Phosphorylations from 3 biological replicates All P-sites<br />

No. of detected phosphorylation sites 15,825<br />

No. of detected proteins with phosphorylation sites 3,931<br />

No. of regulated sites 1,012<br />

No. of proteins with regulated phosphorylation sites 605<br />

PC-3 (human prostate<br />

cancer) cells<br />

Only class I sites (phosphorylation sites that could be localized<br />

within the peptide sequence with high confidence ) were used<br />

in our pathway analysis<br />

Identification of differentially regulated phosphorylation sites at<br />

a false discovery rate of 5% based on a global rank test


MAPK-Pathway<br />

PhosphoScout ® - Case Study Sorafenib (Nexavar ® )<br />

Data analysis - Identification of regulated protein networks<br />

mTOR Pathway<br />

The „SubExtractor“ algorithm integrates<br />

phosphoproteomics data with information<br />

from STRING protein/protein interactions<br />

to unbiasedly identify differentially<br />

regulated subnetworks<br />

PAGE 19 Klammer et al., 2010, BMC Bioinformatics,11:351


N<br />

O<br />

N<br />

PAGE 20<br />

O<br />

N<br />

O<br />

N<br />

F F<br />

F<br />

Cl<br />

PhosphoScout ® - Case Study Sorafenib (Nexavar ® )<br />

Data analysis – Analysis of regulated networks<br />

Translation<br />

P<br />

P<br />

10x up-regulated<br />

not regulated<br />

10x down-regulated


PAGE 21<br />

Acetylomics<br />

Mode of Action analysis of targeted drugs<br />

Comprehensive mass spectrometric analysis of global cellular<br />

acetylation in relevant biological samples<br />

Identification of novel acetylation sites and correlation of known<br />

acetylation effects with a drug‘s mechanism of action<br />

Acetylomics is an ideal tool to extend the mechanistic relevance and<br />

research interest in HDACs well beyond the field of chromatin<br />

biology<br />

Combination with <strong>Evotec</strong> <strong>Munich</strong>‘s additional services such as global<br />

phosphoproteomics allows for a unique approach to study a drug‘s<br />

influence on a variety of post translational modifications<br />

Identification of regulated acetylation networks<br />

mean ratio treatment A<br />

mean ratio treatment B<br />

Comparison of differentially regulated<br />

acetylation-sites in dependence of different<br />

treatment conditions


Test sample set<br />

(cell lines, xenografts,<br />

patient samples)<br />

PAGE 22<br />

Proteome and Phosphoproteome Biomarker<br />

Discovery – Complementary Approaches<br />

Measurement of 10.000+ Phosphosites and/or 6.000+ Proteins<br />

Quantitative<br />

phosphoproteome<br />

profiling<br />

Quantitative<br />

proteome<br />

profiling<br />

responder<br />

non-resp.<br />

responder<br />

non-resp.<br />

PTM sites<br />

Protein expression<br />

Global analysis of cellular kinase<br />

activity<br />

Direct linkage with kinase function<br />

Analyses of other PTMs possible, such<br />

as lysine acetylation for HDACs<br />

Global analysis of cellular protein<br />

levels<br />

Target class independent<br />

Adapted to small sample sizes<br />

Easy transition from discovery to<br />

validation/routine analysis


PAGE 23<br />

Summary<br />

<strong>Evotec</strong> <strong>Munich</strong> provides state-of-the art Cellular Target Profiling ® to identify a small molecule‘s<br />

on/off-target interactions on a proteom wide level or on subproteomic target classes of interest<br />

Quantitative mass spectrometry is employed to monitor dynamic post translational modification<br />

events in vivo on a global scale that enables correlation of known PTM effects with a drug‘s<br />

mechanism of action<br />

<strong>Evotec</strong> <strong>Munich</strong> offers service technologies that facilitate a comprehensive cellular global<br />

mode of action analysis of targeted drugs


Your contact:<br />

proteomics@evotec.com<br />

Building innovative<br />

drug discovery alliances

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!