02.09.2013 Views

C - NTNU

C - NTNU

C - NTNU

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Anjavassmyra<br />

AP pollen sum<br />

600 e.Kr.<br />

7100 f.Kr.<br />

0<br />

14C-dates<br />

Depth<br />

10<br />

20<br />

30<br />

40<br />

50<br />

60<br />

70<br />

80<br />

90<br />

100<br />

Alnus / Or<br />

Betula pubescens type / Bjork<br />

Betula nana type / Dvergbjork<br />

Colylus<br />

Picea / Gran<br />

Pinus / Furu<br />

20406080100 20 20406080<br />

Quercus<br />

Salix / Vier<br />

Sorbus-type / Rogn<br />

Ulmus<br />

Empetrum<br />

Ericales / Lyngvekster<br />

Juniperus / Einer<br />

Anthriscus sylvestris type<br />

Artemisia / Malurt<br />

Aster-type / Gullris m.fl.<br />

Astragalus alpinus<br />

Caryphyllaceae<br />

Chenopodiaceae / Melde<br />

Cichorioideae / Fölblom, Lövetann, Svever<br />

Cornus suecia / Skrubbär<br />

Drosera<br />

Filipendula / Mjödurt<br />

Linnea borealis<br />

Little trilete<br />

Melampyrum / Stormarimjelle, Smaamarimjelle<br />

Oxyria<br />

Parnassia<br />

Plantago lanceolata<br />

Poaceae / Gress<br />

Potentilla-type / Myrhatt, Gaasemure, Tepperot<br />

Ranunculus acris-type / Eng- og Krypsoleie<br />

Rosaceae<br />

Rumex acetosa / Engsyre<br />

Rumex ssp. / Smaasyre m.fl.<br />

Saxifraga granulata type<br />

Silene dioica / Röd jonsokblom<br />

Silene vulgaris / Engsmelle<br />

Thalictrum / Fröstjerne<br />

Trollius europaeus<br />

ZNAP Indet<br />

Cyperaceae / Myrull, starr m.fl.<br />

Rubus chamaemorus<br />

Equisetum<br />

Gymnocarpium / Fugletelg<br />

Monolete fern spores / Bregner<br />

Huperzia selago<br />

Lycopodium annotium<br />

Selaginella selaginoides / Dvergjamne<br />

Sphagnum / Torvmoser<br />

Darkspore<br />

Gelasinospora<br />

Sporomiella<br />

Assulina muscrom<br />

2040<br />

2040 204060<br />

DYLAN post-doc project:<br />

Long-term mountain landscape dynamics<br />

Linking palaeoecology with archaeology, ecology, cultural history and management<br />

Assulina semulinum<br />

Amphitrema<br />

Carboneous sphere<br />

Charcoal<br />

Lychopodium<br />

Pollen sum<br />

200400600 2040 204060 2040 100 200 300 400 20200<br />

400 600 800 1000200<br />

400 600 800<br />

Zone<br />

5<br />

4<br />

3<br />

2<br />

1


Long-term mountain landscape dynamics<br />

Practical post-doc work:<br />

• Development of WP1 results – linking palaeoecolgy<br />

with archaeology, ecolgy, cultural history and<br />

management (50%)<br />

• Pollen-vegetation models (25%) – develop and<br />

evaluate the Total vegetation Pollen Influx Model (T-PIM)<br />

• Hypothetic landscape models / GIS (25%) – Establish<br />

and evaluate (simple) landscape models. Visualisation of<br />

past landscapes / landscape reconstructions.


Linking palaeoecology with archaeology, ecology, cultural history and<br />

management<br />

“Intuitive” methods<br />

WP1 paleo synthesis + review<br />

Quantitative methods<br />

WP1 archaeology + review<br />

WP1 paleo synthesis + numerical methods<br />

WP1 ecology + biodiversity<br />

Vegetation reconstructions + modelling<br />

Visualisation + processes


WP1 Oslo WP1 Bergen WP1 Trondheim WP1 Tromsø<br />

Paleo synthesis/review<br />

?<br />

Archaeological/historical<br />

synthesis/review<br />

Separate reports/papers/chapters<br />

Numerical analysis<br />

Ecology / manangement<br />

WP 2-4


Example:<br />

Chronological<br />

comparison<br />

between sites<br />

Altitude m.a.s.l.<br />

1200<br />

1100<br />

1000<br />

900<br />

800<br />

700<br />

600<br />

500<br />

400<br />

300<br />

2000 1500 1000 500 0 -500 -1000<br />

Age AD/BC<br />

Establishment of subalpine/mountain valley pasturing, summer<br />

farming, in the south of Norway compiled by Dagfinn Moe (1996).<br />

Ages post-calibrated with an assumed 2σ error of ± 50 14 C-years.


0<br />

10<br />

20<br />

30<br />

40<br />

50<br />

60<br />

70<br />

80<br />

90<br />

100<br />

110<br />

120<br />

130<br />

140<br />

150<br />

160<br />

170<br />

180<br />

190<br />

200<br />

210<br />

220<br />

230<br />

240<br />

250<br />

260<br />

270<br />

280<br />

290<br />

Example: Qualitative comparison between sites<br />

GIM MOE AMB<br />

Depth (cm)<br />

Lowland AP<br />

Highland NAP<br />

Lowland NAP<br />

Charcoal<br />

Highland AP<br />

20 40 60 80100 500 2<br />

Podospora-type<br />

Periods<br />

G-9 1975<br />

G-8 1950<br />

G-7 1900<br />

G-6<br />

AD 1800<br />

G-5<br />

AD 1650<br />

G-4<br />

AD 1300<br />

G-3<br />

AD 850<br />

G-2<br />

AD 1<br />

G-1<br />

0<br />

5<br />

10<br />

15<br />

20<br />

25<br />

30<br />

35<br />

40<br />

45<br />

50<br />

Depth (cm)<br />

Highland AP<br />

20 40 60 80100<br />

Lowland AP<br />

Highland NAP<br />

50<br />

Lowland NAP<br />

Charcoal<br />

Podospora-type<br />

5<br />

Periods<br />

M-9<br />

AD 1975<br />

M-8<br />

AD 1950<br />

M-7<br />

AD 1900<br />

M-6<br />

AD 1800<br />

M-5<br />

AD 1650<br />

M-4<br />

AD 1300<br />

M-3 AD 850<br />

M-2 AD 1<br />

M-1<br />

0<br />

5<br />

10<br />

15<br />

20<br />

25<br />

30<br />

35<br />

40<br />

Depth (cm)<br />

Highland AP<br />

20 40 60 80100<br />

Lowland AP<br />

Highland NAP<br />

Lowland NAP<br />

Charcoal<br />

300<br />

10<br />

Podospora-type<br />

Periods<br />

A-9<br />

AD 1975<br />

A-8<br />

AD 1950<br />

A-7<br />

AD 1900<br />

A-6<br />

AD 1800<br />

A-5<br />

AD 1650<br />

A-4<br />

AD 1300<br />

A-3 AD 850<br />

A-2<br />

AD 1<br />

A-1<br />

(1200 BC)<br />

The development towards pasture woodland in Combe des Amburnex, Jura Mountains.


Example: Qualitative comparison between sites<br />

0<br />

10<br />

20<br />

30<br />

40<br />

50<br />

60<br />

70<br />

80<br />

90<br />

100<br />

110<br />

120<br />

130<br />

140<br />

150<br />

160<br />

170<br />

180<br />

190<br />

200<br />

210<br />

220<br />

230<br />

240<br />

250<br />

260<br />

270<br />

280<br />

290<br />

Depth (cm)<br />

GIM GIM<br />

MOE AMB<br />

Highland AP<br />

20406080100<br />

Lowland AP<br />

Highland NAP<br />

Lowland NAP<br />

Periods<br />

G-9 1975<br />

G-8 1950<br />

G-7 1900<br />

G-6<br />

AD 1800<br />

G-5<br />

AD 1650<br />

G-4<br />

AD 1300<br />

G-3<br />

AD 850<br />

G-2<br />

AD 1<br />

G-1<br />

0<br />

10<br />

20<br />

30<br />

40<br />

50<br />

60<br />

70<br />

80<br />

90<br />

100<br />

110<br />

120<br />

130<br />

140<br />

150<br />

160<br />

170<br />

180<br />

190<br />

200<br />

210<br />

220<br />

230<br />

240<br />

250<br />

260<br />

270<br />

280<br />

290<br />

Acer<br />

Depth (cm)<br />

Picea<br />

Abies<br />

Fagus<br />

20 40 60 80 100<br />

Zone<br />

9<br />

8<br />

7<br />

6<br />

5<br />

4<br />

3<br />

2<br />

1<br />

0<br />

5<br />

10<br />

15<br />

20<br />

25<br />

30<br />

35<br />

40<br />

45<br />

50<br />

Acer<br />

Depth (cm)<br />

Picea<br />

Abies<br />

Fagus<br />

20 40 60 80 100<br />

Zone<br />

9<br />

8<br />

7<br />

6<br />

5<br />

4<br />

3<br />

2<br />

1<br />

0<br />

5<br />

10<br />

15<br />

20<br />

25<br />

30<br />

35<br />

40<br />

Acer<br />

Depth (cm)<br />

Picea<br />

Abies<br />

Fagus<br />

20 40 60 80 100<br />

Long-term effect of grazing on forest composition in Combe des Amburnex, Jura Mountains.<br />

Zone<br />

9<br />

8<br />

7<br />

6<br />

5<br />

4<br />

3<br />

2<br />

1<br />

AD<br />

1950<br />

AD<br />

850


-1.0 1.0<br />

Example: Multivariate analyses of the pollen assemblage<br />

PCA, species<br />

Gramineae<br />

Comp. SF Cichorioideae<br />

Abies<br />

Acer<br />

P. media<br />

P. lanceolata.<br />

Pinus<br />

Castanea R. acris<br />

Urtica<br />

Wet summer<br />

and autumn<br />

Warm summer<br />

and spring<br />

P. alpina<br />

Rumex acetosa<br />

Cold and dry<br />

Picea<br />

Hypericum<br />

Carpinus<br />

Betula<br />

Fagus<br />

Quercus<br />

Corylus<br />

Juniperus<br />

Fraxinus<br />

Cruciferae<br />

Alnus<br />

Wet spring<br />

Warm autumn<br />

and winter<br />

-1.0 1.0<br />

Relation between climatic<br />

parameters and the modified<br />

pollen percatage of taxa based on<br />

annual variations.<br />

-0.8 1.0<br />

Relation between archaeobotanical soil samples and ecological<br />

groups of taxa.<br />

Kvæøya pollenprover<br />

Tørr gressbakke<br />

175<br />

112<br />

180<br />

181<br />

?<br />

Dyrket jord<br />

176<br />

Eng og<br />

171<br />

beitemark<br />

?<br />

Skrotmark<br />

177<br />

178<br />

179<br />

166<br />

186<br />

163<br />

183 ?<br />

164<br />

165<br />

170<br />

Fuktig eng, åpen skog (ej bregner)<br />

Høgstauder<br />

Bregner<br />

Skog<br />

-1.0 1.0<br />

110<br />

169<br />

162<br />

185<br />

111<br />

174<br />

173<br />

Moderne tid: Førromersk jernålder (2a, 2b):<br />

Folkevandringstid: Bronsealder (1a, 1b):<br />

365<br />

172<br />

366


Vegetation reconstruction and modelling<br />

Spruce pollen<br />

Lake or mire<br />

15000 BP<br />

Grass pollen


Spruce pollen<br />

Grass pollen<br />

Theory of the pollen diagram<br />

Lennart von Post<br />

Christiania (Oslo) 1916<br />

The pollen diagram<br />

Today<br />

3000 BP<br />

6000 BP<br />

9000 BP<br />

12000 BP<br />

15 000 BP


The dreaded pollen diagram………<br />

Climatic<br />

zones<br />

Firbas<br />

pollen<br />

zones<br />

AD/BC<br />

Birch Pine Hazel Oak<br />

Elm Lime<br />

Ash Maple<br />

Alder<br />

Fir Beech Spruce<br />

Non-tree<br />

pollen (NAP)


Interpretation of pollen data<br />

C tot = C r + C k + C st + C w + C g<br />

C r Rain-out component<br />

C k Wind above canopy<br />

component<br />

C st Trunk-space<br />

component<br />

C w Komponente aus<br />

Oberflächenwasser<br />

C g Gravity component


Dividalen


Budalen


Vegetation<br />

Local vegetation Pollen Influx Model (L-PIM)<br />

Historic: Andersens model (1970)<br />

Relative: Prentice ERV-model (1981-86)<br />

Pollen influx = Pollen productivity x Vegetation + Background component<br />

Vegetation<br />

Pollen influx = Pollen productivity x Vegetation<br />

Total vegetation Pollen Influx Model (T-PIM)<br />

Historic: Basic version of Andersens model (1970)<br />

Relative: Davis R-value model (1963)


Why so complicated?


PAR<br />

PAR<br />

PAR<br />

Picea, SE4GLI at 4 m/s<br />

2500<br />

2000<br />

1500<br />

1000<br />

500<br />

2500<br />

2000<br />

1500<br />

1000<br />

500<br />

0<br />

2500<br />

2000<br />

1500<br />

1000<br />

500<br />

0<br />

0<br />

0 0.02 0.04 0.06<br />

DWPA<br />

0 0.02 0.04 0.06 0.08<br />

DWPA<br />

0 0.02 0.04 0.06 0.08<br />

DWPA<br />

VR 1 km<br />

Y= 31000x + 610<br />

R-squared = 0.58<br />

VR 10 km<br />

Y = 29900x + 510<br />

R-squared = 0.69<br />

VR 460 km<br />

Y = 29800x + 440<br />

R-squared = 0.70<br />

L-PIM<br />

T-PIM


PAR<br />

PAR<br />

2500<br />

2000<br />

1500<br />

1000<br />

500<br />

0<br />

2400<br />

2000<br />

1600<br />

1200<br />

800<br />

400<br />

0<br />

0 0.02 0.04 0.06 0.08 0.1<br />

DWPA<br />

0 0.04 0.08 0.12 0.16<br />

DWPA<br />

Picea, T-PIM solutions<br />

Windspeed<br />

IN 0 m, WS 16.5 m/s<br />

Y = 27700x + 0<br />

R-squared = 0.81<br />

Injection height<br />

IN 20 m, WS 4 m/s<br />

Y = 10600x + 60<br />

R-squared = 0.82<br />

Problems<br />

Unrealistic parameter<br />

High initial deposition<br />

Large “skip-distance”


PAR<br />

2400<br />

2000<br />

1600<br />

1200<br />

800<br />

400<br />

0<br />

Regional component<br />

Local component<br />

0 0.04 0.08 0.12 0.16<br />

DWPA<br />

Composite Dispersal Function (CDF)<br />

Picea T-PIM CDF<br />

70% at WS 7 m/s and IN 20 m<br />

30% at WS 4 m/s and IN 1 m<br />

Y = 13800x – 10<br />

R-squared = 0.86


PAR<br />

4000<br />

3000<br />

2000<br />

1000<br />

PAR<br />

0<br />

2000<br />

1600<br />

1200<br />

800<br />

400<br />

0<br />

0 0.04 0.08 0.12 0.16 0.2<br />

DWPA<br />

0 0.04 0.08 0.12 0.16 0.2<br />

DWPA<br />

“lowtraps”<br />

Y = 10000x – 140<br />

R-squared = 0.69<br />

Poaceae at WS 5 m/s and IN 0.1 m<br />

Y = 12700x – 20<br />

R-squared = 0.27<br />

PAR<br />

4000<br />

3000<br />

2000<br />

1000<br />

0<br />

0 0.04 0.08 0.12 0.16 0.2<br />

DWPA<br />

“hightraps”<br />

Y = 9800x + 1300<br />

R-squared = 0.50


T-PIM CDF<br />

T-PIM CDF<br />

L-PIM SE4GLI<br />

T-PIM CDF


Modern pollen influx values<br />

(or pollen accumulation rates)<br />

in grains per year per unit area<br />

are normally accuired with<br />

pollen traps, unfourtunately a<br />

very time-consuming method.


Testing a new method for accuiring pollen influx from mini peat/moss monoliths


Extract vegetation data from existing maps<br />

SatVeg Dividalen, all classes SatVeg Dividalen, cornifers (Pinus)


Modelling hypothetic landscape dynamics<br />

Mountain summer farms


Modelling hypothetic landscape dynamics<br />

Proximity to summer farm


Modelling hypothetic landscape dynamics<br />

Tree-line


Modelling hypothetic landscape dynamics<br />

Geology


Modelling hypothetic landscape dynamics<br />

Forest grazing


Modelling hypothetic landscape dynamics<br />

Combination


Iron production<br />

sites<br />

Example: Impact of iron production on the vegetation<br />

in Budalen during the Roman Iron Age<br />

Pinus 100%<br />

Clear cut: 50% Poaceae, 50% Betula shrubs<br />

Betula 100%<br />

1) Does the paleo-data fit with the model and input parameters? (validation)<br />

2) If not: At what input level does the data fit (reconstruction)<br />

3) If not: How did we err? (back to 1)


Example: Holocene thermal<br />

maximum in Dividalen (+2°C)<br />

NORUT<br />

AVM 80<br />

DD 5<br />

Dividalen 4000 BC<br />

Dividalen today

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!