27.10.2013 Views

�

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

International Journal of Engineering Research and Development<br />

e-ISSN: 2278-067X, p-ISSN: 2278-800X, www.ijerd.com<br />

Volume 8, Issue 8 (September 2013), PP. 53-61<br />

On The Zeros of a Polynomial in a Given Circle<br />

M. H. Gulzar<br />

Department of Mathematics University of Kashmir, Srinagar 190006<br />

Abstract:- In this paper we discuss the problem of finding the number of zeros of a polynomial in a given circle<br />

when the coefficients of the polynomial or their real or imaginary parts are restricted to certain conditions. Our<br />

results in this direction generalize some well- known results in the theory of the distribution of zeros of<br />

polynomials.<br />

Mathematics Subject Classification: 30C10, 30C15<br />

Keywords and phrases:- Coefficient, Polynomial, Zero.<br />

I. INTRODUCTION AND STATEMENT OF RESULTS<br />

In the literature many results have been proved on the number of zeros of a polynomial in a given circle.<br />

In this direction Q. G. Mohammad [6] has proved the following result:<br />

Theorem A: Let <br />

( )<br />

j<br />

a z P be a polynomial o f degree n such that<br />

j<br />

j0<br />

z<br />

an an<br />

1<br />

Then the number of zeros of P(z) in<br />

a<br />

1<br />

...... a1<br />

0<br />

1<br />

<br />

2<br />

1 an log<br />

log 2 a<br />

0<br />

z does not exceed<br />

.<br />

0<br />

K. K. Dewan [2] generalized Theorem A to polynomials with complex coefficients and proved the following<br />

results:<br />

Theorem B: Let <br />

j<br />

P( z)<br />

a be a polynomial o f degree n such that a j ) j Im( a ) and<br />

Then the number of zeros of P(z) in<br />

j z<br />

j0<br />

n n1<br />

...... 1<br />

0<br />

1 <br />

1<br />

log 2<br />

1<br />

<br />

2<br />

www.ijerd.com 53 | Page<br />

.<br />

0<br />

z does not exceed<br />

log<br />

<br />

<br />

n <br />

j0<br />

a<br />

n<br />

0<br />

<br />

j<br />

.<br />

.<br />

Re( , j j<br />

Theorem C: Let <br />

j<br />

P( z)<br />

a be a polynomial o f degree n with complex coefficients such that for some<br />

real , ,<br />

and<br />

<br />

j0<br />

j z<br />

<br />

arg a j , j 0,<br />

1,<br />

2,......,<br />

n<br />

2<br />

an an<br />

1 ......<br />

a1<br />

a0<br />

Then the number f zeros of P(z) in<br />

.<br />

1<br />

<br />

2<br />

z does not exceed


1<br />

log 2<br />

log<br />

a<br />

n 1<br />

n (cos sin 1)<br />

2sin<br />

<br />

j 0<br />

<br />

<br />

<br />

a<br />

0<br />

On The Zeros of a Polynomial in a Given Circle<br />

The above results were further generalized by researchers in various ways.<br />

M. H. Gulzar[4,5,6] proved the following results:<br />

Theorem D: Let <br />

j<br />

P( z)<br />

a be a polynomial o f degree n such that a j ) j<br />

j z<br />

j0<br />

n n1<br />

, k<br />

1<br />

...... ....... <br />

www.ijerd.com 54 | Page<br />

a<br />

j<br />

.<br />

1<br />

Im( a ) and<br />

Re( , j j<br />

for k 1, 0 <br />

1,<br />

0 n.<br />

Then the number of zeros of P(z) in 1 0 , z does not exceed<br />

1<br />

log<br />

1<br />

log<br />

<br />

n n ( k 1)(<br />

) 2<br />

0<br />

a0<br />

<br />

( 0 0 ) 2<br />

j<br />

j0<br />

.<br />

Theorem E: Let <br />

P( z)<br />

a<br />

j<br />

be a polynomial o f degree n such that a j ) j Im( a ) and<br />

j z<br />

j0<br />

n n1<br />

...... 1<br />

<br />

0 ,<br />

0<br />

,<br />

Re( , j j<br />

for some 0, 0 <br />

1,<br />

,then the number f zeros of P(z) in z ,<br />

0 1,<br />

does not exceed<br />

2<br />

n<br />

1<br />

log<br />

1<br />

log<br />

<br />

n <br />

( 0 0 ) 2<br />

0<br />

a0<br />

2<br />

j<br />

j0<br />

.<br />

Theorem F: Let <br />

P( z)<br />

a<br />

j<br />

be a polynomial o f degree n with complex coefficients such that for some<br />

real , ,<br />

and<br />

<br />

j0<br />

j z<br />

<br />

arg a j , j 0,<br />

1,<br />

2,......,<br />

n<br />

2<br />

<br />

,<br />

an an<br />

1 ......<br />

a1<br />

a0<br />

for some 0,<br />

,then the number of zeros of P(z) in z ,<br />

0 1,<br />

does not exceed<br />

n 1<br />

n )(cos sin 1)<br />

2sin<br />

<br />

j 1<br />

<br />

<br />

<br />

( a<br />

1<br />

log<br />

1<br />

log<br />

<br />

a0<br />

a j a0<br />

(cos<br />

sin 1)<br />

.<br />

The aim of this paper is to find a bound for the number of zeros of P(z) in a circle of radius not<br />

necessarily less than 1. In fact , we are going to prove the following results:<br />

Theorem 1: Let <br />

( )<br />

j<br />

a z P be a polynomial of degree n such that a j ) j Im( a ) and<br />

j<br />

j0<br />

z<br />

n n1<br />

, k<br />

1<br />

...... ....... <br />

1<br />

n<br />

Re( , j j<br />

0<br />

,<br />

n


On The Zeros of a Polynomial in a Given Circle<br />

for k 1, 0 <br />

1,<br />

0 n.<br />

Then the number of zeros of P(z) in z ( R 0,<br />

c 1)<br />

does not exceed<br />

and<br />

R<br />

1<br />

log<br />

log c<br />

1<br />

log<br />

log c<br />

a<br />

0<br />

n1<br />

[<br />

n n<br />

<br />

0<br />

www.ijerd.com 55 | Page<br />

0<br />

0<br />

R<br />

c<br />

0<br />

n<br />

<br />

j0<br />

( k 1)(<br />

) 2<br />

<br />

( ) 2 ]<br />

a<br />

0<br />

for R 1<br />

n<br />

n n ( k 1)(<br />

) <br />

( 0 0 ) 0 0 2<br />

j1<br />

R[<br />

]<br />

1<br />

<br />

a<br />

for R 1.<br />

Remark 1: Taking R=1 and c in Theorem 1, it reduces to Theorem D .<br />

If the coefficients a j are real i.e. j 0,<br />

j<br />

, then we get the following result from Theorem 1:<br />

Corollary 1: Let <br />

j<br />

P( z)<br />

a be a polynomial o f degree n such that<br />

j z<br />

j0<br />

an an<br />

1 a<br />

, ka<br />

a<br />

1<br />

...... ....... a a<br />

for k 1, 0 <br />

1,<br />

0 n.<br />

Then the number of zeros of P(z) in z ( R 0,<br />

c 1)<br />

does not exceed<br />

and<br />

1 R<br />

log<br />

log c<br />

1<br />

log<br />

log c<br />

a<br />

0<br />

n1<br />

[ a<br />

n<br />

a<br />

n<br />

( k 1)(<br />

a<br />

<br />

a<br />

0<br />

a<br />

0<br />

<br />

) 2 a<br />

0<br />

0<br />

1<br />

<br />

( a<br />

0<br />

for R 1<br />

R[<br />

a a ( k 1)(<br />

a a ) a <br />

( a<br />

n<br />

n<br />

a<br />

<br />

<br />

0<br />

0<br />

,<br />

R<br />

c<br />

a )]<br />

a<br />

for R 1.<br />

Applying Theorem 1 to the polynomial –iP(z) , we get the following result:<br />

Theorem 2: Let <br />

j<br />

P( z)<br />

a be a polynomial o f degree n such that a j ) j<br />

j z<br />

j0<br />

n n1<br />

, k<br />

1<br />

...... ....... <br />

1<br />

0<br />

0<br />

)]<br />

Re( , j j<br />

0<br />

,<br />

j<br />

j<br />

Im( a ) and<br />

for k 1, 0 <br />

1,<br />

0 n.<br />

Then the number of zeros of P(z) in z ( R 0,<br />

c 1)<br />

does not exceed<br />

and<br />

R<br />

1<br />

log<br />

log c<br />

1<br />

log<br />

log c<br />

a<br />

0<br />

n1<br />

[<br />

n n<br />

<br />

0<br />

0<br />

0<br />

R<br />

c<br />

0<br />

n<br />

<br />

j0<br />

( k 1)(<br />

) 2 <br />

( ) 2 ]<br />

a<br />

0<br />

for R 1<br />

n<br />

n n ( k 1)(<br />

<br />

) 0 0 <br />

( 0 0 ) 2<br />

j1<br />

R[<br />

]<br />

a<br />

j<br />

j


Taking n in Theorem 1, we get the following result :<br />

On The Zeros of a Polynomial in a Given Circle<br />

for R 1.<br />

Corollary 2: Let <br />

j<br />

P( z)<br />

a be a polynomial o f degree n such that a j ) j<br />

j z<br />

j0<br />

n n1<br />

....... 1<br />

0<br />

k ,<br />

Im( a ) and<br />

Re( , j j<br />

for k 1, 0 <br />

1,<br />

0 n.<br />

Then the number of zeros of P(z) in z ( R 0,<br />

c 1)<br />

does not exceed<br />

and<br />

R<br />

1<br />

log<br />

log c<br />

1<br />

log<br />

log c<br />

n1<br />

a<br />

0<br />

0<br />

0<br />

0<br />

www.ijerd.com 56 | Page<br />

0<br />

n<br />

<br />

j0<br />

[ k(<br />

) 2<br />

<br />

( ) 2 ]<br />

n<br />

n<br />

a<br />

0<br />

for R 1<br />

R[<br />

k(<br />

) <br />

( ) 2 ]<br />

n n 0 0 0 <br />

j0<br />

a<br />

n<br />

j<br />

j<br />

R<br />

c<br />

for R 1.<br />

Theorem 3: Let <br />

j<br />

P( z)<br />

a be a polynomial o f degree n such that a j ) j<br />

j z<br />

j0<br />

n n1<br />

...... 1<br />

<br />

0 ,<br />

Im( a ) and<br />

Re( , j j<br />

for some , 0 1,<br />

,then the number of zeros of P(z) in z ( R 0,<br />

c 1)<br />

, does not exceed<br />

and<br />

R<br />

1<br />

log<br />

log c<br />

1<br />

log<br />

log c<br />

n1<br />

a<br />

0<br />

0<br />

0<br />

0<br />

R<br />

c<br />

0<br />

n<br />

<br />

j0<br />

[ <br />

( ) 2<br />

2 ]<br />

n<br />

n<br />

a<br />

0<br />

for R 1<br />

R[<br />

<br />

( ) 2 ]<br />

1<br />

<br />

n n 0 0 0 <br />

j0<br />

a<br />

for R 1.<br />

Remark 2: Taking R=1 and c in Theorem 3, it reduces to Theorem E .<br />

If the coefficients a j are real i.e. j 0,<br />

j<br />

, then we get the following result from Theorem 3:<br />

Corollary 3: Let <br />

j<br />

( ) a z P be a polynomial o f degree n such that<br />

<br />

j0<br />

j z<br />

<br />

,<br />

an an<br />

1 ...... a1<br />

a0<br />

for some , 0 1.<br />

Then the number of zeros of P(z) in z ( R 0,<br />

c 1)<br />

, does not exceed<br />

1 R<br />

log<br />

log c<br />

n1<br />

[ a<br />

n<br />

a<br />

n<br />

a<br />

0<br />

<br />

( a<br />

0<br />

R<br />

c<br />

a ) 2 a<br />

0<br />

0<br />

]<br />

n<br />

j<br />

j<br />

for R<br />

1


and<br />

1<br />

log<br />

log c<br />

a<br />

0<br />

R[<br />

a a <br />

( a<br />

n<br />

a<br />

On The Zeros of a Polynomial in a Given Circle<br />

www.ijerd.com 57 | Page<br />

0<br />

n<br />

0<br />

a ) a<br />

Applying Theorem 3 to the polynomial –iP(z) , we get the following result:<br />

Theorem 4: Let <br />

P( z)<br />

a<br />

j<br />

be a polynomial o f degree n such that a j ) j<br />

j z<br />

j0<br />

n n1<br />

...... 1<br />

<br />

0 ,<br />

0<br />

0<br />

]<br />

Im( a ) and<br />

Re( , j j<br />

for some 0, 0 1.<br />

Then the number of zeros of P(z) in z ( R 0,<br />

c 1)<br />

, does not exceed<br />

and<br />

R<br />

1<br />

log<br />

log c<br />

1<br />

log<br />

log c<br />

n1<br />

a<br />

0<br />

0<br />

0<br />

0<br />

0<br />

R<br />

c<br />

n<br />

<br />

j0<br />

[ <br />

( ) 2 2 ]<br />

n<br />

n<br />

a<br />

0<br />

for R 1<br />

R[<br />

<br />

( ) 2 ]<br />

n n 0 0 0 <br />

j0<br />

for 1<br />

Taking ( 1)<br />

, k 1<br />

in Corollary 3 , we get the following result:<br />

k n<br />

a<br />

R .<br />

Corollary 4: Let <br />

j<br />

P( z)<br />

a be a polynomial o f degree n such that a j ) j<br />

j z<br />

j0<br />

n n1<br />

...... 1<br />

<br />

0<br />

k ,<br />

n<br />

j<br />

j<br />

Im( a ) and<br />

Re( , j j<br />

for some , 0 1.<br />

Then the number of zeros of P(z) in z ( R 0,<br />

c 1)<br />

, does not exceed<br />

and<br />

R<br />

1<br />

log<br />

log c<br />

1<br />

log<br />

log c<br />

n1<br />

a<br />

0<br />

0<br />

0<br />

0<br />

0<br />

R<br />

c<br />

n<br />

<br />

j0<br />

[ k(<br />

) <br />

( ) 2<br />

2 ]<br />

n<br />

n<br />

a<br />

0<br />

for R 1<br />

R[<br />

k(<br />

) <br />

( ) 2 ]<br />

n n<br />

0 0 0 <br />

j0<br />

a<br />

n<br />

for R 1.<br />

Theorem 5: Let <br />

j<br />

( ) a z P be a polynomial o f degree n such that<br />

<br />

j0<br />

j z<br />

<br />

an an<br />

1 ...... a1<br />

a0<br />

for some , 0 1.<br />

Then the number of zeros of P(z) in z ( R 0,<br />

c 1)<br />

, does not exceed<br />

1 1 n<br />

log [ R<br />

log c<br />

a<br />

0<br />

1<br />

{( a )(cos<br />

sin 1)<br />

<br />

(cos<br />

sin 1)<br />

2<br />

}]<br />

n<br />

R<br />

c<br />

0<br />

j<br />

j<br />

0


and<br />

On The Zeros of a Polynomial in a Given Circle<br />

for R 1<br />

1 1<br />

log [ a0<br />

R{(<br />

an<br />

)(cos<br />

sin 1)<br />

<br />

a0<br />

(cos<br />

sin 1)<br />

a0<br />

}]<br />

log c a<br />

0<br />

for R 1.<br />

For different values of the parameters k , , in the above results, we get many other interesting results.<br />

II. LEMMAS<br />

For the proofs of the above results we need the following results:<br />

Lemma 1: If f(z) is analytic in z R ,but not identically zero, f(0) 0 and<br />

f ( ak<br />

) 0,<br />

k 1,<br />

2,......,<br />

n , then<br />

1 <br />

2<br />

2<br />

n<br />

i<br />

log f (Re d<br />

log f ( 0)<br />

log<br />

0<br />

j1 a j<br />

Lemma 1 is the famous Jensen’s theorem (see page 208 of [1]).<br />

Lemma 2: If f(z) is analytic and ( z)<br />

M(<br />

r)<br />

does not exceed<br />

www.ijerd.com 58 | Page<br />

R<br />

.<br />

r<br />

f in z r , then the number of zeros of f(z) in z , c 1<br />

c<br />

1 M ( r)<br />

log .<br />

log c f ( 0)<br />

Lemma 2 is a simple deduction from Lemma 1.<br />

Lemma 3: Let <br />

( )<br />

j<br />

a z P be a polynomial o f degree n with complex coefficients such that for some<br />

<br />

j0<br />

j z<br />

a j<br />

<br />

2<br />

a j j 1<br />

ta a t a a ) cos<br />

( t a a ) sin .<br />

real , , arg , 0 j n,<br />

and a , 0 j n,<br />

then any t>0,<br />

j j1<br />

( j j1<br />

j j1<br />

Lemma 3 is due to Govil and Rahman [4].<br />

III. PROOFS OF THEOREMS<br />

Proof of Theorem 1: Consider the polynomial<br />

F(z) =(1-z)P(z)<br />

1 z)(<br />

a<br />

n<br />

z a<br />

n1<br />

z ...... a z a )<br />

( n n<br />

1<br />

1 0<br />

n1<br />

an<br />

z an<br />

an1<br />

a<br />

z<br />

n<br />

n1<br />

n<br />

( ) z ...... ( a a ) z a<br />

a<br />

0<br />

[( k<br />

<br />

n<br />

( ) z ...... ( ) z<br />

1<br />

n<br />

n1<br />

) ( k 1)<br />

] z<br />

[( <br />

) ( )] z i<br />

1<br />

<br />

For z R , we have by using the hypothesis<br />

F<br />

n1<br />

( z)<br />

an<br />

R a0<br />

0<br />

0<br />

+<br />

0<br />

<br />

<br />

1<br />

( <br />

n<br />

<br />

j0<br />

0<br />

1<br />

j<br />

1<br />

<br />

( <br />

0<br />

2<br />

j1<br />

<br />

) z<br />

) z<br />

1<br />

1<br />

j<br />

......<br />

R<br />

<br />

R <br />

<br />

R k<br />

<br />

n<br />

1<br />

n n1<br />

...... 1<br />

1<br />

<br />

1<br />

( k 1)<br />

<br />

R <br />

1 <br />

2<br />

R ...... 1<br />

0<br />

R ( 1<br />

) 0<br />

R<br />

<br />

n<br />

<br />

j1<br />

( <br />

<br />

j<br />

j1<br />

)


and<br />

On The Zeros of a Polynomial in a Given Circle<br />

n1<br />

n<br />

an R a0<br />

R [ n <br />

n1<br />

......<br />

<br />

1<br />

<br />

k<br />

<br />

1<br />

<br />

<br />

<br />

( k 1)<br />

<br />

1 2 ...... 1 0 ( 1 ) 0 0 2<br />

n<br />

<br />

<br />

n <br />

<br />

]<br />

n1<br />

n<br />

an R a0<br />

R [ n ( k 1)(<br />

<br />

<br />

) <br />

( 0<br />

<br />

0)<br />

0<br />

0<br />

n<br />

2<br />

1<br />

<br />

1<br />

n<br />

j<br />

j<br />

]<br />

n1<br />

R n <br />

n ( k 1)(<br />

<br />

<br />

<br />

[ ) <br />

( <br />

) 2<br />

www.ijerd.com 59 | Page<br />

0<br />

0<br />

0<br />

<br />

n<br />

2 j<br />

0<br />

1<br />

j1<br />

j<br />

<br />

] for R 1<br />

F(<br />

z)<br />

a R[<br />

( k 1)(<br />

) <br />

( ) 2 ]<br />

0<br />

n n<br />

<br />

for 1<br />

Therefore , by Lemma 3, it follows that the number of zeros of F(z) and hence<br />

R<br />

c<br />

P(z) in z ( R 0,<br />

c 0)<br />

does not exceed<br />

and<br />

1<br />

log<br />

log c<br />

R<br />

1<br />

log<br />

log c<br />

a<br />

0<br />

n1<br />

[<br />

n n<br />

<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

R .<br />

0<br />

0<br />

n<br />

<br />

j0<br />

( k 1)(<br />

<br />

) 2<br />

<br />

( <br />

) 2 <br />

0<br />

a<br />

for R 1<br />

n<br />

n <br />

n ( k 1)(<br />

<br />

) <br />

( 0 <br />

0 ) 0 0 2<br />

j1<br />

R[<br />

<br />

That proves Theorem 1.<br />

Proof of Theorem 3: Consider the polynomial<br />

F(z) =(1-z)P(z)<br />

n<br />

n1<br />

1 z)(<br />

a z a z ...... <br />

( n n<br />

1<br />

a1z<br />

a0<br />

n1<br />

an<br />

z an<br />

an1<br />

n<br />

( ) z ...... ( a a ) z a<br />

n1<br />

n<br />

an<br />

z a0<br />

z n n1<br />

1<br />

a<br />

)<br />

0<br />

0<br />

for R 1.<br />

n<br />

( ) z ...... ( ) z<br />

n<br />

<br />

j0<br />

j<br />

[(<br />

<br />

) ( <br />

)] z i ( ) z .<br />

1<br />

For z R , we have by using the hypothesis<br />

F<br />

n1<br />

( z)<br />

an<br />

R a0<br />

0<br />

0<br />

0<br />

j<br />

j1<br />

2<br />

1<br />

2<br />

j<br />

n<br />

<br />

j1<br />

n<br />

n<br />

2<br />

+ R <br />

<br />

R <br />

R R<br />

+ ( 1 <br />

) 0 R ( j j<br />

j0<br />

n<br />

n n<br />

1 ...... 2 1<br />

1 0<br />

1<br />

) R<br />

n1<br />

R n 0<br />

<br />

n <br />

n1<br />

[ ......<br />

<br />

<br />

<br />

<br />

n<br />

<br />

j0<br />

( 1 <br />

) 2 ]<br />

0<br />

j<br />

j<br />

2<br />

1<br />

1<br />

0<br />

j<br />

j<br />

j


and<br />

On The Zeros of a Polynomial in a Given Circle<br />

n1<br />

R [ <br />

( ) 2<br />

2 ] for R 1<br />

n<br />

n<br />

0<br />

F(<br />

z)<br />

a R[<br />

<br />

( ) 2 ] for R 1.<br />

0<br />

n<br />

n<br />

0<br />

0<br />

www.ijerd.com 60 | Page<br />

0<br />

0<br />

0<br />

n<br />

<br />

j0<br />

n<br />

<br />

j 0<br />

Therefore , by Lemma 2, it follows that the number of zeros of F(z) and hence<br />

R<br />

c<br />

P(z) in z ( R 0,<br />

c 0)<br />

does not exceed<br />

and<br />

R<br />

1<br />

log<br />

log c<br />

1<br />

log<br />

log c<br />

n1<br />

a<br />

0<br />

0<br />

0<br />

0<br />

0<br />

j<br />

j<br />

n<br />

<br />

j0<br />

[ <br />

( ) 2<br />

2 ]<br />

n<br />

n<br />

a<br />

0<br />

for R 1<br />

R[<br />

<br />

( ) 2 ]<br />

That proves Theorem 3.<br />

Proof of Theorem 5: Consider the polynomial<br />

F(z) =(1-z)P(z)<br />

n<br />

n1<br />

1 z)(<br />

a z a z ...... <br />

( n n<br />

1<br />

a1z<br />

a0<br />

n1<br />

an<br />

z an<br />

an1<br />

n n 0 0 0 <br />

j0<br />

n<br />

( ) z ...... ( a a ) z a<br />

n1<br />

n<br />

an<br />

z a0<br />

z an<br />

an1<br />

[( a 1 <br />

a0<br />

) ( a0<br />

a0<br />

)] z .<br />

a<br />

1<br />

)<br />

0<br />

0<br />

for R 1.<br />

n<br />

( ) z ...... ( a a ) z<br />

For z R , we have by using the hypothesis and Lemma 3<br />

F<br />

n1<br />

( z)<br />

an<br />

R a0<br />

<br />

+ ( 1<br />

)<br />

R<br />

0<br />

n<br />

n<br />

2<br />

+ R a a R a a R a a R<br />

n n<br />

1 ...... 2 1 1 0<br />

n1<br />

n<br />

a n R a0<br />

R [(<br />

an<br />

an1<br />

) cos<br />

( an<br />

an1<br />

) sin<br />

]<br />

...... [( a<br />

[( a<br />

1<br />

2<br />

<br />

a<br />

0<br />

a ) cos<br />

( a<br />

1<br />

) cos<br />

( a<br />

1<br />

2<br />

<br />

a<br />

a ) sin ]<br />

R<br />

0<br />

1<br />

) sin ]<br />

R<br />

2<br />

2<br />

1<br />

( 1<br />

) a<br />

n1<br />

R [( an<br />

)(cos<br />

sin<br />

1)<br />

<br />

0<br />

(cos<br />

sin<br />

1)<br />

2a0<br />

]<br />

for R 1<br />

and<br />

a0 R[(<br />

an<br />

)(cos<br />

sin<br />

1)<br />

<br />

a0<br />

(cos<br />

sin<br />

1)<br />

a0<br />

]<br />

for R 1.<br />

Hence , by Lemma 2, it follows that the number of zeros of F(z) and therefore P(z)<br />

R<br />

in z ( R 0,<br />

c 0)<br />

does not exceed<br />

c<br />

1 1 n1<br />

log [ R {( an<br />

)(cos<br />

sin 1)<br />

<br />

0 (cos<br />

sin 1)<br />

2<br />

0 }]<br />

log c<br />

a<br />

0<br />

0<br />

n<br />

2<br />

j<br />

R<br />

2<br />

j<br />

R<br />

n


and<br />

On The Zeros of a Polynomial in a Given Circle<br />

for R 1<br />

1 1<br />

log [ a0<br />

R{(<br />

an<br />

)(cos<br />

sin 1)<br />

<br />

a0<br />

(cos<br />

sin 1)<br />

a0<br />

}]<br />

log c a<br />

0<br />

That completes the proof of Theorem 5.<br />

for R 1.<br />

REFERENCES<br />

[1]. L.V.Ahlfors, Complex Analysis, 3 rd edition, Mc-Grawhill<br />

[2]. K. K. Dewan, Extremal Properties and Coefficient estimates for Polynomials with restricted Zeros and<br />

on location of Zeros of Polynomials, Ph.D. Thesis, IIT Delhi, 1980.<br />

[3]. N. K. Govil and Q. I. Rahman, On the Enestrom- Kakeya Theorem, Tohoku Math. J. 20(1968),126-<br />

136.<br />

[4]. M. H. Gulzar, On the Zeros of a Polynomial inside the Unit Disk, IOSR Journal of Engineering, Vol.3,<br />

Issue 1(Jan.2013) IIV3II, 50-59.<br />

[5]. M. H. Gulzar, On the Number of Zeros of a Polynomial in a Prescribed Region, Research Journal of<br />

Pure Algebra-2(2), 2012, 35-49.<br />

[6]. M. H. Gulzar, On the Zeros of a Polynomial, International Journal of Scientific and Research<br />

Publications, Vol. 2, Issue 7,July 2012,1-7.<br />

[7]. Q. G. Mohammad, On the Zeros of Polynomials, Amer. Math. Monthly 72(1965), 631-633.<br />

www.ijerd.com 61 | Page

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!