25.10.2012 Views

Bachelor's Thesis - Christian Hoffmann - Cognitive Science ...

Bachelor's Thesis - Christian Hoffmann - Cognitive Science ...

Bachelor's Thesis - Christian Hoffmann - Cognitive Science ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Universität Osnabrück<br />

<strong>Cognitive</strong> <strong>Science</strong> Bachelor Program<br />

Bachelor’s <strong>Thesis</strong><br />

The influence of prepositions on<br />

attention during the processing of<br />

referentially ambiguous sentences<br />

<strong>Christian</strong> <strong>Hoffmann</strong><br />

September 29, 2009<br />

Supervisors:<br />

Prof. Dr. Peter Bosch<br />

Computational Linguistics Working Group,<br />

Institute of <strong>Cognitive</strong> <strong>Science</strong><br />

University of Osnabrück<br />

Germany<br />

Prof. Peter König<br />

Neurobiopsychology Working Group,<br />

Institute of <strong>Cognitive</strong> <strong>Science</strong><br />

University of Osnabrück<br />

Germany


Abstract<br />

The present study uses eye-tracking to investigate the role of prepo-<br />

sitions in resolving referential ambiguities. Playmobil sceneries and<br />

prerecorded sentences were presented and fixation behaviour on possi-<br />

ble referents of the discourse was recorded.<br />

The sentences investigated contained a subject NP whose head NP<br />

refers to two objects in the scenery modified by a PP that uniquely<br />

identified the referential object of the subject NP. The hypothesis was<br />

that when a preposition can uniquely identify an object in a scenery<br />

then the fixation probability of said object should rise already prior<br />

to the processing of the following prepositional NP. If the preposition<br />

does not uniquely identify an object, then the fixation probability of<br />

the referential object should only rise after processing the prepositional<br />

NP. The results seem to imply that there are no major differences in<br />

fixation probabilities connected to the prepositions. Bootstrapping<br />

analyses revealed that there are some significant differences, namely<br />

more fixations on the target in the ambiguous block.<br />

2


Contents<br />

1 Introduction 4<br />

2 Methods 8<br />

2.1 Participants . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8<br />

2.2 Experimental stimuli . . . . . . . . . . . . . . . . . . . . . . . 8<br />

2.2.1 Visual stimuli . . . . . . . . . . . . . . . . . . . . . . . 10<br />

2.2.2 Auditory stimuli . . . . . . . . . . . . . . . . . . . . . 11<br />

2.2.3 Filler . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14<br />

2.3 Apparatus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14<br />

2.4 Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15<br />

2.5 Data Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 16<br />

2.5.1 Regions of Interest . . . . . . . . . . . . . . . . . . . . 16<br />

2.5.2 Statistics . . . . . . . . . . . . . . . . . . . . . . . . . 16<br />

3 Results 19<br />

3.1 Subject Validity . . . . . . . . . . . . . . . . . . . . . . . . . . 19<br />

3.2 Stimulus Validity . . . . . . . . . . . . . . . . . . . . . . . . . 19<br />

3.3 Time Course of Fixations . . . . . . . . . . . . . . . . . . . . 22<br />

3.4 Bootstrapping . . . . . . . . . . . . . . . . . . . . . . . . . . . 25<br />

4 Discussion 28<br />

References 30<br />

A Visual Stimuli 31<br />

B Auditory Stimuli 33<br />

C Fillers - Visual 36<br />

D Fillers - Auditory 39<br />

E Statistics 41<br />

F Complementary Figures 43<br />

G Consent Sheet 48<br />

3


1 Introduction<br />

“Linguistic theory [...] may inform a theory of language processing. And<br />

observations about language processing may inform linguistic theory, i.e.<br />

support or disconfirm its predictions.”(Bosch (2009))<br />

In the last few decades, interest in neuroscientific methods for analyzing<br />

linguistic processing has been on the rise. More and more research areas<br />

develop which incorporate paradigms and methods from both theoretical<br />

linguistics and neuroscience.<br />

Specifically the method of analyzing the gaze of people, known as eye-<br />

tracking, generated major interest in the linguistic community, due to the<br />

seminal paper of Cooper (1974), who showed that people fixate elements of<br />

a visual scene that had a connection to spoken language stimuli to which<br />

they listened at the same time. Many researchers focused on eye-tracking<br />

as a method to investigate ongoing linguistic processing.<br />

As Michael K. Tanenhaus puts it, “eye movements provide a continu-<br />

ous measure of spoken-language processing in which the response is closely<br />

time locked to the input without interrupting the speech stream. [...] The<br />

presence of a visual world makes it possible to ask questions about real-<br />

time interpretation.” Tanenhaus et al. (2000) Eye-tracking has been used<br />

before to investigate topics like overt attention and its modulation, reading<br />

behaviour (in particular the implications on online lexical access and syn-<br />

tactic processing, e.g. garden-path sentences) and others. For an overview,<br />

see Rayner (1998).<br />

Of most importance for the understanding of the findings from Tanen-<br />

haus, Rayner, Cooper, Chalmers and others are the visual world paradigm<br />

and the linking hypothesis. The visual world paradigm serves as a blueprint<br />

for psycholinguistic experiments. Basically, subjects fixations are measured<br />

as they interact in some fashion with a visual scenery according to tasks pro-<br />

posed by the experimenter, thereby integrating linguistic and non-linguistic<br />

knowledge and action. The linking hypothesis proposes an intrinsic connec-<br />

tion between eye movements and lexical access, making it possible to derive<br />

knowledge about linguistic processing from analyzing non-linguistic actions.<br />

In his overview (Tanenhaus et al. (2000)) Tanenhaus shows that visual<br />

context and even real-world knowledge (see also Chambers et al. (1998)) can<br />

help to resolve apparent (or temporal) syntactic ambiguity and is rapidly<br />

4


1 INTRODUCTION 5<br />

integrated throughout the processing of linguistic utterances and also that<br />

linguistic experience (such as relative frequencies of lexical competitors) can<br />

influence fixation behaviour.<br />

A major topic in this field is the question of how referential expressions<br />

(e.g. “The cat on the tree”) are processed. As Chambers et al. (1998) shows,<br />

even prepositions suffice in certain tasks to identify the referential object of<br />

an expression by restricting the domain of interpretation. Studies conducted<br />

at the University of Osnabrück show that determiner gender 1 and adjectival<br />

constructions ensuring referential uniqueness already give rise to a higher fix-<br />

ation probability on the referential object due to an anticipation effect, even<br />

before the onset of the noun itself (Hartmann (2006)). Kleemeyer (2007) and<br />

Bärnreuther (2007) showed that top-down influences had a much higher im-<br />

pact on attention modulation than bottom-up processes when presented in<br />

parallel. Karabanov (2006) showed what differences in fixation probabilities<br />

arise when processing full noun phrases compared to pronouns.<br />

The last three studies mentioned used a more natural visual world than<br />

Tanenhaus and the others, by providing Playmobil R○ sceneries as visual<br />

stimuli. Furthermore, subjects did not have to perform complex tasks while<br />

viewing the sceneries, as it was the case in Chambers et al. (1998) and<br />

Hartmann (2006).<br />

The object of this study is to investigate a problem posed by Peter Bosch<br />

in Bosch (2009). The basic question is in which way does the uniqueness con-<br />

straint of the definite determiner contribute to the processing of potentially<br />

ambiguous referential expressions. For a sentence like:<br />

(1) Put the red block on the block on the disk.<br />

which is syntactically ambiguous, one finds two constituent structures:<br />

(2) put [the [red block]] [on [the [block [on [the [disk]]]<br />

(3) put [the [red [block [on [the block]]] [on [the disk]]]<br />

If this sentence is presented while figure 1 is shown, which contains more<br />

than one red block (one of which is even on another block), and a third<br />

block on a disk, the uniqueness constraints of the first two definite deter-<br />

miners are not met when analyzing their corresponding constituents. But<br />

1 determiners in German have gender markers


1 INTRODUCTION 6<br />

somehow, most people intuitively chose sentence 3 as the correct meaning of<br />

the sentence. Bosch proposes two alternatives: either constraints of single<br />

constituents are collecting during incremental construction of the semantic<br />

representation of the determiner phrase so that the meaning becomes clear<br />

after processing the second “block”-phrase, where it becomes clear that the<br />

DP describes a red block which is on another block. Or the violated unique-<br />

ness constraint leads to a modulation of processing ressources: the deref-<br />

erence of said DP becomes the most important point on the agenda of the<br />

parser, which immediately uses the information obtained from the following<br />

preposition to decide which block is the referential object of the DP.<br />

Figure 1: Example block world, taken from Bosch (2009)<br />

The hypothesis behind this experiment is that when in such a sentence<br />

(or any other expression containing a definite determiner and a referentially<br />

ambiguous DP) a preposition can give the information needed to resolve<br />

such an ambiguity, then this fact should be easily be seen in an earlier<br />

rise of the fixation probability on the referential object of that DP. If the<br />

preposition cannot provide such information 2 , then the fixation probability<br />

on the referential object should rise only after the onset of the prepositional<br />

NP-head.<br />

2 In said case, picture the second block on a hat, then the ambiguity cannot be resolved<br />

solely by the preposition, as both blocks are “on” something


1 INTRODUCTION 7<br />

In order to test this hypothesis, several visual stimuli were constructed<br />

bearing exactly those characteristics mentioned before and were shown to<br />

subjects while they were listening to matching spoken stories.


2 Methods<br />

This part contains all important information about the participants of this<br />

study, the materials used for preparation and experimental design and pro-<br />

cedures used during the experiment and for subsequent analysis.<br />

2.1 Participants<br />

Participants were contacted through personal contacts and the internal mail-<br />

ing lists of the student bodies of the cognitive science and psychology pro-<br />

grammes at the University of Osnabrück, Germany. The actual subjects of<br />

this study were almost equally distributed among those programmes. They<br />

had to be native German speakers, have normal or corrected-to-normal vi-<br />

sion and had to have no hearing deficits. For their participation, subjects<br />

were rewarded with either course credit or 5 Euros. All subjects partici-<br />

pated voluntarily and were naïve with regard to the purpose of this study.<br />

Fixations were recorded from 25 subjects. Of those data sets, four had to<br />

be rejected. For two subjects, the data files were corrupt and therefore not<br />

readable. The experiment for one subject ended prematurely, rendering the<br />

data set unusable. One subject had a red-green color blindness, but as the<br />

subjects fixation behaviour was the same as of the other remaining subjects<br />

(see subject validity of subject 21 in table 6), the data set of said subject<br />

was used nevertheless. One subjects performance was significantly different<br />

from the rest (see subject validity of subject 5) and its data set was dis-<br />

regarded. All in all, 21 data sets were used for subsequent analysis. The<br />

characteristics taken from the subject questionnaires are shown in table 1.<br />

2.2 Experimental stimuli<br />

Subjects received multi modal stimuli, composed of photographs of Playmobil R○<br />

sceneries and auditory stimuli which were semantically related to them. See<br />

Karabanov (2006), Kleemeyer (2007), Bärnreuther (2007) and Karabanov<br />

(2006) for similar designs.<br />

Ten stimuli were assembled from stimuli and filler material from prior<br />

experiments collectively used in Alexejenko et al. (2009). The pictures were<br />

edited with GIMP 2.6 in such a way as to conform to the constraints of<br />

the experimental design. Information about the construction of the original<br />

8


2 METHODS 9<br />

Category Range Median Mean ± SD<br />

Age (yrs) 18-28 22 22.5 ± 2.26<br />

Height (cm) 154-193 174 172.8 ± 8.63<br />

Daily screen time (hours) 2-10 5 5 ± 2.53<br />

Language knowledge (no.) 1-5 2 2.56 ± 0.96<br />

Previous eye-tracking studies (no.) 0-6 1 1.24 ± 1.67<br />

Gender Number Percent<br />

Female 14 56%<br />

Male 11 44%<br />

Education Number Percent<br />

High school diploma 22 88%<br />

University degree 3 12%<br />

Occupation Number Percent<br />

Student 24 96%<br />

Unemployed 1 4%<br />

Vision aids Number Percent<br />

None 14 56%<br />

Glasses 6 24%<br />

Contact lenses 5 20%<br />

Occular dominance Number Percent<br />

Left 10 40%<br />

Right 11 44%<br />

Unclear 4 16%<br />

Handedness Number Percent<br />

Left 1 4%<br />

Right 23 92%<br />

Unclear 1 4%<br />

Color Vision Number Percent<br />

Red-green colour blind 1 4%<br />

Perfect 24 96%<br />

Table 1: Statistics of study participants, collected from subject questionnaires


2 METHODS 10<br />

stimuli and filler can be found in Kleemeyer (2007). As some of the original<br />

images reused here had a resolution of 1024x768 pixels, all final images were<br />

downscaled to this resolution.<br />

Auditory stimuli were constructed corresponding to the experimental<br />

question raised in Bosch (2009). In order to find out what role prepositions<br />

may play during the processing of referential ambiguities, sentences were<br />

constructed whose subject phrase (sentence head) consisted of a noun phrase<br />

modified with a prepositional phrase. The whole phrase uniquely identified<br />

an object of the visual stimulus matching the auditory stimulus. The head<br />

of the subject phrase matched two objects of the visual stimulus, as did<br />

the NP of the prepositional phrase. In one condition, the preposition was<br />

supposed to uniquely identify the referential object of the subject phrase 3 ,<br />

whereas in the other condition, the ambiguity could only be resolved when<br />

processing the prepositional NP.<br />

2.2.1 Visual stimuli<br />

Every stimuli/filler depicted a natural scenery constructed from Playmobil R○<br />

objects. Those sceneries consisted of multiple objects referred to during the<br />

course of the corresponding auditory stimulus and also contained a vast<br />

amount of other objects serving as distraction, ensuring a higher possibility<br />

that a fixation on an object of interest is related to the auditory stimulus,<br />

and not to general browsing of the scenery.<br />

In particular, every scenery had two identical objects (identical in the<br />

sense of being part of the same category, e.g.“owl”,“man”,“cat”) serving as<br />

target and competitor. In addition, two objects served as their “location-<br />

ary” identifiers, i.e. identifying the location of the target/competitor in the<br />

scenery. 4 It is important to mention that there were matching distractors<br />

for the locationary identifiers as well. This was required in order to keep all<br />

references to the locationary identifiers in the auditory stimuli ambiguous.<br />

3<br />

E.g.“The cat in front of...” uniquely identifies a cat if the other cat in the picture is<br />

not in front of something.<br />

4<br />

To give an example, in one picture two owls were amidst a woodland scenery, one in<br />

a tree, the other on on a hill. The target here was the owl in the tree (the tree therefore<br />

being the locationary identifier of the target), the distractor the owl on the hill (the hill<br />

therefore being the locationary identifier of the competitor).


2 METHODS 11<br />

There was also a reference object in every picture to study the attention<br />

shift of participants to an easily identifiable, salient target and to compare<br />

those shifts to those elicited by the relevant part of the auditory stimulus.<br />

Figure 2: Exemplary visual stimulus. The target is circled in red, the competitor<br />

in green. The locationary object of the target and its distractor are<br />

circled in purple, the locationary object of the competitor and its distractor<br />

in blue. The reference object is circled in yellow.<br />

2.2.2 Auditory stimuli<br />

As already stated, there were two conditions for every stimulus, i.e. two sto-<br />

ries were designed that solely differed in one preposition in the last sentence.<br />

The stimuli consisted of four to six sentences in four slots. The first sentence<br />

was an informal overview of the scenery, without any direct reference to any<br />

object in it.<br />

1. In der Savanne. (In the savannah.)<br />

The reason for the introduction of that sentence was to measure participants’<br />

fixations on the stimuli while not guided by linguistic input. The next one<br />

to two sentences introduced (referred to) the locationary objects.


2 METHODS 12<br />

2. In der felsigen Landschaft traben zwei Elefanten. (Two elephants<br />

are trotting through the rocky countryside.)<br />

The one to two sentences in the third slot contained references to the tar-<br />

get/competitor, as well as distractors and the reference object.<br />

3. Die beiden Männer beobachten die vielen durstigen Tiere am einzigen<br />

Wasserloch 5 . The two men are watching the many thirsty animal near<br />

the watering hole.<br />

The only difference between the two conditions could be found in the fourth<br />

slot. As explained above, the sentence consisted of a subject NP composed<br />

of an NP and a prepositional phrase. In one case, the preposition was a<br />

more regular one, not capable of identifying the referential object by itself,<br />

i.e. prepositions able to convey more possible relations than others. The<br />

german prepositions auf, neben and bei were used in this condition (meaning<br />

“on”, “next to” and “near”, respectively. In the other, due to the relation<br />

between subject head and prepositional NP conveyed by the preposition,<br />

the ambiguity posed by the subject head could have already been resolved<br />

by the preposition. Here, the german prepositions in, vor, hinter, unter and<br />

an were used, meaning “in”, “in front of”, “behind”, “below/under” and<br />

“at.”<br />

4. Der Mann vor dem grauen Felsen ist ein erfahrener Jäger. (The man<br />

in front of the grey rock is an experienced hunter.)<br />

See Figure 2 for an exemplary stimulus.<br />

All sentences were recorded 6 by using a Trust HS-2100 Headset and Au-<br />

dacity 1.2.6 7 and Cool Edit Pro 2.0 8 . Noise and pitch reduction procedures<br />

were carried out on all audio files. Furthermore, silent intervals were cut to<br />

ensure equal length of all files (18.770s - 19.962s). The number of syllables<br />

differed slightly among all sentences (58-62 syllables). Manual alignment<br />

was performed to ensure that onsets of the subject head NP, the preposi-<br />

tion and the prepositional NP only differed on a small scale. See Table 2<br />

for details. By adding a non-disambiguating adjective to the PP, a time<br />

window of approximately 800 ms between preposition onset and the onset<br />

of the prepositional NP could be ensured for further analysis.<br />

5 This is the reference object.<br />

6 Sentences were all spoken by the experimenter himself.<br />

7 (http://audacity.sourceforge.net/)<br />

8 (http://www.adobe.com/products/audition/)


2 METHODS 13<br />

Stimulus Nr. Onset subj-head NP Onset prep. Onset prep. NP<br />

1 15,348 15,946 16,786<br />

2 15,362 15,911 16,766<br />

3 15,330 15,940 16,704<br />

4 15,319 15,909 16,842<br />

5 15,357 15,919 16,757<br />

6 15,338 15,980 16,736<br />

7 15,358 15,960 16,777<br />

8 15,336 15,930 16,778<br />

9 15,353 15,970 16,792<br />

10 15,328 15,964 16,721<br />

11 15,343 15,877 16,757<br />

12 15,333 15,946 16,780<br />

13 15,325 15,928 16,719<br />

14 15,330 15,944 16,765<br />

15 15,334 15,925 16,732<br />

16 15,348 15,887 16,771<br />

17 15,345 15,948 16,744<br />

18 15,328 15,970 16,739<br />

19 15,329 15,901 16,623<br />

20 15,319 15,968 16,698<br />

mean 15,338 15,936 16,749<br />

Table 2: Onsets of subject head NP, prepositions and prepositional NPs.<br />

Even Stimulus numbers correspond to the ambiguous case, odd to the unambiguous<br />

case. The first two stimuli correspond to visual stimulus 1, the<br />

next two to visual stimulus 2, and so on.


2 METHODS 14<br />

2.2.3 Filler<br />

Filler images were all those images from the material of Alexejenko et al.<br />

(2009), which had not been used to construct stimuli. For each of those<br />

filler images an auditory filler was recorded, which was of equal length as<br />

the auditory stimuli and consisted of 3-5 sentences.<br />

2.3 Apparatus<br />

A head-mounted binocular Eye-Tracker(“Eye Link II”, SR Research, Mis-<br />

sissauga, Ontario, Canada) was used to record subjects’ eye movements.<br />

Two infrared cameras tracked the movements of the participants’ pupils,<br />

one tracked the head position relative to the monitor. A Pentium 4 PC<br />

(Dell Inc., Round Rock, TX, USA) was used to control the eye-tracker. See<br />

figure 3 for an overview of the system 9 . A second PC (Powermac G4 8000<br />

MHz) controlled the stimulus presentation. Stimuli were presented on a 21”<br />

cathode ray tube monitor (SyncMaster 1100DF 2004, Samsung Electronics<br />

Co, Ltd, Korea), resolution set to 1024x768 and a refresh rate of 100Hz.<br />

Pupil positions were tracked using a 500 Hz sample rate.<br />

Figure 3: Eye Link II Head-Mounted Eye-Tracking System<br />

9 Image taken from Karabanov (2006)


2 METHODS 15<br />

2.4 Procedure<br />

The experiment was conducted in a dimly lit room. Prior to the experiment<br />

itself, subjects were welcomed and the experiments procedure was explained<br />

to them. Subjects were informed that they could interrupt the experiment<br />

at any time. Subjects then had to fill out a consent sheet (see section G)<br />

and a standardized questionnaire (see table 1). Tests for ocular dominance<br />

and color deficiency were performed. If subjects were able to follow the in-<br />

structions up until now, it was assumed that their hearing was also sufficient<br />

for the experiment.<br />

Subjects were then seated 80 cm from the monitor and the eye-tracker<br />

was fitted on their head. Afterwards, a 13 point calibration and valida-<br />

tion procedure was started. Participants were asked to fixate a small dot<br />

showing up in a random order at thirteen different locations on the screen.<br />

During calibration, the raw eye-data was mapped to gaze-position. During<br />

validation, the difference between computed fixation and target point was<br />

computed, in order to obtain gaze accuracy. The procedure was repeated<br />

until the mean error for one eye was below 0.3 ◦ , with a maximum error below<br />

1 ◦ , this eye was subsequently tracked during the whole experiment. Subjects<br />

then were provided with headphones (WTS Philips AY3816), through which<br />

the auditory stimuli were presented. The headphones also served the pur-<br />

pose of blocking out background noise in order to ensure full concentration<br />

on the task.<br />

Subjects were told to carefully listen to the auditory stimuli and look at<br />

the visual stimuli. Before each stimulus, a small fixation spot in the middle<br />

of the screen was presented, so that drift correction could be performed<br />

and subjects had the chance to have a small break in between trials. If<br />

the difference between gaze and computed fixation position was too high,<br />

calibration and validation were repeated. The stimuli were presented in a<br />

random order, with the constraints that no more than two actual stimuli<br />

were presented in a row and that every subject was presented with exactly<br />

five stimuli conforming to the ambigue condition and five stimuli of the<br />

unambigue condition. Furthermore, for every subject there was another<br />

subject that was presented with the same order of stimuli, but with exactly<br />

the opposite conditions, as to assure that all stimuli and all conditions were<br />

presented equally often without fully giving up randomization. The ten<br />

stimuli and 15 fillers were presented as one block. After the experiment,


2 METHODS 16<br />

participants were informed about the goal of this study.<br />

2.5 Data Analysis<br />

It has already been shown extensively that measuring eye movements seems<br />

to be an adequate tool for the investigation of attention and is especially<br />

useful when trying to understand the mechanisms behind language process-<br />

ing Tanenhaus et al. (2000). With the help of Playmobil R○ scenarios it has<br />

also been shown that top-down influences seem to at least partially override<br />

bottom-up influences on attention (Kleemeyer (2007), Bärnreuther (2007)).<br />

It therefore seems to be an adequate instrument to study the processing<br />

of prepositions and its influence on attention. A fixation is defined as the<br />

inverse of a saccade, i.e. whenever the eye-tracker does not measure a sac-<br />

cade, there is a steady fixation. The acceleration threshold for a saccade was<br />

8000 ◦ /sec 2 , the velocity threshold 30 ◦ /s and the deflection threshold 0.1 ◦ .<br />

Fixation locations and durations were calculated online by the eye-tracking<br />

software and later converted into ASCII text. All further analysis was done<br />

with MATLAB 10<br />

2.5.1 Regions of Interest<br />

In order to find out whether a subject fixated a referent of the discourse, re-<br />

gions of interest (ROIs) were manually chosen around each referent in every<br />

scene using MATLABs build-in function roipoly. The borders of the referent<br />

were chosen as close as possible around the actual figurine in the scene. As<br />

part of the fixations in question lay outside the manually chosen regions of<br />

interest, they were scaled up 12 pixel in the horizontal axis (being equiva-<br />

lent to 0,552 ◦ of visual angle) and 20 pixel in the vertical axis (equivalent to<br />

0.76 ◦ of visual angle). For an example, see figure 4. An example of all the<br />

fixation outside of the regions of interest can be seen in figure 5.<br />

2.5.2 Statistics<br />

The time course of the probabilities to fixate a certain referent throughout<br />

viewing the scenery is the important part of analysis. In order to inter-<br />

pret rise and fall of fixation probabilities, 150 ms time windows were chosen<br />

in which all relevant statistical analysis was implemented. This particular<br />

10 (www.mathworks.com)


2 METHODS 17<br />

Figure 4: Example image for regions of interest. Left: target (woman) and<br />

target locationary object (car), right: competitor (woman sitting), competitor<br />

locationary object (tree), front: reference object (man)<br />

Figure 5: Example of fixations not belonging to any region of interest<br />

length was chosen as the data was somewhat scarce. In order to test stimu-<br />

lus validity, the first 2.5 seconds (in which no reference to any object in the


2 METHODS 18<br />

scenery was yet made in the auditory stimulus) were analyzed by adding<br />

up all fixations on referents and comparing them among images. As this<br />

revealed some minor issues (see Results [3]), the time window between 2500<br />

ms and 15000 ms was also analyzed (being the time window in which all<br />

referents were introduced) in the same way. Subject validity was analyzed<br />

by summing up all fixations over the different images. For both validity<br />

analyses, MATLABs lillietest function was used to ensure normal distribu-<br />

tions. The influence of prepositions on fixation probabilities (and therefore<br />

on attention) was then tested using bootstrapping algorithms. Both intra-<br />

conditional and inter-conditional testing was performed 11 . For all statistic<br />

tests, a significance level of α = .05 was used.<br />

11 Intra-conditional meaning the comparison of fixation probabilities between different<br />

ROIs of the same condition, inter-conditional being the comparison of fixation probabilities<br />

for a specific ROI in the two different conditions.


3 Results<br />

3.1 Subject Validity<br />

The first statistical test conducted was to find out whether the fixations on<br />

the different ROIs over all subjects constituted normal distributions. For<br />

that, all fixations over the whole time course of the stimulus presentation<br />

were summed up and MATLABs lillietest function was used as a test for<br />

normality. The findings are visualized in figure 6, an overview over the<br />

statistics can be found in table 3. As it could be easily discerned that<br />

subject number 5 was a statistical outlier, all further statistical tests were<br />

conducted without the data of that subject.<br />

The lillietest revealed that all fixation distributions were normalized,<br />

except for the fixations on the locationary object of the competitor. This<br />

could be due to the fact that this object was mostly inanimate and most<br />

stimuli contained considerable amounts of animate distractors, so that fixa-<br />

tions on those objects could be unstable due to the fact that, as Karabanov<br />

(2006) already pointed out, subjects prefer fixations on animate/human ob-<br />

jects over inanimate. This did not pose a problem however, as the data<br />

clearly shows that all subjects fixated the object during the presentation<br />

(mean = 4.3536%, std. − dev. = 0.8902%), i.e. identified it either before or<br />

during the presentation of the relevant part of the stimulus.<br />

3.2 Stimulus Validity<br />

Following that, a series of normality tests was conducted to ensure stimulus<br />

validity. Contrary to previous studies, it could not be shown that fixation<br />

behaviour in the first part of the stimulus, where no objects were yet in-<br />

troduced, could be a reliable baseline for test statistics concerning fixation<br />

behaviour mediated by auditory stimuli.<br />

As can be seen in figure 7 and in table 4, there was quite a large variance<br />

in fixation probabilities, especially on target, competitor and the distractor<br />

of the targets locationary object. This is due to the fact that those objects<br />

varied in size and that each stimulus contained a great amount of distrac-<br />

tor objects. But this also ensured that fixations done on objects during<br />

their introduction via the auditory stimulus could be considered to be di-<br />

rectly linked to the linguistic input, and not to attentional browsing of the<br />

19


3 RESULTS 20<br />

picture 12 .<br />

Figure 6: Subject validity, fixations over all images<br />

That browsing occurred nevertheless can be seen in light of the large<br />

number of fixations on beyond-ROI regions. This was partly also due to the<br />

limited accuracy of the eye-tracker, leading to the fact that a percentage of<br />

fixations that should have counted towards one of the ROIs was off by a few<br />

degrees. Also see figure 5. As can be seen in table 4, fixation probabilities<br />

on target and competitor were nevertheless a normal distribution. To en-<br />

sure that the stimuli were really valid and appropriate for further statistical<br />

testing, the time interval between 2500 and 15000 ms was tested, under the<br />

hypothesis that the auditory stimuli presented similar objects for all stimuli,<br />

so that fixation probabilities should be similar as well. The results are visu-<br />

alized in figure 8 and table 5. One can see quite clear that in every picture<br />

all the relevant objects were fixated prior to the investigated stimulus part.<br />

Thus it was secured that all objects have been seen before and subjects do<br />

not have to search for objects first, overt attention that is due to linguistic<br />

input should be immediately visible.<br />

12 If one has many objects in a stimulus, fixation on one of them precisely at the point<br />

when it is presented in a concomitant auditory stimulus get more and more unlikely to<br />

have been a coincidence with increasing number of objects.


3 RESULTS 21<br />

Figure 7: Stimulus validity, fixations over all subjects, between 0 and 2500<br />

ms<br />

Figure 8: Stimulus validity, fixations over all subjects, between 2500 and<br />

15000 ms


3 RESULTS 22<br />

3.3 Time Course of Fixations<br />

The time course of fixation probability over all images are shown in figures 9<br />

and 10. As expected, the fixation probabilities on both target and competi-<br />

tor object rise twice during the whole presentation of the stimulus. A small<br />

peak beginning around 9000 ms can be distinguished, representing the time<br />

frame in which the target/competitor compatible NP is introduced. This<br />

clearly shows that subjects shift their attention on visual sceneries in line<br />

with the linguistic processing of additional linguistic stimuli.<br />

The second rise of the fixation probabilities (i.e. the relative number of<br />

fixations) occurs concurrently with the second naming of said NP. Around<br />

the time of the onset of the prepositional head-NP, the fixation probabilities<br />

diverge and a considerable number of fixations is directed towards the tar-<br />

get, implying that the subjects we’re focusing their attention on it, having<br />

understood that the subject-NP refers to it. Throughout the rest of the<br />

stimulus, most fixations stay on either the target or the target locationary<br />

object, shifting back and forth between them. To better understand the<br />

Figure 9: Time course of fixation probabilities, ambiguous condition. Yellow<br />

stripe: first introduction of target/competitor-NP. First line: mean onset<br />

subject-head-NP, second line: mean onset prepositional NP-head.


3 RESULTS 23<br />

Figure 10: Time course of fixation probabilities, unambiguous condition.<br />

Yellow stripe: first introduction of target/competitor-NP. First line: mean<br />

onset subject-head-NP, second line: mean onset prepositional NP-head.<br />

stages of linguistic processing of ambiguous sentences and to compare it to<br />

the processing of unambiguous sentences, a closer visual inspection of the<br />

time frame in question was necessary. A visualization of the fixation prob-<br />

abilities of said time frame for both the unambiguous and the ambiguous<br />

condition can be found in figures 11 and 12.<br />

A few observations can be made: first and foremost, the differences in<br />

the time course of fixation probability are minimal at best. Second, there<br />

seems to be an early peak of fixations on the target in the ambiguous case<br />

around 16400 ms, which would have been suspected in the unambiguous case<br />

when the integration of the proposition alone would be enough to resolve the<br />

ambiguity of the subject-NP. Third, increased fixations on both target and<br />

target locationary object seem to last longer in the ambiguous case than in<br />

the unambiguous one (the last peak in the ambiguous case is at 19350 ms).<br />

All of those observations have to be treated carefully, as the dataset is<br />

small and therefore statistical significance cannot be guaranteed.


3 RESULTS 24<br />

Figure 11: Time course of fixation probabilities, unambiguous condition,<br />

time span between subject head onset and end of stimulus<br />

Figure 12: Time course of fixation probabilities, ambiguous condition, time<br />

span between subject head onset and end of stimulus


3 RESULTS 25<br />

3.4 Bootstrapping<br />

Bootstrapping analyses were conducted to find out if there are any signif-<br />

icant differences between fixation probabilities on target and competitor.<br />

Both differences between conditions and in the conditions were analyzed.<br />

Bootstrapping algorithms were applied both over all images and all sub-<br />

jects, to find out for how many images and subjects significant differences<br />

can be found, respectively. Bootstrapping was applied to time windows of<br />

150 ms width, between 15200 ms (shortly before the onset of the subject-<br />

head-NP) and 22000 ms (the last recorded fixations). 1000 bootstrap sam-<br />

ples were taken from the vector of fixations on either ROI1 (target) or ROI2<br />

(competitor), for both the ambiguous and the unambiguous condition.<br />

As a test statistic, the difference of means was calculated and compared<br />

to the actual difference of means, both in and between conditions 13 . A<br />

difference was considered significant if it fell either into the 2,5 percentile<br />

or was larger than the 97,5 percentile. The figures 13, 14, 15 and 16 depict<br />

the results of bootstrapping analyses over images. No graphs are given for<br />

the results of bootstrapping over the subjects, as it did not yield a single<br />

significant difference.<br />

From figure 13 it can be concluded that fixation behaviour on the tar-<br />

get does indeed differ between conditions. Further analysis confirmed the<br />

observation made earlier, namely that the target object gets significantly<br />

more fixations in the ambiguous case. For all four images for which the time<br />

window between 15950 ms and 16100 ms became significant, the difference<br />

between unambiguous and ambiguous case was negative. Interestingly, this<br />

is the time window right after the onset of the preposition. The other peaks<br />

seem to support the claim that in the ambiguous case, fixations stayed more<br />

often on the target for a longer time. The differences here are also all neg-<br />

ative. As there is mostly only one or two pictures that lead a significant<br />

difference, this hypothesis cannot be proven.<br />

There are also significant differences in the fixation probabilities on the<br />

competitor object between conditions. They are even less pronounced than<br />

in the case of the target object. The relevant time frames can be observed<br />

in figure 14.<br />

13 I.e. mean(ROI1 unamb) - mean(ROI1 amb), mean(ROI1 unamb) - mean(ROI2 un-<br />

amb), ...


3 RESULTS 26<br />

Figure 13: Significant Differences after Bootstrapping - Fixations on Target<br />

unamb. vs amb. Condition<br />

Figure 14: Significant Differences after Bootstrapping - Fixations on Competitor<br />

Unamb. vs Amb. Condition, peaks at 16100, 17750 and 19700 ms


3 RESULTS 27<br />

Figure 15: Significant Differences after Bootstrapping - Fixations on Target<br />

vs Competitor Ambiguous Condition<br />

Interestingly, the differences seen in the time course of fixations in both<br />

conditions do not seem to be that significant. For the ambiguous case, there<br />

are 15 time windows in which the differences become significant for one<br />

image. For the unambiguous one, there are 17 time windows, two of which<br />

show two images with significant differences.


Figure 16: Significant Differences after Bootstrapping - Fixations on Target<br />

vs Competitor Unambiguous Condition<br />

4 Discussion<br />

This study about the linguistic processing of prepositions has some interest-<br />

ing implications. Due to the scarcity of the data 14 most of the implications<br />

are in need of future research. It seems that contrary to e.g. Chambers<br />

et al. (1998), prepositions do not seem to provide as much information into<br />

the processing stages of natural language understanding as for experiments<br />

in which choices are limited and subjects rely heavily on them.<br />

It seems that people process the prepositional NP-head fully when faced<br />

with a referentially ambiguous phrase and only then shift their attention to<br />

the referent. It could also be the case that the time window in which an<br />

influence of the preposition was suspected did not suffice. Therefore one<br />

proposal for future research would be to widen the gap between preposi-<br />

tion and PP-head-NP even further. As far as this study is concerned, there<br />

are a few significant differences in fixation probabilities, oddly enough there<br />

14 As could be seen by the fact that no bootstrapping analysis over the subjects yielded<br />

significant results - in most time windows, the single subject did not look at either target<br />

or competitor, only the average over subjects shows results<br />

28


4 DISCUSSION 29<br />

seem to be more fixations on the target in the ambiguous case. This could<br />

be an artifact of this study, i.e. there could be a bias towards fixating the<br />

competitor (even though none of the earlier time windows shows such a dis-<br />

crepancy). Nevertheless, it should be subject of future research. The results<br />

of this study seem to be in favor of the theory that constraints from single<br />

constituents are collected during an incremental construction of semantic<br />

representations.


References<br />

Alexejenko, S., Brukamp, K., Cieschinger, M., and Deng, X. (2009). Mean-<br />

ing, vision and situation - study project.<br />

Bärnreuther, B. (2007). Investigating the influence of visual and semantic<br />

saliency on overt attention - bsc. thesis univ. osnabrueck, cognitive science.<br />

Bosch, P. (2009). Processing Definite Determiners. Formal Semantics Meets<br />

Experimental Results. Lecture Notes on Computer <strong>Science</strong>.<br />

Chambers, C. G., Tanenhaus, M. K., Eberhard, K. M., Carlson, G. N.,<br />

and Filip, H. (1998). Words and worlds: The construction of context for<br />

definite references.<br />

Cooper, R. M. (1974). The control of eye fixation by the meaning of spoken<br />

language. <strong>Cognitive</strong> Psychology, 6.<br />

Hartmann, N. (2006). Processing grammatical gender in german - an eye-<br />

tracking study on spoken-word recognition - bsc. thesis univ. osnabrueck,<br />

cognitive science.<br />

Karabanov, A. N. (2006). Eye tracking as a tool for investigating the compre-<br />

hension of referential expressions - bsc. thesis univ. osnabrueck, cognitive<br />

science.<br />

Kleemeyer, M. (2007). Contribution of visual and semantic information and<br />

their interaction on attention guidance - an eye-tracking study - bsc. thesis<br />

univ. osnabrueck, cognitive science.<br />

Rayner, K. (1998). Eye movements in reading and information processing:<br />

20 years of research. Psychological Bulletin, 124(3).<br />

Tanenhaus, M. K., Magnuson, J. S., Dahan, D., and Chambers, C. (2000).<br />

Eye movements and lexical access in spoken-language comprehension:<br />

Evaluating a linked hypothesis between fixations and linguistic processing.<br />

30


A Visual Stimuli<br />

Figure 17: Visual Stimuli 1-6<br />

31


A VISUAL STIMULI 32<br />

Figure 18: Visual Stimuli 7-10


B Auditory Stimuli<br />

(a) is the unambiguous condition, (b) is the ambiguous one.<br />

1. (a) Im Wald ist viel los. Ein paar Hügel säumen die kleine Lichtung.<br />

Bäume spenden Schatten. Zwei Eulen schauen sich um, Rehe<br />

spielen am Wasser und auch ein Fuchs traut sich dazu. Die Eule<br />

in dem kleinen Baum hält nach Beute Ausschau.<br />

(b) Im Wald ist viel los. Ein paar Hügel säumen die kleine Lichtung.<br />

Bäume spenden Schatten. Zwei Eulen schauen sich um, Rehe<br />

spielen am Wasser und auch ein Fuchs traut sich dazu. Die Eule<br />

auf dem kleinen Baum hält nach Beute Ausschau.<br />

2. (a) In der Savanne. In der felsigen Landschaft traben zwei Elefan-<br />

ten. Die beiden Männer beobachten die vielen durstigen Tiere<br />

am einzigen Wasserloch. Der Mann vor dem grauen Felsen ist<br />

ein erfahrener Jäger.<br />

(b) In der Savanne. In der felsigen Landschaft traben zwei Elefan-<br />

ten. Die beiden Männer beobachten die vielen durstigen Tiere<br />

am einzigen Wasserloch. Der Mann neben dem grauen Felsen ist<br />

ein erfahrener Jäger.<br />

3. (a) Im Wartezimmer. Die Kisten sind voller Spielzeug. Die Frauen<br />

warten schon lange. Die beiden Kinder langweilen sich trotz der<br />

vielen Spielsachen. Auf dem Tisch liegen Zeitschriften. Das Kind<br />

vor der einen Kiste wird gerade aufgerufen.<br />

(b) Im Wartezimmer. Die Kisten sind voller Spielzeug. Die Frauen<br />

warten schon lange. Die beiden Kinder langweilen sich trotz der<br />

vielen Spielsachen. Auf dem Tisch liegen Zeitschriften. Das Kind<br />

bei der einen Kiste wird gerade aufgerufen.<br />

4. (a) Der erste Frühlingstag. Die Kinder spielen vergnügt, nur mit den<br />

Eimern spielt gerade keins. Zwei Kätzchen schleichen herum, und<br />

Blumen blühen überall. Die Frau geniesst die Sonne. Die Katze<br />

vor dem kleinen Kind geht jetzt auf Erkundungstour.<br />

(b) Der erste Frühlingstag. Die Kinder spielen vergnügt, nur mit den<br />

Eimern spielt gerade keins. Zwei Kätzchen schleichen herum, und<br />

33


B AUDITORY STIMULI 34<br />

Blumen blühen überall. Die Frau geniesst die Sonne. Die Katze<br />

bei dem kleinen Kind geht jetzt auf Erkundungstour.<br />

5. (a) Nachmittags im Park. Bänke laden zum Ausruh’n ein. Zwei<br />

Frauen sind mit ihren Enkeln da. Zwei Picknickkörbe steh’n<br />

bereit, die Kinder spielen Fussball und ein Hund tollt freudig<br />

umher. Der Korb hinter der einen Frau ist voller Leckereien.<br />

(b) Nachmittags im Park. Bänke laden zum Ausruh’n ein. Zwei<br />

Frauen sind mit ihren Enkeln da. Zwei Picknickkörbe steh’n<br />

bereit, die Kinder spielen Fussball und ein Hund tollt freudig<br />

umher. Der Korb bei der einen Frau ist voller Leckereien.<br />

6. (a) Im vollen Wirtshaus. An den Tischen sitzen ein paar Männer<br />

und trinken etwas. Zwei Hunde schnüffeln neugierig, die Männer<br />

warten auf’s Essen und die Kellnerin serviert ein Bier. Der Hund<br />

unter dem einen Tisch bettelt um einen Knochen.<br />

(b) Im vollen Wirtshaus. An den Tischen sitzen ein paar Männer<br />

und trinken etwas. Zwei Hunde schnüffeln neugierig, die Männer<br />

warten auf’s Essen und die Kellnerin serviert ein Bier. Der Hund<br />

bei dem einen Tisch bettelt um einen Knochen.<br />

7. (a) Im Klassenzimmer. Es gibt ein paar Tische und Hocker für die<br />

Schüler. Die beiden Kinder setzen sich gerade, die Spielsachen<br />

sind weggeräumt und die Lehrerin beginnt die Stunde. Das Kind<br />

vor dem einen Tisch hört ihr noch nicht richtig zu.<br />

(b) Im Klassenzimmer. Es gibt ein paar Tische und Hocker für die<br />

Schüler. Die beiden Kinder setzen sich gerade, die Spielsachen<br />

sind weggeräumt und die Lehrerin beginnt die Stunde. Das Kind<br />

bei dem einen Tisch hört ihr noch nicht richtig zu.<br />

8. (a) Ein Grillfest im Sommer. Die Familie ist mit zwei Autos da. Bei<br />

den Bäumen spielt ein Hund. Die zwei Frauen sind schon hungrig,<br />

die Kinder sitzen am Feuer und der Vater passt aufs Essen auf.<br />

Die Frau hinter dem grossen Auto holt noch mehr Kohle.<br />

(b) Ein Grillfest im Sommer. Die Familie ist mit zwei Autos da. Bei<br />

den Bäumen spielt ein Hund. Die zwei Frauen sind schon hungrig,<br />

die Kinder sitzen am Feuer und der Vater passt aufs Essen auf.<br />

Die Frau neben dem grossen Auto holt noch mehr Kohle.


B AUDITORY STIMULI 35<br />

9. (a) Auf dem Bauernhof. Die Kinder beobachten die Enten und Gänse<br />

an den Teichen. Zwei Katzen streifen umher, und Hühner gackern<br />

um die Wette. Die Bäuerin hat viel zu tun. Die Katze an dem<br />

kleinen Teich hat grad einen Fisch entdeckt.<br />

(b) Auf dem Bauernhof. Die Kinder beobachten die Enten und Gänse<br />

an den Teichen. Zwei Katzen streifen umher, und Hühner gackern<br />

um die Wette. Die Bäuerin hat viel zu tun. Die Katze bei dem<br />

kleinen Teich hat grad einen Fisch entdeckt.<br />

10. (a) Mitten in der Prärie. Kakteen wachsen auf den Felsen. Zwei Cow-<br />

boys schlagen ein Lager auf. Zwei Geier suchen nach Nahrung<br />

und Pferde laufen herum. Ein schwarzer Hund schaut sich um.<br />

Der Geier vor dem einen Cowboy ist schon ganz abgemagert.<br />

(b) Mitten in der Prärie. Kakteen wachsen auf den Felsen. Zwei Cow-<br />

boys schlagen ein Lager auf. Zwei Geier suchen nach Nahrung<br />

und Pferde laufen herum. Ein schwarzer Hund schaut sich um.<br />

Der Geier bei dem einen Cowboy ist schon ganz abgemagert.


C Fillers - Visual<br />

Figure 19: Filler Images 1-6<br />

36


C FILLERS - VISUAL 37<br />

Figure 20: Filler Images 7-12


C FILLERS - VISUAL 38<br />

Figure 21: Filler Images 13-15


D Fillers - Auditory<br />

1. Beim Zahnarzt. Die Arzthelferin holt die nötigen Instrumente aus<br />

den Schränken. Der Zahnarzt steht noch hinter dem Trennschirm<br />

am Tisch und trinkt noch seinen Kaffee aus. Der Patient auf dem<br />

Behandlungsstuhl fühlt sich schon ein wenig unwohl.<br />

2. Im grossen Burghof. Der grosse goldene Ritter bringt dem kleinen<br />

gerade den Schwertkampf bei. Der Mann bei den Fässern betrinkt<br />

sich und die Marktfrau bietet ihre Waren feil. Der Ritter mit der<br />

Hellebarde bewacht das Stadttor.<br />

3. Nachmittags im Zoo. Zwei Löwen stehen an der Tränke und ein Elefant<br />

ist eine Portion Heu. Die Oma und ihr Enkel beobachten begeistert die<br />

vielen Tiere. Der Tierpfleger will gleich das Elefantengehege sauber<br />

machen.<br />

4. Tief im Dschungel. Auf den Bäumen hocken Vögel und auf dem Boden<br />

streiten sich zwei Affen um Bananen. Die Schildkröte versucht die<br />

reifen Früchte zu erreichen. Der einzelne Affe versucht die anderen<br />

vor der Schlange zu warnen.<br />

5. In der Zirkusmanege. Die Affen und der Elefant rollen Fässer umher<br />

während ein Clown jongliert. Der Dompteur passt auf dass die Tiere<br />

alles richtig machen. Die Zuschauer auf den Rängen amüsieren sich<br />

prächtig.<br />

6. Auf einer Lichtung Bei den Bäumen und an den Blumen tummeln<br />

sich viele Tiere. Zwei Frischlinge halten sich nah bei ihrer Mutter auf,<br />

die kleinen Füchse trauen sich weiter weg. Das Eichhörnchen klettert<br />

lieber auf dem Baum umher.<br />

7. Auf dem Wochenmarkt. In den Körben und auf dem Tisch liegt<br />

frisches Gemüse. Der Mann ist mit dem Fahrrad gekommen um bei<br />

der Bäuerin seine Einkäufe zu erledigen. Die Bäuerin begrüsst ihn und<br />

seinen Hund gerade freundlich.<br />

8. Beim Familienausflug. Die Mutter und ihr Kind wollen gleich mit<br />

dem Kanu los paddeln Der Vogel beim Korb versucht etwas zu essen<br />

39


D FILLERS - AUDITORY 40<br />

zu ergattern und die Enten gehen schwimmen. Der Junge hat seinen<br />

Fussball zum spielen mitgenommen.<br />

9. Auf einer Ranch. Der Bulle frisst Stroh dass die Rancher gerade<br />

zusammengeharkt haben. Das Gras hat der Rancher gebündelt um<br />

es später den Pferden zu geben. Die Frau vor dem Wagen wird gleich<br />

noch die Pferde striegeln.<br />

10. Beim Kinderarzt. Beim Bett stehen allerlei medizinische Gerätschaften<br />

und im Schrank liegt Spielzeug. Der Junge auf dem Stuhl hat sich beim<br />

Sportunterricht verletzt. Die ärztin sagt ihm dass er wahrscheinlich<br />

auf Krücken nach Hause gehen muss.<br />

11. Ein Tag im Stadtpark. Ein paar Hasen und Rehe ruhen sich unter den<br />

Bäumen aus. Die Frau macht einen Spaziergang mit ihrem Hund. Sie<br />

unterhält sich gerade mit dem Mann. Die Ente am Teich schaut ihren<br />

Jungen beim Schwimmen zu.<br />

12. In einem kleinen Park. Die Blumen blühen und die vielen Bäume sind<br />

voller Blätter. Die Oma und ihr Enkel sind mit dem Hund zum Spielen<br />

in den Park gekommen. Das Fahrrad an dem einen Baum gehört den<br />

kleinen Jungen.<br />

13. Morgens in der Schule. Die Kleiderschränke sind noch leer und die<br />

Stühle noch nicht besetzt. Nur die Lehrerin und ein Schüler sind<br />

schon da. Sie fragt ihn wo die anderen bleiben. Die Aktentaschen im<br />

blauen Schrank gehören der Lehrerin.<br />

14. Auf dem Reiterhof. Beim Zaun liegt in einer Schubkarre Stroh für die<br />

Pferde. Auf dem Zaun hängen auch ein paar Sattel. Das kleine Kind<br />

will gleich einen Ausritt machen. Das Pferd neben der Tränke hat<br />

schon einen Sattel auf dem Rücken.<br />

15. Im Indianerdorf. Ein grosses Tipi ist aufgebaut und die Pferde haben<br />

Jagdbemalung. Der Häuptling redet mit dem Cowboy über die bevorste-<br />

hende Jagd. Das braune Pferd, dass gerade am Fluss trinkt, gehört<br />

dem Häuptling.


E Statistics<br />

ROI H mean std-dev.<br />

1 0 10.5542 2.1560<br />

2 0 5.8977 1.1071<br />

3 0 8.7508 1.5973<br />

4 0 5.3703 0.8303<br />

5 1 4.3536 0.8902<br />

6 0 6.0272 0.9649<br />

7 0 9.2993 2.2232<br />

8 0 49.7469 5.0927<br />

Table 3: Statistics of the Subject Validity - H: Outcome of the Lilliefors-test<br />

with α = 0.05, mean value of ROI, standard deviation (both in percent).<br />

Fixations on (from top to bottom): target object, competitor object, target<br />

locationary object, distractor for target locationary object, competitor<br />

locationary object, distractor for competitor locationary object, reference<br />

object, beyond ROI<br />

ROI H mean std-dev.<br />

1 0 7.1418 5.5750<br />

2 0 3.6015 2.5735<br />

3 1 8.2362 7.5051<br />

4 1 5.7861 7.8266<br />

5 0 3.3063 4.3488<br />

6 1 8.0087 13.1942<br />

7 0 12.7139 8.3210<br />

8 0 51.2055 10.8276<br />

Table 4: Statistics of the Stimulus Validity, for the first 2500 ms - H: Outcome<br />

of the Lilliefors-test with α = 0.05, mean value of ROI, standard<br />

deviation. ROIs like above.<br />

41


E STATISTICS 42<br />

ROI H mean std-dev.<br />

1 0 6.9826 2.5666<br />

2 0 6.1760 2.8477<br />

3 0 6.1081 1.7871<br />

4 0 6.0384 3.5721<br />

5 1 5.2184 1.6377<br />

6 1 6.6296 7.2425<br />

7 0 9.7145 3.5632<br />

8 1 53.1324 10.8374<br />

Table 5: Statistics of the Stimulus Validity, for the timespan between 2500<br />

and 15000 ms - H: Outcome of the Lilliefors-test with α = 0.05, mean value<br />

of ROI, standard deviation. ROIs like above.<br />

ROI H mean std-dev.<br />

1 0 10.4496 3.4217<br />

2 0 5.9346 2.2071<br />

3 0 8.7613 2.6996<br />

4 0 5.3531 3.5624<br />

5 1 4.3345 1.8885<br />

6 1 6.0183 7.2006<br />

7 0 9.1997 3.6903<br />

8 0 49.9490 9.5045<br />

Table 6: Statistics of the Stimulus Validity, for the whole presentation of<br />

the stimulus - H: Outcome of the Lilliefors-test with α = 0.05, mean value<br />

of ROI, standard deviation. ROIs like above.


F Complementary Figures<br />

Figure 22: Timecourse of total fixations, ambiguous condition<br />

43


F COMPLEMENTARY FIGURES 44<br />

Figure 23: Timecourse of total fixations, unambiguous condition<br />

Figure 24: Timecourse of total fixations, unambiguous condition, timespan<br />

between subject head onset and end of stimulus


LIST OF FIGURES 45<br />

Figure 25: Timecourse of total fixations, ambiguous condition, timespan<br />

between subject head onset and end of stimulus<br />

List of Figures<br />

1 Example block world, taken from Bosch (2009) . . . . . . . . 6<br />

2 Exemplary visual stimulus . . . . . . . . . . . . . . . . . . . . 11<br />

3 Eye Link II Head-Mounted Eye-Tracking System . . . . . . . 14<br />

4 Example image for regions of interest . . . . . . . . . . . . . . 17<br />

5 Fixations not belonging to any region of interest . . . . . . . 17<br />

6 Subject validity, fixations over all images . . . . . . . . . . . . 20<br />

7 Stimulus validity, fixations over all subjects, between 0 and<br />

2500 ms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21<br />

8 Stimulus validity, fixations over all subjects, between 2500<br />

and 15000 ms . . . . . . . . . . . . . . . . . . . . . . . . . . . 21<br />

9 Time course of fixation probabilities, ambiguous condition.<br />

Yellow stripe: first introduction of target/competitor-NP. First<br />

line: mean onset subject-head-NP, second line: mean onset<br />

prepositional NP-head. . . . . . . . . . . . . . . . . . . . . . 22


10 Time course of fixation probabilities, unambiguous condi-<br />

tion. Yellow stripe: first introduction of target/competitor-<br />

NP. First line: mean onset subject-head-NP, second line:<br />

mean onset prepositional NP-head. . . . . . . . . . . . . . . . 23<br />

11 Time course of fixation probabilities, unambiguous condition,<br />

time span between subject head onset and end of stimulus . . 24<br />

12 Time course of fixation probabilities, ambiguous condition,<br />

time span between subject head onset and end of stimulus . . 24<br />

13 Significant Differences after Bootstrapping - Fixations on Tar-<br />

get unamb. vs amb. Condition . . . . . . . . . . . . . . . . . 26<br />

14 Significant Differences after Bootstrapping - Fixations on Com-<br />

petitor Unamb. vs Amb. Condition . . . . . . . . . . . . . . . 26<br />

15 Significant Differences after Bootstrapping - Fixations on Tar-<br />

get vs Competitor Ambiguous Condition . . . . . . . . . . . . 27<br />

16 Significant Differences after Bootstrapping - Fixations on Tar-<br />

get vs Competitor Unambiguous Condition . . . . . . . . . . 28<br />

17 Visual Stimuli 1-6 . . . . . . . . . . . . . . . . . . . . . . . . 31<br />

18 Visual Stimuli 7-10 . . . . . . . . . . . . . . . . . . . . . . . . 32<br />

19 Filler Images 1-6 . . . . . . . . . . . . . . . . . . . . . . . . . 36<br />

20 Filler Images 7-12 . . . . . . . . . . . . . . . . . . . . . . . . . 37<br />

21 Filler Images 13-15 . . . . . . . . . . . . . . . . . . . . . . . . 38<br />

22 Timecourse of total fixations, ambiguous condition . . . . . . 43<br />

23 Timecourse of total fixations, unambiguous condition . . . . . 44<br />

24 Timecourse of total fixations, unambiguous condition, times-<br />

pan between subject head onset and end of stimulus . . . . . 44<br />

25 Timecourse of total fixations, ambiguous condition, timespan<br />

between subject head onset and end of stimulus . . . . . . . . 45<br />

46


List of Tables<br />

1 Statistics of study participants, collected from subject ques-<br />

tionnaires . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9<br />

2 Onsets of subject head NP, prepositions and Prepositional NP 13<br />

3 Statistics Subject Validity . . . . . . . . . . . . . . . . . . . . 41<br />

4 Statistics Stimulus Validity 0-2500 ms . . . . . . . . . . . . . 41<br />

5 Statistics Stimulus Validity 2500-15000 ms . . . . . . . . . . . 42<br />

6 Statistics Stimulus Validity whole timecourse . . . . . . . . . 42<br />

47


G Consent Sheet<br />

<strong>Christian</strong> <strong>Hoffmann</strong><br />

Arbeitsgruppe Computerlinguistik<br />

Universität Osnabrück<br />

Albrechtstrasse 28<br />

49069 Osnabrück<br />

email: chrihoff@uos.de<br />

Aufklärung/Einwilligung<br />

Sehr geehrte Teilnehmerin, sehr geehrter Teilnehmer,<br />

Sie haben sich freiwillig zur Teilnahme dieser Studie gemeldet. Hier erhalten<br />

Sie nun einige Informationen zu Ihren Rechten und zum Ablauf des folgen-<br />

den Experiments. Bitte lesen Sie sich die folgenden Abschnitte sorgfältig<br />

durch.<br />

1) Zweck der Studie<br />

Ziel dieser Studie ist es, neue Erkenntnisse über das Satzverständnis anhand<br />

von Eye-Tracking-Daten zu erhalten.<br />

2) Ablauf der Studie<br />

In dieser Studie werden Ihnen 25 Bilder auf einem Computermonitor gezeigt.<br />

Bitte sehen sie sich die Bilder sorgfältig an. Zugleich werden Sie einen kurzen<br />

Text zu hören bekommen. Hören Sie aufmerksam zu.<br />

Um Ihre Blickposition zu errechnen, wird Ihnen ein ”Eye-Tracker” auf den<br />

Kopf geschnallt. Dieses Gerät erfasst die Position Ihres Auges mit Hilfe von<br />

kleinen Kameras und Infrarotsensoren. Dieses Verfahren ist ein psychome-<br />

trisches Standardverfahren, das in dieser Art bereits vielfach angewandt und<br />

getestet wurde. Bei unseren bisherigen Erfahrungen und Experimenten mit<br />

dem Gerät ist keine Versuchsperson zu Schaden gekommen.<br />

Zu Beginn der Untersuchung muss der ”Eye-Tracker” eingestellt werden,<br />

dieser Vorgang dauert etwa 10-15 Minuten. Das eigentliche Experiment<br />

48


G CONSENT SHEET 49<br />

dauert dann etwa 15 Minuten. Der Versuchsleiter wird während des ganzen<br />

Experiments mit Ihnen im Versuchsraum sein und steht Ihnen für Fragen<br />

jederzeit zur Verfügung. Nach der Studie erhalten Sie weitere Informationen<br />

zum Sinn und Zweck dieser Untersuchung. Bitte geben Sie diese Informatio-<br />

nen an niemanden weiter um die Objektivität eventueller Versuchspersonen<br />

zu wahren.<br />

3) Risiken und Nebenwirkungen<br />

Diese Studie ist nach derzeitigem Wissenstand des Versuchsleiters ungefährlich<br />

und für die Teilnehmer schmerzfrei. Durch Ihre Teilnahme an dieser Studie<br />

setzen Sie sich keinen besonderen Risiken aus und es sind keine Neben-<br />

wirkungen bekannt. Da diese Studie in ihrer Gesamtheit neu ist, kann<br />

das Auftreten von noch unbekannten Nebenwirkungen allerdings nicht aus-<br />

geschlossen werden.<br />

Wichtig: Bitte informieren Sie den Versuchsleiter umgehend, wenn Sie unter<br />

Krankheiten leiden oder sich derzeit in medizinischer Behandlung befinden.<br />

Teilen Sie dem Versuchsleiter bitte umgehend mit, falls Sie schon einmal<br />

einen epileptischen Anfall hatten. Bei Fragen hierzu wenden Sie sich bitte<br />

an den Versuchsleiter.<br />

4) Abbruch des Experiments<br />

Sie haben das Recht, diese Studie zu jedem Zeitpunkt und ohne Angabe<br />

einer Begründung abzubrechen. Ihre Teilnahme ist vollkommen freiwillig<br />

und ohne Verpflichtungen. Es entstehen Ihnen keine Nachteile durch einen<br />

Abbruch der Untersuchung.<br />

Falls Sie eine Pause wünschen oder auf die Toilette müssen, ist dies jederzeit<br />

möglich. Sollten Sie zu irgendeinem Zeitpunkt während des Experiments<br />

Kopfschmerzen oder Unwohlsein anderer Art verspüren, dann informieren<br />

Sie bitte umgehend den Versuchsleiter.<br />

5) Vertraulichkeit<br />

Die Bestimmungen des Datenschutzes werden eingehalten. Personenbezo-<br />

gene Daten werden von uns nicht an Dritte weitergegeben. Die von Ihnen<br />

erfassten Daten werden von uns anonymisiert und nur in dieser Form weit-<br />

erverarbeitet oder veröffentlicht.


G CONSENT SHEET 50<br />

6) Einverständniserklärung<br />

Bitte bestätigen Sie durch Ihre Unterschrift die folgende Aussage:<br />

”Hiermit bestätige ich, dass ich durch den Versuchsleiter dieser Studie über<br />

die oben genannten Punkte aufgeklärt und informiert worden bin. Ich habe<br />

diese Erklärung gelesen und verstanden. Ich stimme jedem der Punkte zu.<br />

Ich ermächtige hiermit die von mir in dieser Untersuchung erworbenen Daten<br />

zu wissenschaftlichen Zwecken zu analysieren und in wissenschaftlichen Ar-<br />

beiten anonymisiert zu veröffentlichen.<br />

Ich wurde über meine Rechte als Versuchsperson informiert und erkläre mich<br />

zu der freiwilligen Teilnahme an dieser Studie bereit.”<br />

Ort, Datum Unterschrift<br />

Bei Minderjährigen, Unterschrift des Erziehungsberechtigten


Acknowledgments<br />

I want to thank Prof. Peter Bosch and Prof. Peter König for their con-<br />

stant support during the development of this thesis and the opportunity to<br />

conduct research of my own in such an exciting field. Furthermore, I want<br />

to thank Torsten Betz and Frank Schumann from the NBP-group for their<br />

open ear and advice when it was dearly needed. Lastly, I want to thank<br />

Vera Mönter for her moral support and permanent motivation.<br />

51


Confirmation<br />

Hereby I confirm that I wrote this thesis independently and that I have not<br />

made use of any other resources or means than those indicated.<br />

Hiermit bestätige ich, dass ich die vorliegende Arbeit selbständig verfasst<br />

und keine anderen als die angegebenen Quellen und Hilfsmittel verwendet<br />

habe.<br />

<strong>Christian</strong> <strong>Hoffmann</strong>, Nijmegen, September 29, 2009<br />

52

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!