13.10.2013 Views

to the I(1) - Feweb

to the I(1) - Feweb

to the I(1) - Feweb

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Introduction<br />

Econometrics II – Chapter 7.5<br />

Regression model with lags<br />

One-equation cointegration<br />

Marius Ooms<br />

Tinbergen Institute Amsterdam<br />

Section 7.5 considers bivariate dynamic processes with a<br />

dynamic regression interpretation.<br />

One variable is considered dependent and, in addition <strong>to</strong><br />

lagged values of <strong>the</strong> dependent variable, current and<br />

lagged values of <strong>the</strong> o<strong>the</strong>r explana<strong>to</strong>ry variable, that is<br />

considered predetermined in <strong>the</strong> equation.<br />

Such a relation is called an au<strong>to</strong>regressive distributed<br />

lag (A(R)DL) relation. MA error terms can sometimes be<br />

allowed for. We first assume joint stationarity of y and x for<br />

estimation purposes: ”I(0)” world.<br />

Chapter 7.5 – p. 1/30<br />

Chapter 7.5 – p. 3/30<br />

Contents<br />

Introduction<br />

Au<strong>to</strong>regressive Distributed Lag Model in I(0) world<br />

Equilibrium Correction Model (ECM) in I(0) world<br />

long run equilibrium<br />

equilibrium correction<br />

o<strong>the</strong>r economic dynamic regression models<br />

(non)exogeneity, consequences<br />

Cointegration: ADL/ECM in I(1) world<br />

spurious regression<br />

cointegration<br />

Structural interpretation<br />

Lagged dependent terms in A(R)DL models motivated by<br />

economic <strong>the</strong>ory (partial adjustment, adaptive<br />

expectations, equilibrium correction), ra<strong>the</strong>r than just<br />

modelling serial correlation: <strong>the</strong> ADL model is a structural<br />

equation with interpretable parameters.<br />

Interpretation and estimation parameters depends on<br />

exogeneity assumptions on x.<br />

Example §7.5: yt: US inflation. xt: US tbill rate. See below.<br />

Chapter 7.5 – p. 2/30<br />

Chapter 7.5 – p. 4/30


AR distributed lag model (ADL(p,r))<br />

We study <strong>the</strong> ADL(1, 1) model<br />

yt = α + φyt−1 + β0xt + β1xt−1 + εt,<br />

where |φ| < 1: stability condition in this context. The error<br />

term, εt, is White Noise. xt is considered predetermined in<br />

<strong>the</strong> equation or, in more general terms: (weakly)<br />

exogenous with respect <strong>to</strong> <strong>the</strong> estimation of <strong>the</strong><br />

parameters α, φ, β0 and β1. This requires that xt is<br />

uncorrelated with εt,εt+1,....<br />

The model can be re-formulated in DL(∞) form <strong>to</strong> show<br />

<strong>the</strong> response of yt,yt+1,... <strong>to</strong> one-time changes in xt:<br />

dynamic impact (”impulse response”)<br />

ARDL example US inflation, Interest rates<br />

US Core inflation (SA), 3-month T-bill, 59.1-99.12<br />

24<br />

20<br />

16<br />

12<br />

8<br />

4<br />

0<br />

-4<br />

-8<br />

60 65 70 75 80 85 90 95<br />

USCOREINFSA TBAA3M<br />

Chapter 7.5 – p. 5/30<br />

Chapter 7.5 – p. 7/30<br />

Dynamic impact, ARDL(0,∞) form of ARDL(1,1)<br />

(1 − φL)yt = α + (β0 + β1L)xt + εt,<br />

φ(L)yt = α + β(L)xt + εt,<br />

yt = αφ −1 (1) + φ −1 (L)β(L)xt + φ −1 (L)εt.<br />

∂yt<br />

∂xt<br />

∂yt+1<br />

∂xt<br />

∂yt+j<br />

= β0,<br />

= β1 + φβ0,<br />

.<br />

∂xt<br />

= φ j−1 (β1 + φβ0), for j > 0.<br />

Note that <strong>the</strong> influence on yt+j disappears as j → ∞.<br />

ARDL(6,4) estimation example ’reduced form’<br />

Modelling UScoreinfSA by OLS<br />

The estimation sample is: 62 (1) <strong>to</strong> 99 (12)<br />

Coefficient Std.Error t-value t-prob<br />

UScoreinfSA_1 0.233366 0.04750 4.91 0.000<br />

...<br />

UScoreinfSA_6 0.102451 0.04612 2.22 0.027<br />

Constant 0.239006 0.3136 0.762 0.446<br />

tbaa3m 0.867091 0.2383 3.64 0.000<br />

tbaa3m_1 -0.646922 0.3798 -1.70 0.089<br />

...<br />

tbaa3m_4 -0.340460 0.2405 -1.42 0.158<br />

sigma 2.54947 RSS 2885.89892<br />

Rˆ2 0.542968 F(11,444) = 47.95 [0.000]**<br />

log-likelihood -1067.72 DW 2.04<br />

no. of observations 456 no. of parameters 12<br />

mean(UScoreinfSA) 4.54782 var(UScoreinfSA) 13.8475<br />

Chapter 7.5 – p. 6/30<br />

Chapter 7.5 – p. 8/30


ARDL dynamic impact of x, example<br />

Dynamic impact interest rate on inflation (scaled, sum=1)<br />

2<br />

1<br />

0<br />

−1<br />

2.5<br />

2.0<br />

1.5<br />

1.0<br />

tbaa3m<br />

Impact tbaa3m (normalized) on UScoreinfSA<br />

0 5 10 15 20 25 30<br />

tbaa3m(cum)<br />

Cumulative impact tbaa3m (normalized) on UScoreinfSA<br />

0 5 10 15 20 25 30 35 40<br />

Long-run elasticity<br />

When y,x is in logs, <strong>the</strong>n<br />

λ = β(1)<br />

φ(1) =<br />

∞<br />

j=0<br />

∂yt+j<br />

∂xt<br />

can be interpreted as a “long-run elasticity”.<br />

Chapter 7.5 – p. 9/30<br />

Chapter 7.5 – p. 11/30<br />

Long run “equilibrium relationships” from ADL eq.<br />

Thought experiment: keep xt = ¯x constant, put all εt = 0<br />

and compute <strong>the</strong> value for yt after convergence (assuming<br />

this is <strong>the</strong> only dynamic relationship between xt and yt),<br />

that is ¯y.<br />

The “equilibrium” is<br />

or, in general,<br />

¯y = δ + φ¯y + β0¯x + β1¯x,<br />

¯y = α β(1)<br />

+<br />

φ(1) φ(1) ¯x.<br />

Long run relation Inflation Interest Rate?<br />

US interest rate vs. inflation 62-99(Fisher equation)<br />

USCOREINFSA<br />

24<br />

20<br />

16<br />

12<br />

8<br />

4<br />

0<br />

-4<br />

-8<br />

2 4 6 8 10 12 14 16 18<br />

TBAA3M<br />

Chapter 7.5 – p. 10/30<br />

Chapter 7.5 – p. 12/30


Long run equation implied by ARDL<br />

By simple calculations one can derive a long run relation<br />

between x and y from <strong>the</strong> ARDL and test its significance:<br />

Solved static long run equation for UScoreinfSA<br />

Coefficient Std.Error t-value t-prob<br />

Constant 1.07147 1.445 0.742 0.459<br />

tbaa3m 0.558555 0.2175 2.57 0.011<br />

ECM = UScoreinfSA - 1.07147 - 0.558555*tbaa3m; (Equilibrium correction<br />

mechanism)<br />

Inverse Roots of UScoreinfSA lag polynomial (is AR part stable?):<br />

real imag modulus<br />

0.92014 0.00000 0.92014<br />

0.32600 0.61182 0.69326<br />

...<br />

-0.34068 -0.48614 0.59363<br />

How <strong>to</strong> derive <strong>the</strong> Equilibrium correction term? See next!<br />

Example: ECM unrestricted: eq. (2)<br />

Exercise (1): Compute long run semi- elasticity λ from OLS<br />

output:<br />

Dependent Variable: DUSCOREINFSA<br />

Method: Least Squares<br />

Sample: 1962:01 1999:12<br />

Included observations: 456<br />

Variable Coefficient Std. Error t-Statistic Prob.<br />

C 0.239006 0.313641 0.762036 0.4464<br />

DUSCOREINFSA(-1) -0.543571 0.063107 -8.613422 0.0000<br />

DUSCOREINFSA(-2) -0.319701 0.064293 -4.972542 0.0000<br />

DUSCOREINFSA(-3) -0.297513 0.061498 -4.837784 0.0000<br />

DUSCOREINFSA(-4) -0.206045 0.058424 -3.526735 0.0005<br />

DUSCOREINFSA(-5) -0.102451 0.046116 -2.221614 0.0268<br />

DTBAA3M 0.867091 0.238304 3.638592 0.0003<br />

DTBAA3M(-1) 0.095577 0.247830 0.385655 0.6999<br />

DTBAA3M(-2) 1.090760 0.243602 4.477637 0.0000<br />

DTBAA3M(-3) 0.340460 0.240463 1.415852 0.1575<br />

USCOREINFSA(-1) -0.223063 0.053931 -4.136090 0.0000<br />

TBAA3M(-1) 0.124593 0.063355 1.966567 0.0499<br />

R-squared 0.393532 Mean dependent var 0.003614<br />

Adjusted R-squared 0.378507 S.D. dependent var 3.233931<br />

S.E. of regression 2.549465 Akaike info criterion 4.735608<br />

Sum squared resid 2885.899 Schwarz criterion 4.844094<br />

Log likelihood -1067.719 F-statistic 26.19159<br />

Durbin-Watson stat 2.040891 Prob(F-statistic) 0.000000<br />

Chapter 7.5 – p. 13/30<br />

Chapter 7.5 – p. 15/30<br />

Equilibrium (Error) Correction Model (E(q)CM)<br />

The ECM explains <strong>the</strong> change in y using one lagged level<br />

of y and x and one or more lagged differences of y and<br />

x. The ECM representation of <strong>the</strong> ADL model is easier <strong>to</strong><br />

interpret and often easier <strong>to</strong> estimate. In <strong>the</strong> univariate<br />

case, β(L) = 0, it reduces <strong>to</strong> an (A)D-F regression.<br />

yt = α + φyt−1 + β0xt + β1xt−1 + εt, (1)<br />

∆yt = α − (1 − φ)yt−1 + β0∆xt + (β0 + β1)xt−1 + εt, (2)<br />

= β0∆xt − (1 − φ)[yt−1 − δ − λxt−1] + εt, (3)<br />

δ =<br />

α<br />

(1 − φ) , λ = (β0 + β1)<br />

(1 − φ) .<br />

δ and λ are ‘<strong>the</strong> ‘equilibrium” coefficients.<br />

Decomposition ECM model<br />

The ECM specification (3) decomposes a change in y in<strong>to</strong><br />

two components,<br />

1. from change in x: ∆xt: direct short run effect<br />

2. from lagged equilibrium error: zt−1 where<br />

zt = yt − δ − λxt<br />

When yt is higher than equilibrium value (positive z), y will<br />

adjust downwards in order <strong>to</strong> get back <strong>to</strong> equilibrium:<br />

Equilibrium (error) correction.<br />

Remember: §7.5 assumes <strong>the</strong>re is no feedback (Granger<br />

non-causality) from y <strong>to</strong> x!<br />

Chapter 7.5 – p. 14/30<br />

Chapter 7.5 – p. 16/30


Example: ECM term time series plot<br />

20<br />

15<br />

10<br />

5<br />

0<br />

-5<br />

-10<br />

-15<br />

ECM term = UScoreinfSA - 1.07 - 0.56*tbaa3m<br />

1965 1970 1975 1980 1985 1990 1995<br />

ECMTERM<br />

Chapter 7.5 – p. 17/30<br />

Partial Scatterplot ECM effect, (c.f. §3.2.5 Case 3)<br />

DUSCOREINFSAPARTIAL vs. ECMTERMLAGGEDPARTIAL<br />

DUSCOREINFSAPARTIAL<br />

15<br />

10<br />

5<br />

0<br />

-5<br />

-10<br />

-6 -4 -2 0 2 4 6 8 10<br />

ECMTERMLAGGEDPARTIAL<br />

Chapter 7.5 – p. 19/30<br />

Example: ECM estimation eq. (3) with known λ<br />

Exercise (2): Compute ”adjustment coefficient” (− φ(1)<br />

from OLS output.<br />

Dependent Variable: DUSCOREINFSA<br />

Method: Least Squares<br />

Sample(adjusted): 1962:02 1999:12<br />

Included observations: 455 after adjusting endpoints<br />

Variable Coefficient Std. Error t-Statistic Prob.<br />

C 0.001846 0.119532 0.015444 0.9877<br />

DUSCOREINFSA(-1) -0.543513 0.061869 -8.784847 0.0000<br />

DUSCOREINFSA(-2) -0.319760 0.063442 -5.040161 0.0000<br />

DUSCOREINFSA(-3) -0.298213 0.060994 -4.889204 0.0000<br />

DUSCOREINFSA(-4) -0.205761 0.058014 -3.546746 0.0004<br />

DUSCOREINFSA(-5) -0.104175 0.046282 -2.250878 0.0249<br />

DTBAA3M 0.868916 0.236007 3.681734 0.0003<br />

DTBAA3M(-1) 0.093375 0.245796 0.379888 0.7042<br />

DTBAA3M(-2) 1.093816 0.242643 4.507912 0.0000<br />

DTBAA3M(-3) 0.339643 0.239119 1.420392 0.1562<br />

ECMTERM(-1) -0.223273 0.052104 -4.285112 0.0000<br />

R-squared 0.393677 Mean dependent var 0.003294<br />

Adjusted R-squared 0.380021 S.D. dependent var 3.237484<br />

S.E. of regression 2.549155 Akaike info criterion 4.733280<br />

Sum squared resid 2885.197 Schwarz criterion 4.832891<br />

Log likelihood -1065.821 F-statistic 28.82824<br />

Durbin-Watson stat 2.039039 Prob(F-statistic) 0.000000<br />

Direct estimation ECM λ and s.e. in Eviews<br />

Chapter 7.5 – p. 18/30<br />

(Advanced) Exercise (3): Explain why <strong>the</strong> coefficient of rt<br />

is estimated using 2SLS and why it is a consistent estimate<br />

of λ. Hint: Apply <strong>the</strong> decomposition α0 + α1L = α(1) − α1∆<br />

<strong>to</strong> φ(L) and β(L).<br />

Dependent Variable: USCOREINFSA<br />

Method: Two-Stage Least Squares<br />

Date: 02/10/03 Time: 10:51<br />

Sample: 1962:01 1999:12<br />

Included observations: 456<br />

Instrument list: C TBAA3M DTBAA3M(0 TO -3) DUSCOREINFSA(-1<br />

TO -5) USCOREINFSA(-1)<br />

Variable Coefficient Std. Error t-Statistic Prob.<br />

C 1.071473 1.444886 0.741562 0.4587<br />

TBAA3M 0.558555 0.217458 2.568569 0.0105<br />

DUSCOREINFSA -3.483041 1.083884 -3.213482 0.0014<br />

DUSCOREINFSA(-1) -2.436850 0.808796 -3.012937 0.0027<br />

DUSCOREINFSA(-2) -1.433233 0.555871 -2.578358 0.0102<br />

DUSCOREINFSA(-3) -1.333765 0.507371 -2.628777 0.0089<br />

DUSCOREINFSA(-4) -0.923709 0.398263 -2.319342 0.0208<br />

DUSCOREINFSA(-5) -0.459293 0.257246 -1.785425 0.0749<br />

DTBAA3M 3.328652 1.381126 2.410101 0.0164<br />

DTBAA3M(-1) 0.428475 1.124256 0.381118 0.7033<br />

DTBAA3M(-2) 4.889923 1.678523 2.913231 0.0038<br />

DTBAA3M(-3) 1.526295 1.140696 1.338038 0.1816<br />

R-squared -8.185267 Mean dependent var 4.547815<br />

Adjusted R-squared -8.412830 S.D. dependent var 3.725304<br />

S.E. of regression 11.42936 Sum squared resid 57999.81<br />

F-statistic 2.386014 Durbin-Watson stat 2.040891<br />

Prob(F-statistic) 0.007054<br />

Chapter 7.5 – p. 20/30


Partial Adjustment interpretation ADL(1,0)<br />

NB: in following two examples: λ is an adjustment<br />

parameter, not equilibrium parameter. δ is equilibrium<br />

parameter, not a constant term.<br />

Partial adjustment<br />

The economic structural model:<br />

with ADL model:<br />

yt = yt−1 + λ(y ∗ t − yt−1) + εt<br />

y ∗ t = γ + δxt<br />

yt = λγ + (1 − λ)yt−1 + λδxt + εt : ADL(1, 0).<br />

Exercise (4): Derive this ADL model.<br />

(Weak) exogeneity<br />

Chapter 7.5 – p. 21/30<br />

In <strong>the</strong> context of ECM models one often extends <strong>the</strong> old<br />

concept of predeterminedness (“independence” of<br />

regressor variable and present and future structural<br />

equation errors) <strong>to</strong> <strong>the</strong> concept of weak exogeneity. (Short:<br />

exogeneity in §4.1.3: plim 1<br />

n X′ ε) = 0).<br />

A variable xt is said <strong>to</strong> be weakly exogenous for estimating<br />

a parameter of interest λ, if inference on λ conditional on xt<br />

involves no loss of information. In practice joint modelling<br />

of yt and xt does not improve inference on λ if xt is weakly<br />

exogenous.<br />

Strict exogeneity: “Independence” of regressors and<br />

structural equation errors at all leads and lags, does not<br />

apply <strong>to</strong> ECM.<br />

Chapter 7.5 – p. 23/30<br />

Adaptive expectations ARDL(1,0)-MA(1)<br />

Adaptive Expectations<br />

The economic structural model, where <strong>the</strong> true explana<strong>to</strong>ry<br />

variable (i.c. expected x) x ∗ t+1 is unobserved.<br />

yt = γ + δx ∗ t+1 + εt<br />

x ∗ t+1 = x ∗ t + λ(xt − x ∗ t)<br />

The corresponding ARDL(1,0) form has MA(1) errors<br />

yt = λγ + (1 − λ)yt−1 + λδxt + εt − (1 − λ)εt−1,<br />

which can also be written in ARDL(0,∞) form:<br />

yt = γ + (1 − (1 − λ)L)) −1 λδxt + εt.<br />

Exercise (5): derive this ARDL(0,∞) form.<br />

Strong exogeneity, Granger non-causality<br />

The ADL model can be used as part of a forecasting<br />

procedure for yt. If we want efficient inference on future yt<br />

without making a joint dynamic model for yt and xt we<br />

need a strong exogeneity assumption.<br />

Strong Exogeneity of xt for (forecasting) equation yt<br />

combines two requirements:<br />

1. (Weak) exogeneity of xt for estimating all <strong>the</strong><br />

parameters of <strong>the</strong> equation for yt<br />

2. Granger non-causality of yt for xt, §7.6.2<br />

In linear forecasting of xt using lags of xt, additional<br />

lags of yt do not decrease forecast MSE: Partial<br />

correlations of xt with yt−1,yt−2,... are zero.<br />

Regression F -test for Granger-noncausality in<br />

auxiliary equation for xt.<br />

Chapter 7.5 – p. 22/30<br />

Chapter 7.5 – p. 24/30


Extending ARDL from <strong>the</strong> I(0) <strong>to</strong> <strong>the</strong> I(1) world<br />

The ARDL model can also be used for nonstationary<br />

series, but <strong>the</strong>n one has <strong>to</strong> be careful with statistical<br />

inference. Standard distribution <strong>the</strong>ory does not apply. In<br />

<strong>the</strong> I(1) world <strong>the</strong> notion of long run equilibrium<br />

corresponds <strong>to</strong> cointegration and <strong>the</strong> existence of a<br />

common trend.<br />

Cointegration does not require strong exogeneity of x for<br />

<strong>the</strong> estimation of <strong>the</strong> parameters in <strong>the</strong> ARDL equation(s).<br />

It does require I(1)-ness of both x and y.<br />

Spurious regression, non-cointegration<br />

Regress I(1) process yt on independent I(1) process xt.<br />

This means <strong>the</strong> residual process is also I(1)!<br />

OLS based inference (§2.3): Overrejection of H0 of<br />

independence because of extremely strong positive serial<br />

correlation in <strong>the</strong> error term.<br />

GMM based inference (§5.5.3) (au<strong>to</strong>matic “Newey-West<br />

correction” for serial correlation in error term) does not<br />

work for I(1) ei<strong>the</strong>r. The moments of GMM do not exist!<br />

Correction for determistic trend does not work ei<strong>the</strong>r. The<br />

’omitted trend variable’ is not observed!<br />

Chapter 7.5 – p. 25/30<br />

Chapter 7.5 – p. 27/30<br />

Cointegration and Spurious Regression<br />

Definition cointegration: yt, xt ∼ CI(1, 1):<br />

yt ∼ I(1), xt ∼ I(1), linear combination (yt − λxt) ∼ I(0).<br />

yt − λxt integrated of order 1-1=0. Cointegration concerns<br />

only <strong>the</strong> s<strong>to</strong>chastic part of series, i.e. not <strong>the</strong> deterministic<br />

part.<br />

Spurious regression:<br />

yt ∼ I(1), xt ∼ I(1), yt and xt independent, regress yt on<br />

constant and xt (so that residuals of spurious regression<br />

are also I(1)).<br />

Spurious regression problem:<br />

Apply assumption of I(0) (or even WN) <strong>to</strong> I(1) variables in<br />

assessing statistical significance of correlations and<br />

regression coefficients. Result: incorrect rejection of H0 :<br />

“no linear relationship”.<br />

Cointegration in <strong>the</strong> ADL model<br />

Consider <strong>the</strong> ARDL model with xt ∼ I(1):<br />

yt = α + φyt−1 + β0xt + β1xt−1 + εt<br />

xt = xt−1 + ηt<br />

Chapter 7.5 – p. 26/30<br />

with εt, ηt independent WN, |φ| < 1, β0 + β1 = 0, so<br />

xt ∼ I(1) and yt = (1 − φL) −1 [α + β0xt + β1xt−1 + εt] ∼ I(1).<br />

There is no long run equilibrium value for x.<br />

∆yt is a stationary, invertible ARMA(1,1) process and<br />

<strong>the</strong>refore I(0). This means yt is I(1).<br />

yt fluctuates around [α0 + (β0 + β1)xt]/(1 − φ).<br />

One can show that yt and xt are cointegrated with one<br />

common trend: (1 − L) −1 ηt.<br />

Chapter 7.5 – p. 28/30


ARDL in ECM form in I(1) world<br />

The error/equilibrium correction form is:<br />

∆yt = β0∆xt − (1 − φ)zt−1 + εt,<br />

where deviation from equilibrium zt is defined as<br />

zt = yt −<br />

α<br />

(1 − φ) − (β0 + β1)<br />

(1 − φ) xt.<br />

Advanced Exercise (6): Prove zt is I(0), <strong>the</strong>refore xt and yt<br />

are CI(1,1). Hint: Apply <strong>the</strong> ”unit root” decompositions<br />

α0 + α1L = α(1) − α1∆ and/or α0 + α1L = α0∆ + α(1)L <strong>to</strong><br />

φ(L) and/or β(L). Note connection with Advanced Exercise<br />

(3)<br />

Chapter 7.5 – p. 29/30<br />

Warning: Coefficient tests in ECM in I(1) world<br />

OLS/GMM inference on coefficient tests in ECM with<br />

possible I(1) regressors is not standard, not even without<br />

serial correlation in <strong>the</strong> residuals. Some t− tests are<br />

asymp<strong>to</strong>tically normal. Some are not!<br />

Standard I(0) inference: t-tests with standard normal tables.<br />

Standard t-test examples, test for:<br />

- φ = 0 (coeff of yt−1 in (2)): test immediate full adjustment of y <strong>to</strong><br />

disequilibrium.<br />

- β0 = 0 (coeff of ∆xt in (2)): zero direct impact x on y.<br />

Nonstandard t-test examples, test for<br />

- (1 − φ) = 0 (coeff of yt−1 if no ECM): cf. Augmented DF,<br />

- β0 + β1 = 0 (coeff for xt−1 in (2) if no ECM): a test for<br />

non-cointegration. Warning: Coefficient tests involving I(1)<br />

regressors under H0 can have nonstandard limiting distributions.<br />

Chapter 7.5 – p. 30/30

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!