22.10.2013 Views

Identification of Constitutive Parameters for Coupled Thermo-Hydro ...

Identification of Constitutive Parameters for Coupled Thermo-Hydro ...

Identification of Constitutive Parameters for Coupled Thermo-Hydro ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<strong>Identification</strong> <strong>of</strong> <strong>Constitutive</strong> <strong>Parameters</strong> <strong>for</strong> <strong>Coupled</strong><br />

<strong>Thermo</strong>-<strong>Hydro</strong>-Mechanical Model <strong>of</strong> Unsaturated Expansive Soil<br />

via Back Analysis<br />

Tom Schanz (a) , Maria Datcheva (b) , and Long Nguyen Tuan (a)<br />

(a) Chair <strong>for</strong> Foundation Engineering, Soil- and Rock Mechanics<br />

Ruhr-Universität Bochum, Germany<br />

(b) Institute <strong>of</strong> Mechanics, Bulgarian Academy <strong>of</strong> Sciences<br />

ICIP Hong Kong – December 13-17, 2010<br />

Schanz, Datcheva, and Nguyen Tuan <strong>Identification</strong> <strong>of</strong> <strong>Parameters</strong> <strong>for</strong> THM Model <strong>of</strong> Unsaturated Soil via Back Analysis 1 / 23


<strong>Thermo</strong>-<strong>Hydro</strong>-Mechanical (THM) Experiment<br />

Numerical Simulation Framework<br />

Process <strong>of</strong> <strong>Identification</strong> <strong>of</strong> Const. <strong>Parameters</strong><br />

Conclusions<br />

Motivation - Nuclear Waste Repository<br />

Rock<br />

Container<br />

Repository design (Gorleben working model)<br />

Nuclear waste repository<br />

BUFFER<br />

Radioactive waste<br />

Schanz, Datcheva, and Nguyen Tuan <strong>Identification</strong> <strong>of</strong> <strong>Parameters</strong> <strong>for</strong> THM Model <strong>of</strong> Unsaturated Soil via Back Analysis 2 / 23


<strong>Thermo</strong>-<strong>Hydro</strong>-Mechanical (THM) Experiment<br />

Numerical Simulation Framework<br />

Process <strong>of</strong> <strong>Identification</strong> <strong>of</strong> Const. <strong>Parameters</strong><br />

Conclusions<br />

Motivation - THM Behavior<br />

heat<br />

Idealization <strong>of</strong> in-situ conditions<br />

buffer<br />

waste<br />

Radio<br />

nuclide<br />

water<br />

Problem approach<br />

T = 25 o C<br />

Water<br />

Heat<br />

T = 80 o C<br />

T = T (t)<br />

s = s (t)<br />

σ ∗ = σ*(t)<br />

Schanz, Datcheva, and Nguyen Tuan <strong>Identification</strong> <strong>of</strong> <strong>Parameters</strong> <strong>for</strong> THM Model <strong>of</strong> Unsaturated Soil via Back Analysis 3 / 23


Outline<br />

<strong>Thermo</strong>-<strong>Hydro</strong>-Mechanical (THM) Experiment<br />

Numerical Simulation Framework<br />

Process <strong>of</strong> <strong>Identification</strong> <strong>of</strong> Const. <strong>Parameters</strong><br />

Conclusions<br />

1 THM Experiment<br />

2 Numerical Simulation Framework<br />

Balance Equations Used<br />

<strong>Constitutive</strong> Equations and <strong>Parameters</strong><br />

3 Process <strong>of</strong> <strong>Identification</strong> <strong>of</strong> <strong>Constitutive</strong> <strong>Parameters</strong><br />

Sensitivity Analysis<br />

Optimization Algorithm<br />

Assessment <strong>of</strong> the Quality <strong>of</strong> the Optimized <strong>Parameters</strong><br />

Assessment <strong>of</strong> the Goodness <strong>of</strong> the Fit<br />

4 Conclusions<br />

Schanz, Datcheva, and Nguyen Tuan <strong>Identification</strong> <strong>of</strong> <strong>Parameters</strong> <strong>for</strong> THM Model <strong>of</strong> Unsaturated Soil via Back Analysis 4 / 23


<strong>Thermo</strong>-<strong>Hydro</strong>-Mechanical (THM) Experiment<br />

Numerical Simulation Framework<br />

Process <strong>of</strong> <strong>Identification</strong> <strong>of</strong> Const. <strong>Parameters</strong><br />

Conclusions<br />

THM Column Experiment<br />

THM experimental apparatus<br />

Schanz, Datcheva, and Nguyen Tuan <strong>Identification</strong> <strong>of</strong> <strong>Parameters</strong> <strong>for</strong> THM Model <strong>of</strong> Unsaturated Soil via Back Analysis 5 / 23


<strong>Thermo</strong>-<strong>Hydro</strong>-Mechanical (THM) Experiment<br />

Numerical Simulation Framework<br />

Process <strong>of</strong> <strong>Identification</strong> <strong>of</strong> Const. <strong>Parameters</strong><br />

Conclusions<br />

Hydration Test Simulation<br />

Geometry and discretization<br />

Schanz, Datcheva, and Nguyen Tuan <strong>Identification</strong> <strong>of</strong> <strong>Parameters</strong> <strong>for</strong> THM Model <strong>of</strong> Unsaturated Soil via Back Analysis 6 / 23<br />

P1<br />

P2<br />

P3<br />

P4


Heating Test Simulation<br />

<strong>Thermo</strong>-<strong>Hydro</strong>-Mechanical (THM) Experiment<br />

Numerical Simulation Framework<br />

Process <strong>of</strong> <strong>Identification</strong> <strong>of</strong> Const. <strong>Parameters</strong><br />

Conclusions<br />

Geometry and discretization<br />

Schanz, Datcheva, and Nguyen Tuan <strong>Identification</strong> <strong>of</strong> <strong>Parameters</strong> <strong>for</strong> THM Model <strong>of</strong> Unsaturated Soil via Back Analysis 7 / 23<br />

P1<br />

P2<br />

P3<br />

P4<br />

25°C<br />

80°C


Balance Equations<br />

<strong>Thermo</strong>-<strong>Hydro</strong>-Mechanical (THM) Experiment<br />

Numerical Simulation Framework<br />

Process <strong>of</strong> <strong>Identification</strong> <strong>of</strong> Const. <strong>Parameters</strong><br />

Conclusions<br />

Balance Equations Used<br />

<strong>Constitutive</strong> Equations<br />

Mass balance <strong>of</strong> water<br />

∂ <br />

w θl Slφ + θ<br />

∂t<br />

w g Sg φ + ∇ · j w l + jw <br />

w<br />

g = f<br />

Momentum balance <strong>for</strong> the medium<br />

Internal energy balance <strong>for</strong> the medium<br />

∇ · σ + b = 0<br />

∂<br />

∂t (Esρs (1 − φ) + ElρlSlφ) + ∇ · (ic + jEs + jEl) = f Q<br />

θ w<br />

l , θw g = volumetric mass <strong>of</strong> water and gas<br />

j w<br />

l , jwg<br />

= total flux <strong>of</strong> water, gas<br />

σ = stress tensor<br />

Es , El , = internal energy in each phase<br />

ρs , ρl = density <strong>of</strong> each phase<br />

f Q = external energy supply<br />

f w = external supply <strong>of</strong> water<br />

φ = porosity<br />

b = vector <strong>of</strong> body <strong>for</strong>ces<br />

ic = energy flux due to conduction<br />

jEs, jEl = advective fluxes <strong>of</strong> energy by mass<br />

motions<br />

Schanz, Datcheva, and Nguyen Tuan <strong>Identification</strong> <strong>of</strong> <strong>Parameters</strong> <strong>for</strong> THM Model <strong>of</strong> Unsaturated Soil via Back Analysis 8 / 23


Balance Equations<br />

<strong>Thermo</strong>-<strong>Hydro</strong>-Mechanical (THM) Experiment<br />

Numerical Simulation Framework<br />

Process <strong>of</strong> <strong>Identification</strong> <strong>of</strong> Const. <strong>Parameters</strong><br />

Conclusions<br />

Balance Equations Used<br />

<strong>Constitutive</strong> Equations<br />

Mass balance <strong>of</strong> water<br />

∂ <br />

w θl Slφ + θ<br />

∂t<br />

w g Sg φ + ∇ · jw l + jw <br />

w<br />

g = f<br />

Momentum balance <strong>for</strong> the medium<br />

Internal energy balance <strong>for</strong> the medium<br />

∇ · σ + b = 0<br />

∂<br />

∂t (Esρs (1 − φ) + ElρlSlφ) + ∇ · (ic + jEs + jEl) = f Q<br />

θ w<br />

l , θw g = volumetric mass <strong>of</strong> water and gas<br />

j w<br />

l , jwg<br />

= total flux <strong>of</strong> water, gas<br />

σ = stress tensor<br />

Es , El , = internal energy in each phase<br />

ρs , ρl = density <strong>of</strong> each phase<br />

f Q = external energy supply<br />

f w = external supply <strong>of</strong> water<br />

φ = porosity<br />

b = vector <strong>of</strong> body <strong>for</strong>ces<br />

ic = energy flux due to conduction<br />

jEs, jEl = advective fluxes <strong>of</strong> energy by mass<br />

motions<br />

Schanz, Datcheva, and Nguyen Tuan <strong>Identification</strong> <strong>of</strong> <strong>Parameters</strong> <strong>for</strong> THM Model <strong>of</strong> Unsaturated Soil via Back Analysis 8 / 23


Balance Equations<br />

<strong>Thermo</strong>-<strong>Hydro</strong>-Mechanical (THM) Experiment<br />

Numerical Simulation Framework<br />

Process <strong>of</strong> <strong>Identification</strong> <strong>of</strong> Const. <strong>Parameters</strong><br />

Conclusions<br />

Balance Equations Used<br />

<strong>Constitutive</strong> Equations<br />

Mass balance <strong>of</strong> water<br />

∂ <br />

w θl Slφ + θ<br />

∂t<br />

w g Sg φ + ∇ · jw l + jw <br />

w<br />

g = f<br />

Momentum balance <strong>for</strong> the medium<br />

Internal energy balance <strong>for</strong> the medium<br />

∇ · σ + b = 0<br />

∂<br />

∂t (Esρs (1 − φ) + ElρlSlφ) + ∇ · (ic + jEs + jEl) = f Q<br />

θ w<br />

l , θw g = volumetric mass <strong>of</strong> water and gas<br />

j w<br />

l , jwg<br />

= total flux <strong>of</strong> water, gas<br />

σ = stress tensor<br />

Es , El , = internal energy in each phase<br />

ρs , ρl = density <strong>of</strong> each phase<br />

f Q = external energy supply<br />

f w = external supply <strong>of</strong> water<br />

φ = porosity<br />

b = vector <strong>of</strong> body <strong>for</strong>ces<br />

ic = energy flux due to conduction<br />

jEs, jEl = advective fluxes <strong>of</strong> energy by mass<br />

motions<br />

Schanz, Datcheva, and Nguyen Tuan <strong>Identification</strong> <strong>of</strong> <strong>Parameters</strong> <strong>for</strong> THM Model <strong>of</strong> Unsaturated Soil via Back Analysis 8 / 23


<strong>Thermo</strong>-<strong>Hydro</strong>-Mechanical (THM) Experiment<br />

Numerical Simulation Framework<br />

Process <strong>of</strong> <strong>Identification</strong> <strong>of</strong> Const. <strong>Parameters</strong><br />

Conclusions<br />

<strong>Constitutive</strong> equations and parameters<br />

Balance Equations Used<br />

<strong>Constitutive</strong> Equations<br />

VARIABLES CONSTITUTIVE EQ. NOTATION<br />

liquid and gas advective flux<br />

<strong>Constitutive</strong> relations<br />

Darcy's law ql, qg<br />

vapour and air non-advective<br />

fluxes<br />

Fick's law ig w , il a<br />

conductive heat flux Fourier's law ic<br />

Liquid phase degree <strong>of</strong><br />

saturation<br />

Retention curve Sl, Sg<br />

Stress tensor<br />

Mechanical constitutive<br />

model ( modified BBM)<br />

σ<br />

A vector <strong>of</strong> 17 mechanical parameters:<br />

{Mj } = {kio, kso, αss , αi , αsp, pref , α0, λ(0), r, β, k, ps0, p c , M, α, eo, p ∗<br />

o }<br />

A vector <strong>of</strong> 4 hydraulic parameters:<br />

A vector <strong>of</strong> 4 thermal parameters:<br />

Total 25 parameters summarized in vector:<br />

{Hj } = {P0, λ, φ0, ko}<br />

{Tj } = {τ, D, λsat, λdry }<br />

{xj } = {Hj , Tj , Mj }<br />

Schanz, Datcheva, and Nguyen Tuan <strong>Identification</strong> <strong>of</strong> <strong>Parameters</strong> <strong>for</strong> THM Model <strong>of</strong> Unsaturated Soil via Back Analysis 9 / 23


Concept<br />

<strong>Thermo</strong>-<strong>Hydro</strong>-Mechanical (THM) Experiment<br />

Numerical Simulation Framework<br />

Process <strong>of</strong> <strong>Identification</strong> <strong>of</strong> Const. <strong>Parameters</strong><br />

Conclusions<br />

Forward calculation<br />

Solver<br />

Code-Bright (UPC)<br />

experimental<br />

data<br />

Constant volume swelling THM column<br />

Test- Heating test and hydration test<br />

Laboratory <strong>of</strong> Soil Mechanics - RUB<br />

Sensitivity Analysis<br />

Optimization Algorithm<br />

Assessment <strong>of</strong> the Quality <strong>of</strong> the Optimized <strong>Parameters</strong><br />

Assessment <strong>of</strong> the Goodness <strong>of</strong> the Fit<br />

<strong>Coupled</strong> THM model<br />

Two stress variables thermo-elasto-plastic model<br />

TEP model (UPC)<br />

Sensitivity<br />

analysis<br />

Optimization<br />

Solver<br />

varo 2 pt<br />

Parameter<br />

select<br />

Calibrated<br />

model<br />

verification validation<br />

Schanz, Datcheva, and Nguyen Tuan <strong>Identification</strong> <strong>of</strong> <strong>Parameters</strong> <strong>for</strong> THM Model <strong>of</strong> Unsaturated Soil via Back Analysis 10 / 23


Basic <strong>for</strong>mulas<br />

<strong>Thermo</strong>-<strong>Hydro</strong>-Mechanical (THM) Experiment<br />

Numerical Simulation Framework<br />

Process <strong>of</strong> <strong>Identification</strong> <strong>of</strong> Const. <strong>Parameters</strong><br />

Conclusions<br />

1 – Scaled sensitivity (SS)<br />

SSi,j =<br />

Sensitivity Analysis<br />

Optimization Algorithm<br />

Assessment <strong>of</strong> the Quality <strong>of</strong> the Optimized <strong>Parameters</strong><br />

Assessment <strong>of</strong> the Goodness <strong>of</strong> the Fit<br />

<br />

∂yi . ∂xj<br />

xj<br />

yi<br />

2 – Composite scaled sensitivity (CSS)<br />

<br />

1 N<br />

CSSj =<br />

N<br />

3 – Factor (γj )<br />

γj =<br />

i=1<br />

SS 2<br />

i,j<br />

CSSj<br />

max{CSSj}<br />

- The vector <strong>of</strong> parameters: {xj } = {Hj , Tj , Mj }<br />

- Vector <strong>of</strong> model response: {yi } = {Sl , T , σyy }<br />

Schanz, Datcheva, and Nguyen Tuan <strong>Identification</strong> <strong>of</strong> <strong>Parameters</strong> <strong>for</strong> THM Model <strong>of</strong> Unsaturated Soil via Back Analysis 11 / 23


Basic <strong>for</strong>mulas<br />

<strong>Thermo</strong>-<strong>Hydro</strong>-Mechanical (THM) Experiment<br />

Numerical Simulation Framework<br />

Process <strong>of</strong> <strong>Identification</strong> <strong>of</strong> Const. <strong>Parameters</strong><br />

Conclusions<br />

1 – Scaled sensitivity (SS)<br />

SSi,j =<br />

Sensitivity Analysis<br />

Optimization Algorithm<br />

Assessment <strong>of</strong> the Quality <strong>of</strong> the Optimized <strong>Parameters</strong><br />

Assessment <strong>of</strong> the Goodness <strong>of</strong> the Fit<br />

<br />

∂yi . ∂xj<br />

xj<br />

yi<br />

2 – Composite scaled sensitivity (CSS)<br />

<br />

1 N<br />

CSSj =<br />

N<br />

3 – Factor (γj )<br />

γj =<br />

i=1<br />

SS 2<br />

i,j<br />

CSSj<br />

max{CSSj}<br />

- The vector <strong>of</strong> parameters: {xj } = {Hj , Tj , Mj }<br />

- Vector <strong>of</strong> model response: {yi } = {Sl , T , σyy }<br />

Schanz, Datcheva, and Nguyen Tuan <strong>Identification</strong> <strong>of</strong> <strong>Parameters</strong> <strong>for</strong> THM Model <strong>of</strong> Unsaturated Soil via Back Analysis 11 / 23


Basic <strong>for</strong>mulas<br />

<strong>Thermo</strong>-<strong>Hydro</strong>-Mechanical (THM) Experiment<br />

Numerical Simulation Framework<br />

Process <strong>of</strong> <strong>Identification</strong> <strong>of</strong> Const. <strong>Parameters</strong><br />

Conclusions<br />

1 – Scaled sensitivity (SS)<br />

SSi,j =<br />

Sensitivity Analysis<br />

Optimization Algorithm<br />

Assessment <strong>of</strong> the Quality <strong>of</strong> the Optimized <strong>Parameters</strong><br />

Assessment <strong>of</strong> the Goodness <strong>of</strong> the Fit<br />

<br />

∂yi . ∂xj<br />

xj<br />

yi<br />

2 – Composite scaled sensitivity (CSS)<br />

<br />

1 N<br />

CSSj =<br />

N<br />

3 – Factor (γj )<br />

γj =<br />

i=1<br />

SS 2<br />

i,j<br />

CSSj<br />

max{CSSj}<br />

- The vector <strong>of</strong> parameters: {xj } = {Hj , Tj , Mj }<br />

- Vector <strong>of</strong> model response: {yi } = {Sl , T , σyy }<br />

Schanz, Datcheva, and Nguyen Tuan <strong>Identification</strong> <strong>of</strong> <strong>Parameters</strong> <strong>for</strong> THM Model <strong>of</strong> Unsaturated Soil via Back Analysis 11 / 23


<strong>Thermo</strong>-<strong>Hydro</strong>-Mechanical (THM) Experiment<br />

Numerical Simulation Framework<br />

Process <strong>of</strong> <strong>Identification</strong> <strong>of</strong> Const. <strong>Parameters</strong><br />

Conclusions<br />

Sensitivity Analysis: Results <strong>for</strong> Hydration Test<br />

Lambda<br />

Sensitivity Analysis<br />

Optimization Algorithm<br />

Assessment <strong>of</strong> the Quality <strong>of</strong> the Optimized <strong>Parameters</strong><br />

Assessment <strong>of</strong> the Goodness <strong>of</strong> the Fit<br />

γ calculated at the initial time step t0, 50% <strong>of</strong> total time interval – t50, and<br />

100% <strong>of</strong> total time interval – t100.<br />

Reference porosity<br />

1.0<br />

0.8<br />

0.6<br />

0.4<br />

0.2<br />

0.0<br />

P_0<br />

t0<br />

t50<br />

t100<br />

Intrinsic perm.<br />

Alpha_sp<br />

beta<br />

Alpha_i<br />

γ <strong>for</strong> Degree <strong>of</strong> Saturation γ <strong>for</strong> Vertical Stress<br />

Reference porosity<br />

1.0<br />

0.8<br />

0.6<br />

0.4<br />

0.2<br />

0.0<br />

Alpha_ss<br />

Intrinsic perm.<br />

Schanz, Datcheva, and Nguyen Tuan <strong>Identification</strong> <strong>of</strong> <strong>Parameters</strong> <strong>for</strong> THM Model <strong>of</strong> Unsaturated Soil via Back Analysis 12 / 23<br />

t0<br />

t50<br />

t100<br />

K_so<br />

K_io


<strong>Thermo</strong>-<strong>Hydro</strong>-Mechanical (THM) Experiment<br />

Numerical Simulation Framework<br />

Process <strong>of</strong> <strong>Identification</strong> <strong>of</strong> Const. <strong>Parameters</strong><br />

Conclusions<br />

Sensitivity Analysis: Results <strong>for</strong> Heating Test<br />

P_0<br />

Lamda retention<br />

Phi_ref<br />

1.0<br />

0.8<br />

0.6<br />

0.4<br />

0.2<br />

0.0<br />

t0<br />

t50<br />

t100<br />

Diffusion coef.<br />

Sensitivity Analysis<br />

Optimization Algorithm<br />

Assessment <strong>of</strong> the Quality <strong>of</strong> the Optimized <strong>Parameters</strong><br />

Assessment <strong>of</strong> the Goodness <strong>of</strong> the Fit<br />

k_ref Lamda_sat<br />

Lamda_dry<br />

THM Model<br />

γ <strong>for</strong> Degree <strong>of</strong> Saturation γ <strong>for</strong> Temperature<br />

Phi_ref<br />

1.0<br />

0.8<br />

0.6<br />

0.4<br />

0.2<br />

0.0<br />

t0<br />

t50<br />

t100<br />

k_ref<br />

Diffusion coef.<br />

Schanz, Datcheva, and Nguyen Tuan <strong>Identification</strong> <strong>of</strong> <strong>Parameters</strong> <strong>for</strong> THM Model <strong>of</strong> Unsaturated Soil via Back Analysis 13 / 23


<strong>Thermo</strong>-<strong>Hydro</strong>-Mechanical (THM) Experiment<br />

Numerical Simulation Framework<br />

Process <strong>of</strong> <strong>Identification</strong> <strong>of</strong> Const. <strong>Parameters</strong><br />

Conclusions<br />

Sensitivity Analysis: Results <strong>for</strong> Heating Test<br />

Alpha_sp<br />

Alpha_i<br />

Alpha_ss<br />

Alpha_0<br />

K_so<br />

Phi_ref<br />

1.0<br />

0.8<br />

0.6<br />

0.4<br />

0.2<br />

0.0<br />

Sensitivity Analysis<br />

Optimization Algorithm<br />

Assessment <strong>of</strong> the Quality <strong>of</strong> the Optimized <strong>Parameters</strong><br />

Assessment <strong>of</strong> the Goodness <strong>of</strong> the Fit<br />

K_io<br />

k_ref<br />

γ <strong>for</strong> Vertical Stress<br />

THM Model<br />

t0<br />

t50<br />

t100<br />

Diffusion coef.<br />

Lamda_sat<br />

Lamda_dry<br />

Schanz, Datcheva, and Nguyen Tuan <strong>Identification</strong> <strong>of</strong> <strong>Parameters</strong> <strong>for</strong> THM Model <strong>of</strong> Unsaturated Soil via Back Analysis 14 / 23


<strong>Thermo</strong>-<strong>Hydro</strong>-Mechanical (THM) Experiment<br />

Numerical Simulation Framework<br />

Process <strong>of</strong> <strong>Identification</strong> <strong>of</strong> Const. <strong>Parameters</strong><br />

Conclusions<br />

Optimization Algorithms: Objective Functions<br />

n 1 calc meas<br />

F = ∑ y − y i i wi<br />

n i=<br />

1<br />

Method Pros Cons<br />

Stochastic<br />

Methods<br />

Gradient<br />

based<br />

Simplex<br />

based<br />

Population<br />

based<br />

Usage <strong>of</strong><br />

several data series<br />

very robust, stable,<br />

global search<br />

fast, each step gives a<br />

better solution<br />

more robust than<br />

gradient<br />

Sensitivity Analysis<br />

Optimization Algorithm<br />

Assessment <strong>of</strong> the Quality <strong>of</strong> the Optimized <strong>Parameters</strong><br />

Assessment <strong>of</strong> the Goodness <strong>of</strong> the Fit<br />

Fˆ = ∑ωk<br />

Fk<br />

very slow, “crude<br />

search”<br />

non robust, local search,<br />

slow <strong>for</strong> high dimensions<br />

very unstable (failed<br />

calls)<br />

local search, sometimes<br />

unstable<br />

robust, fast, stable local search<br />

Schanz, Datcheva, and Nguyen Tuan <strong>Identification</strong> <strong>of</strong> <strong>Parameters</strong> <strong>for</strong> THM Model <strong>of</strong> Unsaturated Soil via Back Analysis 15 / 23<br />

k


<strong>Thermo</strong>-<strong>Hydro</strong>-Mechanical (THM) Experiment<br />

Numerical Simulation Framework<br />

Process <strong>of</strong> <strong>Identification</strong> <strong>of</strong> Const. <strong>Parameters</strong><br />

Conclusions<br />

Optimization Algorithms: Direct Approach<br />

F → Minimum<br />

∆F= |F − F<br />

Niteration = Nmax prev | ≤ ɛI<br />

F≤ ɛII<br />

Start:<br />

guess <strong>of</strong><br />

parameter values<br />

Nonlinear optimization<br />

technique -- downhill simplex<br />

method<br />

Optimization<br />

algorithm:<br />

Setting parameter<br />

values<br />

Calculation<strong>of</strong><br />

deviationbetween<br />

calculatedvalues<br />

and measurements<br />

End:<br />

Stop criteria satisfied<br />

Sensitivity Analysis<br />

Optimization Algorithm<br />

Assessment <strong>of</strong> the Quality <strong>of</strong> the Optimized <strong>Parameters</strong><br />

Assessment <strong>of</strong> the Goodness <strong>of</strong> the Fit<br />

With program<br />

Execution<strong>of</strong><br />

<strong>for</strong>ward calculation<br />

Extraction<strong>of</strong><br />

relevant<br />

calculated<br />

values<br />

Schanz, Datcheva, and Nguyen Tuan <strong>Identification</strong> <strong>of</strong> <strong>Parameters</strong> <strong>for</strong> THM Model <strong>of</strong> Unsaturated Soil via Back Analysis 16 / 23


<strong>Thermo</strong>-<strong>Hydro</strong>-Mechanical (THM) Experiment<br />

Numerical Simulation Framework<br />

Process <strong>of</strong> <strong>Identification</strong> <strong>of</strong> Const. <strong>Parameters</strong><br />

Conclusions<br />

Back Analysis <strong>of</strong> Hydration Test<br />

Degree <strong>of</strong> saturation<br />

Vertical stress (Mpa)<br />

1<br />

0.9<br />

0.8<br />

0.7<br />

0.6<br />

0.5<br />

0<br />

-0.05<br />

-0.1<br />

-0.15<br />

-0.2<br />

-0.25<br />

-0.3<br />

P1 measurement<br />

P2 measurement<br />

P3 measurement<br />

P1 simulation<br />

P2 simulation<br />

P3 simulation<br />

0 100 200 300 400 500 600 700<br />

Time (h)<br />

Time (h)<br />

0 100 200 300 400 500 600 700<br />

P4 measurement<br />

P4 simulation<br />

Sensitivity Analysis<br />

Optimization Algorithm<br />

Assessment <strong>of</strong> the Quality <strong>of</strong> the Optimized <strong>Parameters</strong><br />

Assessment <strong>of</strong> the Goodness <strong>of</strong> the Fit<br />

Be<strong>for</strong>e optimization After optimization<br />

Degree <strong>of</strong> saturation<br />

Vertical stress (MPa)<br />

1<br />

0.9<br />

0.8<br />

0.7<br />

0.6<br />

0.5<br />

0 100 200 300 400 500 600 700<br />

0<br />

-0.05<br />

-0.1<br />

-0.15<br />

-0.2<br />

-0.25<br />

-0.3<br />

Time (h)<br />

Time (h)<br />

P1 measurement<br />

P2 measurement<br />

P3 measurement<br />

P1 simulation<br />

P2 simulation<br />

P3 simulation<br />

0 100 200 300 400 500 600 700<br />

P4 simulation<br />

P4 measurement<br />

Schanz, Datcheva, and Nguyen Tuan <strong>Identification</strong> <strong>of</strong> <strong>Parameters</strong> <strong>for</strong> THM Model <strong>of</strong> Unsaturated Soil via Back Analysis 17 / 23


<strong>Thermo</strong>-<strong>Hydro</strong>-Mechanical (THM) Experiment<br />

Numerical Simulation Framework<br />

Process <strong>of</strong> <strong>Identification</strong> <strong>of</strong> Const. <strong>Parameters</strong><br />

Conclusions<br />

Back Analysis <strong>of</strong> Heating Test<br />

Temperature (°C)<br />

Degree <strong>of</strong> saturation<br />

80<br />

70<br />

60<br />

50<br />

40<br />

30<br />

20<br />

0.8<br />

0.7<br />

0.6<br />

0.5<br />

0.4<br />

Sensitivity Analysis<br />

Optimization Algorithm<br />

Assessment <strong>of</strong> the Quality <strong>of</strong> the Optimized <strong>Parameters</strong><br />

Assessment <strong>of</strong> the Goodness <strong>of</strong> the Fit<br />

Be<strong>for</strong>e optimization After optimization<br />

P1 measurement P2 measurement P3 measurement<br />

P1 simulation P2 simulation P3 simulation<br />

0 100 200 300 400 500<br />

Time (h)<br />

P1 measurement<br />

P2 measurement<br />

P3 measurement<br />

P1 simulation<br />

P2 simulation<br />

P3 simulation<br />

0 100 200 300 400 500<br />

Time (h)<br />

Temperature (°C)<br />

Degree <strong>of</strong> saturation<br />

80<br />

70<br />

60<br />

50<br />

40<br />

30<br />

20<br />

0.8<br />

0.7<br />

0.6<br />

0.5<br />

0.4<br />

P1 measurement P2 measurement P3 measurement<br />

P1 mimulation P2 mimulation P3 simulation<br />

0 100 200 300 400 500<br />

Time (h)<br />

P1 measurement<br />

P2 measurement<br />

P3 measurement<br />

P1 simulation<br />

P2 simulation<br />

P3 simulation<br />

0 100 200 300 400 500<br />

Time (h)<br />

Schanz, Datcheva, and Nguyen Tuan <strong>Identification</strong> <strong>of</strong> <strong>Parameters</strong> <strong>for</strong> THM Model <strong>of</strong> Unsaturated Soil via Back Analysis 18 / 23


<strong>Thermo</strong>-<strong>Hydro</strong>-Mechanical (THM) Experiment<br />

Numerical Simulation Framework<br />

Process <strong>of</strong> <strong>Identification</strong> <strong>of</strong> Const. <strong>Parameters</strong><br />

Conclusions<br />

<strong>Parameters</strong> <strong>Identification</strong> Algorithm<br />

Sensitivity Analysis<br />

Optimization Algorithm<br />

Assessment <strong>of</strong> the Quality <strong>of</strong> the Optimized <strong>Parameters</strong><br />

Assessment <strong>of</strong> the Goodness <strong>of</strong> the Fit<br />

Algorithm to identify model parameters based on<br />

hydration test and heating test<br />

Numerical Simulation<br />

Hydration test Heating test<br />

Optimization<br />

Optimization 3 Optimization 1 Optimization 2 Optimization 4<br />

Temperature parameters<br />

Hydraulic parameters<br />

Schanz, Datcheva, and Nguyen Tuan <strong>Identification</strong> <strong>of</strong> <strong>Parameters</strong> <strong>for</strong> THM Model <strong>of</strong> Unsaturated Soil via Back Analysis 19 / 23


<strong>Thermo</strong>-<strong>Hydro</strong>-Mechanical (THM) Experiment<br />

Numerical Simulation Framework<br />

Process <strong>of</strong> <strong>Identification</strong> <strong>of</strong> Const. <strong>Parameters</strong><br />

Conclusions<br />

Sensitivity Analysis<br />

Optimization Algorithm<br />

Assessment <strong>of</strong> the Quality <strong>of</strong> the Optimized <strong>Parameters</strong><br />

Assessment <strong>of</strong> the Goodness <strong>of</strong> the Fit<br />

Assessment <strong>of</strong> the Quality <strong>of</strong> the Optimized <strong>Parameters</strong><br />

Mean value <strong>of</strong> gamma values:<br />

νj = 1 n i=1 n<br />

γij<br />

Table: The Quality <strong>of</strong> the Optimized <strong>Parameters</strong><br />

{y i } k io kso αss α i αsp P 0 λ ko D λ dry λsat<br />

S (a)<br />

l<br />

T (a)<br />

Stress (a)<br />

S (b)<br />

l<br />

Stress (b)<br />

{x j }<br />

0.000 0.000 0.000 0.000 0.000 1.000 0.895 0.118 0.355 0.000 0.000<br />

0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.014 0.059 0.214 1.000<br />

0.810 0.623 1.000 0.103 0.911 0.000 0.000 0.116 0.478 0.046 0.291<br />

0.000 0.000 0.000 0.000 0.000 1.000 0.828 0.271 0.000 0.000 0.000<br />

0.100 0.099 0.182 0.035 1.000 0.000 0.000 0.392 0.000 0.000 0.000<br />

ν 0.182 0.144 0.236 0.028 0.382 0.400 0.345 0.182 0.178 0.052 0.258<br />

(a) : Sensitivity <strong>of</strong> heating test and (b) : Sensitivity <strong>of</strong> hydration test<br />

Schanz, Datcheva, and Nguyen Tuan <strong>Identification</strong> <strong>of</strong> <strong>Parameters</strong> <strong>for</strong> THM Model <strong>of</strong> Unsaturated Soil via Back Analysis 20 / 23


<strong>Thermo</strong>-<strong>Hydro</strong>-Mechanical (THM) Experiment<br />

Numerical Simulation Framework<br />

Process <strong>of</strong> <strong>Identification</strong> <strong>of</strong> Const. <strong>Parameters</strong><br />

Conclusions<br />

Assessment <strong>of</strong> the Goodness <strong>of</strong> the Fit<br />

Mean value: µ = 1 n i=1<br />

n<br />

εi<br />

Standard deviation: σ =<br />

Skewness: γ1 = µ3<br />

σ 3<br />

<br />

1 n i=1<br />

n<br />

(εi − µ) 2<br />

εi = error between measurement and simulation<br />

Sensitivity Analysis<br />

Optimization Algorithm<br />

Assessment <strong>of</strong> the Quality <strong>of</strong> the Optimized <strong>Parameters</strong><br />

Assessment <strong>of</strong> the Goodness <strong>of</strong> the Fit<br />

Schanz, Datcheva, and Nguyen Tuan <strong>Identification</strong> <strong>of</strong> <strong>Parameters</strong> <strong>for</strong> THM Model <strong>of</strong> Unsaturated Soil via Back Analysis 21 / 23


Conclusions<br />

<strong>Thermo</strong>-<strong>Hydro</strong>-Mechanical (THM) Experiment<br />

Numerical Simulation Framework<br />

Process <strong>of</strong> <strong>Identification</strong> <strong>of</strong> Const. <strong>Parameters</strong><br />

Conclusions<br />

1 Two laboratory tests (hydration test and heating test) have<br />

been simulated<br />

2 Process <strong>for</strong> identification <strong>of</strong> coupled THM model parameters<br />

was introduced<br />

3 P0, αsp and λ are the parameters influence the most as<br />

compared to the other parameters to simulations <strong>of</strong> two tests<br />

4 The result <strong>of</strong> accuracy analysis showed that the fitting <strong>of</strong><br />

heating test independently is the more accurate than the others<br />

in back analysis.<br />

Schanz, Datcheva, and Nguyen Tuan <strong>Identification</strong> <strong>of</strong> <strong>Parameters</strong> <strong>for</strong> THM Model <strong>of</strong> Unsaturated Soil via Back Analysis 22 / 23


Conclusions<br />

<strong>Thermo</strong>-<strong>Hydro</strong>-Mechanical (THM) Experiment<br />

Numerical Simulation Framework<br />

Process <strong>of</strong> <strong>Identification</strong> <strong>of</strong> Const. <strong>Parameters</strong><br />

Conclusions<br />

1 Two laboratory tests (hydration test and heating test) have<br />

been simulated<br />

2 Process <strong>for</strong> identification <strong>of</strong> coupled THM model parameters<br />

was introduced<br />

3 P0, αsp and λ are the parameters influence the most as<br />

compared to the other parameters to simulations <strong>of</strong> two tests<br />

4 The result <strong>of</strong> accuracy analysis showed that the fitting <strong>of</strong><br />

heating test independently is the more accurate than the others<br />

in back analysis.<br />

Schanz, Datcheva, and Nguyen Tuan <strong>Identification</strong> <strong>of</strong> <strong>Parameters</strong> <strong>for</strong> THM Model <strong>of</strong> Unsaturated Soil via Back Analysis 22 / 23


Conclusions<br />

<strong>Thermo</strong>-<strong>Hydro</strong>-Mechanical (THM) Experiment<br />

Numerical Simulation Framework<br />

Process <strong>of</strong> <strong>Identification</strong> <strong>of</strong> Const. <strong>Parameters</strong><br />

Conclusions<br />

1 Two laboratory tests (hydration test and heating test) have<br />

been simulated<br />

2 Process <strong>for</strong> identification <strong>of</strong> coupled THM model parameters<br />

was introduced<br />

3 P0, αsp and λ are the parameters influence the most as<br />

compared to the other parameters to simulations <strong>of</strong> two tests<br />

4 The result <strong>of</strong> accuracy analysis showed that the fitting <strong>of</strong><br />

heating test independently is the more accurate than the others<br />

in back analysis.<br />

Schanz, Datcheva, and Nguyen Tuan <strong>Identification</strong> <strong>of</strong> <strong>Parameters</strong> <strong>for</strong> THM Model <strong>of</strong> Unsaturated Soil via Back Analysis 22 / 23


Conclusions<br />

<strong>Thermo</strong>-<strong>Hydro</strong>-Mechanical (THM) Experiment<br />

Numerical Simulation Framework<br />

Process <strong>of</strong> <strong>Identification</strong> <strong>of</strong> Const. <strong>Parameters</strong><br />

Conclusions<br />

1 Two laboratory tests (hydration test and heating test) have<br />

been simulated<br />

2 Process <strong>for</strong> identification <strong>of</strong> coupled THM model parameters<br />

was introduced<br />

3 P0, αsp and λ are the parameters influence the most as<br />

compared to the other parameters to simulations <strong>of</strong> two tests<br />

4 The result <strong>of</strong> accuracy analysis showed that the fitting <strong>of</strong><br />

heating test independently is the more accurate than the others<br />

in back analysis.<br />

Schanz, Datcheva, and Nguyen Tuan <strong>Identification</strong> <strong>of</strong> <strong>Parameters</strong> <strong>for</strong> THM Model <strong>of</strong> Unsaturated Soil via Back Analysis 22 / 23


GBF Geotechnical Group<br />

<strong>Thermo</strong>-<strong>Hydro</strong>-Mechanical (THM) Experiment<br />

Numerical Simulation Framework<br />

Process <strong>of</strong> <strong>Identification</strong> <strong>of</strong> Const. <strong>Parameters</strong><br />

Conclusions<br />

Thank you <strong>for</strong> your attention!<br />

http://www.gbf.rub.de<br />

Schanz, Datcheva, and Nguyen Tuan <strong>Identification</strong> <strong>of</strong> <strong>Parameters</strong> <strong>for</strong> THM Model <strong>of</strong> Unsaturated Soil via Back Analysis 23 / 23

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!