26.10.2013 Views

Microbial Fuel Cells (MFCs): - AZ Water Association

Microbial Fuel Cells (MFCs): - AZ Water Association

Microbial Fuel Cells (MFCs): - AZ Water Association

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>Microbial</strong> <strong>Fuel</strong> <strong>Cells</strong> (<strong>MFCs</strong>):<br />

Generating Electricity, Hydrogen and Chemicals from Wastewater<br />

César I. Torres<br />

(cit@asu.edu)<br />

<strong>AZ</strong> <strong>Water</strong> Conference<br />

May 5, 2011


2<br />

MXC Team: César I. Torres, Bruce E. Rittmann,<br />

Rosa Krajmalnik-Brown, Andrew Kato Marcus,<br />

Prathap Parameswaran, Sudeep Popat, Joseph<br />

Miceli, Jon Badalamenti, Bradley Lusk, Abdul<br />

Hasam, Tyon Bry.<br />

Other collaborators: Dae Wook Kang, Anca<br />

Delgado, Junseok Chae, Seokheun Choi, Martina<br />

Hausner, Laura Berthiaume, Greg Wanger, Yuri<br />

Gorby.<br />

All EB team.<br />

Plus support from: ASU Biohydrogen Initiative,<br />

Open Cel, Office of Naval Research.


3<br />

Why <strong>Microbial</strong> <strong>Fuel</strong> <strong>Cells</strong>?<br />

• Chemical fuel cells are based on metal catalysts<br />

(expensive).<br />

• They are affected by impurities in the fuel/air<br />

• The reactions that can be catalyzed are rather<br />

simple:<br />

–H2→H + + e- –CH 3 OH + H 2 O→ CO 2 + 6H + + 6e -<br />

• They are very efficient, more efficient than<br />

combustion processes.<br />

• They reliably produce high power densities.<br />

H 2<br />

H +<br />

A<br />

n<br />

o<br />

d<br />

e<br />

e -


4<br />

Why <strong>Microbial</strong> <strong>Fuel</strong> <strong>Cells</strong><br />

• <strong>Microbial</strong> fuel cells take advantage of<br />

the diversity of microbial enzymes.<br />

– Anything anaerobic bacteria can consume<br />

will be converted into power in an MFC. Biofilm<br />

• This is what makes an MFC unique:<br />

Their capability to catalyze complex<br />

reactions and obtain energy from<br />

diverse chemical bonds!<br />

e -<br />

A<br />

n<br />

o<br />

d<br />

e<br />

e -


Our target wastes<br />

• We focus on wastewater and animal wastes,<br />

applying microbial fuel cell technologies.<br />

• Our target is to maximize energy capture from<br />

these waste streams.


• Anode Respiring Bacteria (ARB)<br />

ARB to produce electricity<br />

– Convert organic substrates and wastes into<br />

electrical energy<br />

• Excellent way to “concentrate” and transform<br />

the energy<br />

– A one-step process to obtain useful energy<br />

from bacterial processes – higher efficiency.<br />

– A new form of anaerobic respiration that<br />

allows the fast consumption of BOD in<br />

water.<br />

Biofilm<br />

e -<br />

A<br />

n<br />

o<br />

d<br />

e<br />

e -


7<br />

ARB in the Biofilm Anode<br />

• <strong>Microbial</strong> nanowires are thought to be the main way<br />

ARB transfer electrons to a solid anode.


8<br />

Finding ARB in nature<br />

• So far, few ARB isolates are able to produce high current<br />

densities, we look for more ARB capable of doing this.<br />

Carolina, PR<br />

Superior, <strong>AZ</strong><br />

Current Density (A/m 2 )<br />

Current Density (A/m 2 )<br />

10<br />

8<br />

6<br />

4<br />

2<br />

0<br />

0 2 4 6<br />

Time (days)<br />

8 10 12<br />

10<br />

8<br />

6<br />

4<br />

2<br />

0<br />

New media<br />

0 5 10 15 20<br />

Time (days)


9<br />

Biofilm Transport Limitation<br />

• We develop models to characterize how much electrical<br />

current is expected from a particular waste.<br />

• PCBIOFILM allow us to calculate the limit of substrate/H +<br />

transport limitation.<br />

Alk 0 (mgCaCO 3/L)<br />

5000<br />

4000<br />

3000<br />

2000<br />

1000<br />

0<br />

Donor Limitation<br />

0 100 200 300<br />

0<br />

400<br />

Effluent BOD (mg/L)<br />

20<br />

15<br />

10<br />

5<br />

Current Density (A/m 2 )


10<br />

Phototrophs as ARB<br />

• If EET is a ubiquitous process carried out by bacteria,<br />

some phototrophs must be able to perform EET.<br />

– Donate electrons to an anode at lower potentials,<br />

– Accept electrons from a cathode to fix CO2.


<strong>Microbial</strong> <strong>Fuel</strong> Cell (MFC)<br />

e- donor half reaction: CH3COO - 0.29 V<br />

- + 3 H2O → CO2 + HCO -<br />

3 + 8H + + 8e- e - acceptor half reaction: 2 O 2 + 8H + + 8e - → 4 H 2 O 0.81 V<br />

Net reaction: CH 3 COO - + 2O 2 → CO 2 + HCO 3 - + H2 O<br />

Electrical power<br />

generation<br />

1.10 V<br />

CH3COO M<br />

e<br />

m<br />

b<br />

r<br />

a<br />

n<br />

H2O e<br />

The reaction potential drives all biological, chemical, and electrochemical<br />

processes in MFC => typical recovered potentials are 0.3 - 0.6 V<br />

-<br />

¼O2 Air<br />

e- H + Anode Cathode<br />

+


<strong>Microbial</strong> Electrolysis Cell (MEC)<br />

e- donor half reaction: CH3COO - 0.29 V<br />

- + 3 H2O → CO2 + HCO -<br />

3 + 8H + + 8e- e - acceptor half reaction: 8H + + 8e - → 4 H 2 -0.41 V<br />

Net reaction: CH 3 COO - + 3H 2 O → CO 2 + HCO 3 - + 4 H2<br />

Anode<br />

CH 3 COO -<br />

H + +<br />

e -<br />

Due to the various types of electrochemical cells, we term this<br />

technology MXCs<br />

M<br />

e<br />

m<br />

b<br />

r<br />

a<br />

n<br />

e<br />

H 2<br />

-0.12 V<br />

H 2 gas<br />

production<br />

Cathode


Franks and Nevin, 2010<br />

MXCs – Current Applications


14<br />

CH3COO- CH3COO- H + H + + +<br />

e- e- M<br />

e<br />

m<br />

b<br />

r<br />

a<br />

n<br />

e<br />

Electrical power<br />

generation<br />

¼O 2<br />

H 2 O 2<br />

Air<br />

Cathode<br />

<strong>MFCs</strong> – WW Treatment<br />

• Our approach to wastewater<br />

treatment is to use an MFC to<br />

produce hydrogen peroxide (H 2 O 2 ).<br />

• Peroxide can be used to<br />

disinfect drinking water, plus the<br />

wastewater effluent.<br />

• It could be a key component to<br />

achieve water reuse remote<br />

locations.<br />

e- donor half reaction: CH3COO - 0.29 V<br />

- + 3 H2O → CO2 + HCO -<br />

3 + 8H + + 8e- e - acceptor half reaction: 4 O 2 + 8H + + 8e - → 4 H 2 O 2 0.28 V<br />

Net reaction: CH 3 COO - + 3 H 2 O + 4 O 2 → CO 2 + HCO 3 - + H2 O 2<br />

0.57 V


<strong>Microbial</strong> <strong>Fuel</strong> Cell (MFC)<br />

e- donor half reaction: CH3COO - 0.29 V<br />

- + 3 H2O → CO2 + HCO -<br />

3 + 8H + + 8e- e - acceptor half reaction: 4 O 2 + 8H + + 8e - → 4 H 2 O 2 0.28 V<br />

A<br />

Net reaction: CH 3 COO - + 3 H 2 O + 4 O 2 → CO 2 + HCO 3 - + H2 O 2<br />

Organic<br />

waste<br />

CO 2<br />

e- e- A<br />

n<br />

o<br />

d<br />

e<br />

M<br />

e<br />

m<br />

b<br />

r<br />

a<br />

n<br />

e<br />

Electrical power<br />

generation<br />

OH- OH- C<br />

a<br />

t<br />

h<br />

o<br />

d<br />

e<br />

O 2<br />

H H2O 2O 2<br />

e- e- A<br />

n<br />

o<br />

d<br />

e<br />

Organic<br />

waste<br />

CO 2<br />

H 2 O 2<br />

0.57 V<br />

Electrical power<br />

generation<br />

C<br />

a<br />

t<br />

h<br />

o<br />

d<br />

e<br />

O 2<br />

Diffusion<br />

Layer


• An important consideration when building MXCs<br />

is the need for a conductive biofilm support.<br />

H +<br />

Engineering MXCs<br />

– Carbon fibers can be used because of their high<br />

surface area and conductivity.<br />

A<br />

n<br />

o<br />

d<br />

e


Engineering MXCs<br />

• The engineering design can help increase MXC efficiency.<br />

• An MXC is a hybrid between a biological reactor and an<br />

electrochemical cell: careful design must accommodate<br />

both considerations.<br />

• A 125mL MEC produces<br />

~0.2 A and 2.1 L-H 2 /day.<br />

– This equals to<br />

17.5 L-H 2 /L-day<br />

Inner<br />

cathode<br />

H 2 gas out<br />

AEM<br />

Graphite or<br />

SS fiber<br />

anode<br />

Anode liquid<br />

outer flow


Engineering MXCs<br />

• Despite the improved engineering approach, wastewater<br />

feeds show other transport limitations that lead to lower<br />

current densities.<br />

Current density (A/m 2 )<br />

50<br />

40<br />

30<br />

20<br />

10<br />

0<br />

Ac<br />

-1<br />

Real wastewater (WW)<br />

Current density<br />

Applied voltage<br />

WW1 WW2 WW3 WW4<br />

0 50 100 150 200<br />

Time (day)<br />

Acetate-2<br />

8<br />

6<br />

4<br />

2<br />

0<br />

Applied voltage (V)


19<br />

MXC design<br />

• Maximize efficiency and optimize waste consumption.<br />

• Develop prototypes to be tested in the field.<br />

Anode<br />

liquid<br />

AEM and<br />

Pt/C Cathode<br />

Anode Chamber-<br />

Carbon or SS fiber<br />

Cathode<br />

Chamber-<br />

Air/CO 2 gas<br />

Cathode Air flow<br />

Z" (Imaginary), ohm<br />

2.5<br />

2.0<br />

1.5<br />

1.0<br />

0.5<br />

0.0<br />

0 2 4 6 8 10 12 14<br />

‐0.5<br />

Z' (Real), ohm


20<br />

Summary<br />

• ARB are fast consumers of BOD, potentially faster than<br />

aerobic organisms.<br />

• The main challenges in MXC implementation lie within the<br />

engineering design.<br />

• MXCs are currently tested for field-scale applications and<br />

this will lead to implementation in the near future.<br />

• A fundamental understanding of the chemical and biological<br />

processes is needed to design a feasible and efficient MXC.


21<br />

Torres Lab: César I. Torres, Sudeep Popat, Joseph<br />

Miceli, Bradley Lusk, Jon Badalamenti, Abdul<br />

Hamdan, Dongwon Ki.<br />

Other collaborators: Bruce E. Rittmann, Rosa<br />

Krajmalnik-Brown, Prathap Parameswaran,<br />

Daewook Kang, Anca Delgado, Nicole Hansmeier,<br />

Junseok Chae, Seokheun Choi, Martina Hausner,<br />

Laura Berthiaume, Greg Wanger, Yuri Gorby.<br />

Plus support from: Office of Naval Research, ASU<br />

Biohydrogen Initiative.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!