19.09.2013 Views

Passive Network Synthesis without Transformers

Passive Network Synthesis without Transformers

Passive Network Synthesis without Transformers

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>Passive</strong> <strong>Network</strong> <strong>Synthesis</strong> <strong>without</strong><br />

<strong>Transformers</strong><br />

In honour of Yutaka Yamamoto’s 60th birthday<br />

Malcolm C. Smith<br />

with<br />

Jason Zheng Jiang<br />

Cambridge University Engineering Department<br />

YY Fest<br />

29 March 2010<br />

Kyoto


<strong>Passive</strong> <strong>Network</strong> <strong>Synthesis</strong> <strong>without</strong> <strong>Transformers</strong> M.C. Smith<br />

The three linear, passive two-terminal electrical<br />

elements<br />

resistor capacitor inductor<br />

Why three?<br />

YY Fest 2010 2


<strong>Passive</strong> <strong>Network</strong> <strong>Synthesis</strong> <strong>without</strong> <strong>Transformers</strong> M.C. Smith<br />

forbidden<br />

v<br />

i<br />

i<br />

<strong>Passive</strong><br />

<strong>Network</strong><br />

O. Brune (1931): the drivingpoint<br />

impedance of a linear<br />

passive two-terminal network is<br />

positive-real. Conversely:<br />

Any (rational) positive-real function<br />

can be realised using resistors,<br />

capacitors, inductors and<br />

transformers.<br />

YY Fest 2010 3


<strong>Passive</strong> <strong>Network</strong> <strong>Synthesis</strong> <strong>without</strong> <strong>Transformers</strong> M.C. Smith<br />

Bott-Duffin <strong>Synthesis</strong><br />

R. Bott and R.J. Duffin showed<br />

that transformers were unnecessary<br />

in the synthesis of positive-real<br />

functions. (1949)<br />

YY Fest 2010 4


<strong>Passive</strong> <strong>Network</strong> <strong>Synthesis</strong> <strong>without</strong> <strong>Transformers</strong> M.C. Smith<br />

Foster preamble for a positive-real Z(s)<br />

Removal of poles on jR ∪ {∞}<br />

Z = sL+Z1, (Z1 proper)<br />

Removal of zeros on jR ∪ {∞}<br />

<br />

As Z =<br />

s2 +ω2 −1 + Y1<br />

Subtract minimum real part<br />

Z = R+Z2<br />

Not necessarily a unique process<br />

YY Fest 2010 5<br />

L<br />

L<br />

R<br />

Y1<br />

Z1<br />

C<br />

Z2


<strong>Passive</strong> <strong>Network</strong> <strong>Synthesis</strong> <strong>without</strong> <strong>Transformers</strong> M.C. Smith<br />

Minimum functions<br />

A minimum function Z(s) is a positive-real function with no poles<br />

or zeros on jR ∪ {∞} and with the real part of Z(jω) equal to 0 at one<br />

or more frequencies.<br />

ReZ(jω)<br />

0 ω1<br />

ω2<br />

ω<br />

YY Fest 2010 6


<strong>Passive</strong> <strong>Network</strong> <strong>Synthesis</strong> <strong>without</strong> <strong>Transformers</strong> M.C. Smith<br />

Biquadratic minimum function<br />

Z(s) = As2 + Bs + C<br />

Ds 2 + Es + F<br />

with A,B,...,F > 0 and BE = ( √ AF − √ CD) 2 > 0 is a minimum<br />

function. Bott-Duffin realisation:<br />

Z(s)<br />

3 capacitors, 3 inductors and 2 resistors!!<br />

YY Fest 2010 7


<strong>Passive</strong> <strong>Network</strong> <strong>Synthesis</strong> <strong>without</strong> <strong>Transformers</strong> M.C. Smith<br />

Some of the literature on RLC synthesis<br />

E. L. Ladenheim, A <strong>Synthesis</strong> of Biquadratic<br />

Impedances, Master’s thesis, Polytechnic<br />

Inst. of Brooklyn, 1948.<br />

R. H. Pantell, A new method of driving<br />

point impedance synthesis, Proc. IRE, 861,<br />

1954.<br />

F. M. Reza, Conversion of a Brune Cycle,<br />

Trans. I. R. E., March, PGCT-1, 1954.<br />

F. M. Reza, A bridge equivalent for a Brune<br />

cycle terminated in a resistor, Proc. I. R. E.,<br />

March, 42(8):1321, 1954.<br />

J. E. Storer, Relationship between the<br />

Bott-Duffin and Pantell Impedance<br />

<strong>Synthesis</strong>, Proc. IRE March, Sep., 42:1451,<br />

1954.<br />

F. M. Reza, A supplement to Brune<br />

synthesis, Commun. and Electronics.,<br />

March, 85–90, 1955.<br />

E. A. Guillemin, <strong>Synthesis</strong> of <strong>Passive</strong><br />

<strong>Network</strong>s, John Wiley & Sons, 1957.<br />

S. Seshu, Minimal Realizations of the<br />

Biquadratic Minimum Function, IRE<br />

Transactions on Circuit Theory, Dec.,<br />

345–350, 1959.<br />

R. M. Foster, Academic and Theoretical<br />

Aspects of Circuit Theory, Proc. IRE,<br />

866–871, 1962.<br />

R. M. Foster, Biquadratic Impedances<br />

Realisable by a Generalization of the<br />

Five-Element Minimum-Resistance<br />

Bridges, IEEE Trans. on Circuit Theory,<br />

363–367, 1963.<br />

R. M. Foster, Minimum Biquadratic<br />

Impedances, IEEE Trans. on Circuit<br />

Theory, 527, 1963.<br />

S. Seshu , Author’s Reply, IRE Transactions<br />

on Circuit Theory, Dec., 527, 1963.<br />

R. M. Foster and E. L. Ladenheim, A Class<br />

of Biquadratic Impedances, IEEE Trans. on<br />

Circuit Theory, 262–265, 1963.<br />

E. L. Ladenheim, Three-Reactive<br />

Five-Element Biquadratic Structures, IEEE<br />

Trans. on Circuit Theory, 455–456, 1963.<br />

E. L. Ladenheim, A Special Biquadratic<br />

Structure, IEEE Trans. on Circuit Theory,<br />

88–97, 1964.<br />

P. M. Lin, A theorem on equivalent<br />

one-port networks, IEEE Trans. on Circuit<br />

Theory, 619–621, 1965.<br />

M. Reichert, Die Kanonisch und<br />

Übertragerfrei realisierbaren<br />

Zweipolfunktionen zweiten Grades<br />

(Transformerless and canonic realisation of<br />

biquadratic immittance functions), Arch.<br />

Elek. Übertragung, Apr., 23:201–208,<br />

1969.<br />

C. G. Vasiliu, Three-Reactive Five-Element<br />

Structures, IEEE Trans. Circuit Theory,<br />

Feb., CT-16, 99, 1969.<br />

C. G. Vasiliu, Series-Parallel Six-Element<br />

<strong>Synthesis</strong> of the Biquadratic Impedances,<br />

IEEE Trans. on Circuit Theory, 115–121,<br />

1970.<br />

C. G. Vasiliu, Series-Parallel Six-Element<br />

<strong>Synthesis</strong> of the Biquadratic Impedances,<br />

IEEE Trans. on Circuit Theory, 115–121,<br />

1970.<br />

C. G. Vasiliu, Four-Reactive Six-Element<br />

Biquadratic Structures, IEEE Trans. on<br />

Circuit Theory, Sep., 530–531, 1970.<br />

C. G. Vasiliu, Correction to ‘Series-Parallel<br />

Six-Element <strong>Synthesis</strong> of the Biquadratic<br />

Impedances’, IEEE Trans. on Circuit<br />

Theory, Nov., 207, 1970.<br />

G. Dittmer, Zur Realisierung von<br />

RLC-Brückenzweipolen mit zwei<br />

Reaktanzen und mehr als drei<br />

Widerständen (On the realisation of RLC<br />

two-terminal bridge networks with two<br />

reactive and more than three resistive<br />

elements), Nachrichtentechnische<br />

Zeitschrift, 225-230, 1970.<br />

P. M. Lin, On Biquadratic Impedances with<br />

Two Reactive Elements, IEEE Trans. on<br />

Circuit Theory, 277, 1971.<br />

YY Fest 2010 8


<strong>Passive</strong> <strong>Network</strong> <strong>Synthesis</strong> <strong>without</strong> <strong>Transformers</strong> M.C. Smith<br />

Ladenheim’s master’s thesis (1948)<br />

Ladenheim considered all networks<br />

with at most five elements and at most<br />

two reactive elements, and reduced<br />

the whole set to 108 networks (1948).<br />

Questions not answered:<br />

◮ What is the totality of<br />

biquadratics which may be<br />

realised?<br />

◮ How many different networks<br />

are needed?<br />

YY Fest 2010 9


<strong>Passive</strong> <strong>Network</strong> <strong>Synthesis</strong> <strong>without</strong> <strong>Transformers</strong> M.C. Smith<br />

The Concept of Regular Positive Real Functions<br />

Definition<br />

A positive-real function Z(s) is defined to be regular if the smallest<br />

value of Re(Z(jω)) or Re Z −1 (jω) occurs at ω = 0 or ω = ∞.<br />

Example 1. Z1(s) =<br />

Imaginary Axis<br />

2<br />

1<br />

0<br />

−1<br />

2 s+2<br />

s+1<br />

−2<br />

0 1 2 3 4<br />

Real Axis<br />

Smallest value of Re(Z1(jω)) occurs<br />

at ω = ∞, hence Z1(s) is regular.<br />

YY Fest 2010 10


<strong>Passive</strong> <strong>Network</strong> <strong>Synthesis</strong> <strong>without</strong> <strong>Transformers</strong> M.C. Smith<br />

The Concept of Regular Positive Real Functions<br />

Example 2. Z2(s) =<br />

Imaginary Axis<br />

15<br />

10<br />

5<br />

0<br />

−5<br />

−10<br />

Z2(s)<br />

−15<br />

0 5 10 15 20 25<br />

Real Axis<br />

2 s+5<br />

s+1 , which is non-regular:<br />

Imaginary Axis<br />

1<br />

0.5<br />

0<br />

−0.5<br />

Y2(s) = 1/Z2(s)<br />

−1<br />

0 0.2 0.4 0.6 0.8 1<br />

Real Axis<br />

YY Fest 2010 11


<strong>Passive</strong> <strong>Network</strong> <strong>Synthesis</strong> <strong>without</strong> <strong>Transformers</strong> M.C. Smith<br />

<strong>Network</strong> Quartets<br />

◮ Exchange of capacitors and<br />

inductors<br />

◮ Duality (series ⇆ parallel,<br />

capacitor ⇆ inductor)<br />

Lemma 1.<br />

Na is regular =⇒ Nb,Nc,Nd are<br />

all regular.<br />

A network quartet which has<br />

only one network:<br />

YY Fest 2010 12<br />

IV


<strong>Passive</strong> <strong>Network</strong> <strong>Synthesis</strong> <strong>without</strong> <strong>Transformers</strong> M.C. Smith<br />

Properties of Regular Positive Real Functions<br />

Lemma 2<br />

The following networks are always regular:<br />

Regular<br />

<strong>Network</strong><br />

Regular<br />

<strong>Network</strong><br />

Lemma 3<br />

A network that has all reactive elements of the same kind can only<br />

realise regular immittances.<br />

Lemma 4<br />

The following networks are always regular:<br />

<strong>Passive</strong><br />

<strong>Network</strong><br />

<strong>Passive</strong><br />

<strong>Network</strong><br />

YY Fest 2010 13


<strong>Passive</strong> <strong>Network</strong> <strong>Synthesis</strong> <strong>without</strong> <strong>Transformers</strong> M.C. Smith<br />

Five-Element Series-Parallel <strong>Network</strong>s with Two<br />

Reactive Elements—Elimination Process<br />

Assume structure 11 can be<br />

non-regular:<br />

Contradiction.<br />

YY Fest 2010 14


<strong>Passive</strong> <strong>Network</strong> <strong>Synthesis</strong> <strong>without</strong> <strong>Transformers</strong> M.C. Smith<br />

Five-Element Series-Parallel <strong>Network</strong>s with Two<br />

Reactive Elements<br />

IV<br />

Theorem 1<br />

A biquadratic impedance can be realised by series-parallel<br />

five-element networks with two reactive elements if and only if it is<br />

regular. Moreover, the following two network quartets cover all cases.<br />

dual<br />

s↔s −1 s↔s −1<br />

dual<br />

dual<br />

s↔s −1 s↔s −1<br />

Jason Z. Jiang and Malcolm C. Smith, Regular Positive-Real Functions and <strong>Passive</strong> <strong>Network</strong>s Comprising Two Reactive Elements, 10th<br />

ECC, Pages 219–224, August 2009.<br />

IV<br />

YY Fest 2010 15<br />

dual


<strong>Passive</strong> <strong>Network</strong> <strong>Synthesis</strong> <strong>without</strong> <strong>Transformers</strong> M.C. Smith<br />

Five-Element Bridge <strong>Network</strong>s with Two Reactive<br />

Elements<br />

(1)<br />

(2)<br />

(3)<br />

IV<br />

IV<br />

IV<br />

dual<br />

dual<br />

s↔s −1<br />

Theorem 2<br />

Bridge networks with two<br />

reactive and three resistive<br />

elements can only realise<br />

regular immittances except<br />

for the third network<br />

quartet.<br />

YY Fest 2010 16


<strong>Passive</strong> <strong>Network</strong> <strong>Synthesis</strong> <strong>without</strong> <strong>Transformers</strong> M.C. Smith<br />

A canonical form and the regular region<br />

Extraction of a constant multiplier<br />

and frequency scaling gives a<br />

canonical form for biquadratics:<br />

Zc(s) = s2 + 2U √ Ws + W<br />

s 2 + (2V/ √ W)s + 1/W ,<br />

where U, V, W > 0.<br />

Positive-real ⇔ σc ≥ 0<br />

λ † λ c = 0 † c = 0<br />

Regular ⇔ λc,λ † c ≥ 0 σc σc < 0<br />

V<br />

2<br />

1<br />

λ † λ c > 0 † c > 0<br />

W=0.5<br />

Kc Kc < 0<br />

λc λc > 0<br />

Kc Kc = 0<br />

λc λc = 0<br />

0<br />

0 1<br />

U<br />

σc σc = 0<br />

2<br />

YY Fest 2010 17


<strong>Passive</strong> <strong>Network</strong> <strong>Synthesis</strong> <strong>without</strong> <strong>Transformers</strong> M.C. Smith<br />

The impedances that can be realised by the third bridge<br />

network quartet with W ∈ (1/3,1).<br />

V<br />

γ2 = 0<br />

2<br />

1<br />

λ † c = 0<br />

γ1 = 0<br />

W=0.6<br />

λc = 0<br />

0<br />

0 γ2 = 0<br />

1<br />

U<br />

σc = 0<br />

2<br />

YY Fest 2010 18


<strong>Passive</strong> <strong>Network</strong> <strong>Synthesis</strong> <strong>without</strong> <strong>Transformers</strong> M.C. Smith<br />

Mechanical <strong>Network</strong> <strong>Synthesis</strong><br />

Theorem<br />

It is possible to build a passive mechanism<br />

of small mass whose impedance<br />

(velocity/force) is any rational postive-real<br />

function.<br />

Proof<br />

Bott-Duffin + ideal inerter: F = b(¨x1 − ¨x2),<br />

where physical embodiments must satisfy:<br />

◮ Inertance b (kg) is independent of mass;<br />

◮ Inertance is independent of travel.<br />

ms<br />

<strong>Passive</strong><br />

Mechanism<br />

YY Fest 2010 19<br />

mu


<strong>Passive</strong> <strong>Network</strong> <strong>Synthesis</strong> <strong>without</strong> <strong>Transformers</strong> M.C. Smith<br />

Ballscrew inerter made in Cambridge University<br />

Engineering Department (2003)<br />

Mass ≈ 1 kg, Inertance (adjustable) = 60–180 kg<br />

YY Fest 2010 20


<strong>Passive</strong> <strong>Network</strong> <strong>Synthesis</strong> <strong>without</strong> <strong>Transformers</strong> M.C. Smith<br />

Yutaka’s Birthday Puzzle<br />

YY Fest 2010 22

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!