01.11.2013 Views

Design for reliability of BEoL and 3-D TSV structures – A ... - Sematech

Design for reliability of BEoL and 3-D TSV structures – A ... - Sematech

Design for reliability of BEoL and 3-D TSV structures – A ... - Sematech

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

March 17, 2011 • Santa Clara, Cali<strong>for</strong>nia<br />

<strong>Design</strong> <strong>for</strong> <strong>reliability</strong> <strong>of</strong> <strong>BEoL</strong> <strong>and</strong> 3‐D <strong>TSV</strong> <strong>structures</strong> <strong>–</strong>A joint<br />

ef<strong>for</strong>t <strong>of</strong> FEA <strong>and</strong> innovative experimental techniques<br />

Jürgen Auersperg 1 , D. Vogel 1 , M.U. Lehr 3 , M. Grillberger 3 , J. Oswald 3 ,<br />

S. Rzepka 1 , B. Michel 1,2<br />

1<br />

Fraunh<strong>of</strong>er Institute <strong>for</strong> Electronic Nano Systems ENAS, Germany<br />

2<br />

Micro Materials Center at Fraunh<strong>of</strong>er Institute <strong>for</strong> Reliability bl <strong>and</strong> Microintegration IZM, Germany<br />

4<br />

GLOBALFOUNDRIES Dresden Module One LLC & Co. KG, Dresden, Germany<br />

Micro Materials Center Chemnitz<br />

Heads: Pr<strong>of</strong>. B. Michel <strong>and</strong><br />

Dr. Sven Rzepka


Outline<br />

• Motivation<br />

• Multi‐level FE modeling <strong>of</strong> CPI<br />

• Multi‐failure evaluation <strong>for</strong><br />

Near‐Chip‐Edge <strong>and</strong> Near‐Bump Cracks in <strong>BEoL</strong><br />

• Role <strong>of</strong> Initial Stresses<br />

• <strong>TSV</strong> <strong>–</strong>damage <strong>and</strong> delamination investigation<br />

• Required experiments<br />

• Summary <strong>and</strong> Outlook<br />

Jürgen Auersperg, D. Vogel, M.U. Lehr,<br />

M. Grillberger, J. Oswald, S. Rzepka, B. Michel<br />

Micro Materials Center Chemnitz<br />

Heads: Pr<strong>of</strong>. B. Michel <strong>and</strong><br />

Dr. Sven Rzepka


Task <strong>–</strong> Heterogeneous Integration ‐ Packaging<br />

Bridging the gap between chip <strong>and</strong> application<br />

Bump side<br />


Multiscale <strong>–</strong>why?<br />

Geometry<br />

Packaged microprocessor<br />

(eight symmetric model<br />

Packaged microprocessor<br />

(10 <strong>–</strong>40 mm size)<br />

<strong>BEoL</strong> stack region<br />

Ni layer<br />

PI layer<br />

Bump side<br />

HMT solder<br />

Underfill<br />

<strong>BEoL</strong>‐stack<br />

(5 <strong>–</strong>10 µm size)<br />

Feature sizes:<br />

some nm!<br />

Transistor side<br />


Multiscale <strong>–</strong>why?<br />

Geometry<br />

Bridge 40 mm to sub‐nm <strong>for</strong><br />

Chip Packaging Interaction investigations <strong>of</strong><br />

a <strong>BEoL</strong> structure<br />

Structural details: sub ‐ nm<br />

Jürgen Auersperg, D. Vogel, M.U. Lehr,<br />

M. Grillberger, J. Oswald, S. Rzepka, B. Michel<br />

Micro Materials Center Chemnitz<br />

Heads: Pr<strong>of</strong>. B. Michel <strong>and</strong><br />

Dr. Sven Rzepka


Multiscale <strong>–</strong>why?<br />

Structure<br />

Nano lawn <strong>for</strong><br />

interconnect<br />

<strong>for</strong>mation<br />

Can these materials longer be<br />

modeled as homogeneous<br />

materials?<br />

Atomistic level modeling<br />

Molecular dynamics<br />

Jürgen Auersperg, D. Vogel, M.U. Lehr,<br />

M. Grillberger, J. Oswald, S. Rzepka, B. Michel<br />

Low‐k dielectrics (nano‐porous)<br />

Polymer: 23 H2O <strong>for</strong> 98 °C/ 100 RH<br />

Micro Materials Center Chemnitz<br />

Heads: Pr<strong>of</strong>. B. Michel <strong>and</strong><br />

Dr. Sven Rzepka


Multiscale ‐ Molecular Dynamics <strong>–</strong>Two Ways used<br />

Structure<br />

The way I:<br />

1. Modeling <strong>of</strong> the molecular structure<br />

2. Homogenization in a unit cell<br />

3. Use it directly inside a Macro‐model,<br />

a FE‐Model <strong>for</strong> instance<br />

The way II:<br />

1. Modeling <strong>of</strong> the molecular structure<br />

2. Simulations towards extraction <strong>of</strong> key‐<br />

properties Finite (YOUNG’s Element modulus, Region CTE,<br />

diffusion coefficients)<br />

Crack Tip Molecular<br />

3. Use these properties Dynamics Region inside a Macrodla<br />

FE‐Model l<strong>for</strong> instance<br />

model, Jürgen Auersperg, D. Vogel, M.U. Lehr,<br />

M. Grillberger, J. Oswald, S. Rzepka, B. Michel<br />

Polymer: 23 H2O <strong>for</strong> 98 °C/ 100 RH<br />

Micro Materials Center Chemnitz<br />

Heads: Pr<strong>of</strong>. B. Michel <strong>and</strong><br />

Dr. Sven Rzepka


Moisture Diffusion in Epoxy by Molecular Dynamics<br />

Motivation:<br />

i<br />

Underst<strong>and</strong> diffusion phenomena as structureproperty<br />

correlation <strong>for</strong> <strong>reliability</strong> prediction<br />

Structure<br />

Method<br />

Materials: Epoxy with sev. chem. composition<br />

Exp: measure diffusion D & saturation S<br />

Sim: molecular dynamics<br />

Result:<br />

D <strong>and</strong> S are strong functions <strong>of</strong> (as tested)<br />

‐ density,<br />

‐ polarity,<br />

‐ chain length,<br />

‐ stoichiometry,<br />

‐ temperature<br />

Sim & Exp show correct tendencies<br />

Quantitative Results need correct<br />

3D network representation <strong>of</strong> epoxy resins<br />

Jürgen Auersperg, D. Vogel, M.U. Lehr,<br />

E.D. M. Dermitzaki, Grillberger, J. Bauer, J. Oswald, B. Wunderle, S. Rzepka, B. B. Michel Michel<br />

m^2/s) oeff.<br />

Diff D co (cm<br />

2.50E-007<br />

2.00E-007<br />

1.50E-007<br />

1.00E-007<br />

5.00E-008<br />

0.00E+00000E 000<br />

Polymer: 23 H2O <strong>for</strong> 98 °C/ 100 RH<br />

Varied parameters = Arrow:<br />

increasing polarity <strong>and</strong> chain lenght<br />

Exp<br />

Experiment:98°C/100RH<br />

Diff co oeff.<br />

2/s)<br />

D (cm^<br />

3.0x10 -6<br />

2.5x10 -6<br />

2.0x10 -6<br />

1.5x10 -6<br />

1.0x10 -6<br />

5.0x10 -7<br />

00 0.0<br />

98 °C/ 100 rh<br />

Micro Materials Center Chemnitz<br />

Heads: Pr<strong>of</strong>. B. Michel <strong>and</strong><br />

Dr. Sven Rzepka<br />

Sim<br />

Molecular Dynamics 98°C/100RH


Multiscale <strong>–</strong> Finite Element Techniques ‐ Substructuring<br />

Continuum<br />

Multi‐level<br />

Substructuring<br />

256x<br />

3<br />

4<br />

2<br />

1<br />

Jürgen Auersperg, D. Vogel, M.U. Lehr,<br />

M. Grillberger, J. Oswald, S. Rzepka, B. Michel<br />

Micro Materials Center Chemnitz<br />

Heads: Pr<strong>of</strong>. B. Michel <strong>and</strong><br />

Dr. Sven Rzepka


Multiscale <strong>–</strong> Finite Element Techniques <strong>–</strong> Submodeling<br />

Continuum<br />

Multi‐level<br />

Submodeling<br />

256x<br />

2<br />

1<br />

3<br />

4<br />

Jürgen Auersperg, D. Vogel, M.U. Lehr,<br />

M. Grillberger, J. Oswald, S. Rzepka, B. Michel<br />

Micro Materials Center Chemnitz<br />

Heads: Pr<strong>of</strong>. B. Michel <strong>and</strong><br />

Dr. Sven Rzepka


Multi‐failure Evaluation<br />

Micro Materials Center Chemnitz<br />

Heads: Pr<strong>of</strong>. B. Michel <strong>and</strong><br />

Dr. Sven Rzepka


2 nd Failure‐Mode <strong>–</strong> Risk <strong>for</strong> Die‐Cracking, Cracking <strong>of</strong> Substrates, …<br />

Smooth bending<br />

w/o singularities in<br />

Stress field with<br />

well known stress<br />

stresses/strains singularity 1 r<br />

Stress field with<br />

stress singularity<br />

1<br />

r<br />

Well known angle from<br />

anisotropic etching, <strong>for</strong> instance<br />

Classical l strength thhypotheses<br />

Generalized stress intensity<br />

it Fracture mechanics:<br />

max. surface stress evaluation factor (gSIF) A‐factor …<br />

K‐factor (SIF), J‐integral, energy<br />

Weibull‐plots<br />

release rate (ERR) …<br />

Jürgen Auersperg, D. Vogel, M.U. Lehr,<br />

M. Grillberger, J. Oswald, S. Rzepka, B. Michel<br />

Micro Materials Center Chemnitz<br />

Heads: Pr<strong>of</strong>. B. Michel <strong>and</strong><br />

Dr. Sven Rzepka


3 rd Failure‐Mode <strong>–</strong> Delamination at Materials Interfaces<br />

20µm<br />

<br />

( <br />

i<br />

) 0<br />

xx<br />

yy<br />

<br />

K r<br />

i<br />

/<br />

2<br />

r<br />

Hutchinson et al.<br />

1992<br />

r<br />

0<br />

<br />

<br />

2a<br />

exp <br />

2<br />

<br />

<br />

<strong>for</strong> <br />

yy<br />

<strong>and</strong><br />

r<br />

*<br />

0<br />

<br />

a<br />

<br />

2 exp <br />

<br />

<br />

<br />

<strong>for</strong> <br />

xy<br />

Mixed Mode Situation<br />

Jürgen Auersperg, D. Vogel, M.U. Lehr,<br />

M. Grillberger, J. Oswald, S. Rzepka, B. Michel<br />

Micro Materials Center Chemnitz<br />

Heads: Pr<strong>of</strong>. B. Michel <strong>and</strong><br />

Dr. Sven Rzepka


Cohesive Zone Modeling <strong>–</strong>Drawbacks <strong>and</strong> Challenges<br />

CZM<br />

DCB specimen with crack propagation under continuous<br />

displacement controlled opening<br />

! CZM‐Models have to h<strong>and</strong>le <strong>and</strong><br />

deliver damage parameters<br />

(damage progress per<br />

cycle/time)<br />

CZM with damage options<br />

Subjects <strong>of</strong> current research!<br />

Jürgen Auersperg, D. Vogel, M.U. Lehr,<br />

M. Grillberger, J. Oswald, S. Rzepka, B. Michel<br />

Micro Materials Center Chemnitz<br />

Heads: Pr<strong>of</strong>. B. Michel <strong>and</strong><br />

Dr. Sven Rzepka


XFEM ‐ Mesh Independent Crack Propagation<br />

XFEM<br />

FEM shape functions<br />

FEM unknowns<br />

Discontinuous<br />

enrichment functions<br />

XFEM unknowns<br />

FEM<br />

displacement<br />

all nodes<br />

Crack crossing an element<br />

XFEM<br />

Heaviside enrichment<br />

subset <strong>of</strong> nodes<br />

Crack tip in an element<br />

Jürgen Auersperg, D. Vogel, M.U. Lehr,<br />

M. Grillberger, J. Oswald, S. Rzepka, B. Michel<br />

Micro Materials Center Chemnitz<br />

Heads: Pr<strong>of</strong>. B. Michel <strong>and</strong><br />

Dr. Sven Rzepka


<strong>BEoL</strong> Stack <strong>of</strong> an IC <strong>–</strong> Cracking/Delamination ‐ Locations <strong>and</strong> Impacts<br />

Near-chip-edge cracks under Chip Package Interaction (CPI)<br />

Crack stop structure<br />

Near-bump cracking during reflow<br />

(NBC)<br />

Leadfree<br />

Copper Pillars<br />

Jürgen Auersperg, D. Vogel, M.U. Lehr,<br />

M. Grillberger, J. Oswald, S. Rzepka, B. Michel<br />

Micro Materials Center Chemnitz<br />

Heads: Pr<strong>of</strong>. B. Michel <strong>and</strong><br />

Dr. Sven Rzepka


Chip Package Interaction (CPI)<br />

Near-chip-edge cracks<br />

Micro Materials Center Chemnitz<br />

Heads: Pr<strong>of</strong>. B. Michel <strong>and</strong><br />

Dr. Sven Rzepka


<strong>BEoL</strong> Stack <strong>of</strong> an IC <strong>–</strong>Near‐Bump‐Cracks <strong>–</strong>Region <strong>of</strong> Interest<br />

NBC<br />

Packaged FE‐model<br />

(eight symmetric model)<br />

LID adhesive<br />

<strong>BEoL</strong> stack region<br />

Ni layer<br />

PI layer<br />

TIM1<br />

Die<br />

Underfill<br />

Soldermask<br />

HMT solder<br />

Underfill<br />

Board<br />

gap<br />

LJT solder<br />

Soldermask<br />

Boardpad<br />

Jürgen Auersperg, D. Vogel, M.U. Lehr,<br />

M. Grillberger, J. Oswald, S. Rzepka, B. Michel<br />

Micro Materials Center Chemnitz<br />

Heads: Pr<strong>of</strong>. B. Michel <strong>and</strong><br />

Dr. Sven Rzepka


3D <strong>BEoL</strong> Stack Part‐model <strong>–</strong> Submodeling with Sub<strong>structures</strong><br />

NBC<br />

Substructure<br />

Finite elelement<br />

characteristic size in<br />

<strong>BEoL</strong>‐stack<br />

< nm<br />

Substructure region<br />

Replacement <strong>of</strong> the finest (1x) <strong>structures</strong><br />

by superelements (repeatedly used) leads<br />

to a dramatically reduced model size<br />

(by factor 3),<br />

complete model<br />

(with <strong>and</strong> without element edges)<br />

vias <strong>and</strong><br />

metal traces<br />

Jürgen Auersperg, D. Vogel, M.U. Lehr,<br />

M. Grillberger, J. Oswald, S. Rzepka, B. Michel<br />

Micro Materials Center Chemnitz<br />

Heads: Pr<strong>of</strong>. B. Michel <strong>and</strong><br />

Dr. Sven Rzepka


3d Local Model <strong>of</strong> a <strong>BEoL</strong> Part <strong>–</strong>Crack Introduced ‐ SubModeling<br />

NBC<br />

Global model<br />

Submodel<br />

Initial crack<br />

Jürgen Auersperg, D. Vogel, M.U. Lehr,<br />

M. Grillberger, J. Oswald, S. Rzepka, B. Michel<br />

Micro Materials Center Chemnitz<br />

Heads: Pr<strong>of</strong>. B. Michel <strong>and</strong><br />

Dr. Sven Rzepka


3d Local Model <strong>of</strong> a <strong>BEoL</strong> Part <strong>–</strong> SubModel Placing <strong>and</strong> Orientation<br />

NBC<br />

Submodel driving nodes<br />

Jürgen Auersperg, D. Vogel, M.U. Lehr,<br />

M. Grillberger, J. Oswald, S. Rzepka, B. Michel<br />

Micro Materials Center Chemnitz<br />

Heads: Pr<strong>of</strong>. B. Michel <strong>and</strong><br />

Dr. Sven Rzepka


Multiscale <strong>–</strong>Substructure & Submodeling <strong>of</strong> a <strong>BEoL</strong> stack <strong>of</strong> an IC<br />

NBC<br />

Mode II<br />

(In‐Plane Shear)<br />

Mode III<br />

(Out‐<strong>of</strong>‐Plane Shear)<br />

Jürgen Auersperg, D. Vogel, M.U. Lehr,<br />

M. Grillberger, J. Oswald, S. Rzepka, B. Michel<br />

Micro Materials Center Chemnitz<br />

Heads: Pr<strong>of</strong>. B. Michel <strong>and</strong><br />

Dr. Sven Rzepka


Multiscale <strong>–</strong>Substructure & Submodeling <strong>of</strong> a <strong>BEoL</strong> stack <strong>of</strong> an IC<br />

NBC<br />

Crack kdii driving <strong>for</strong>ce along the crack front<br />

Results:<br />

• Find most critical places with<br />

• Material interface delamination<br />

<strong>and</strong>/or<br />

• Cohesive fracture <strong>of</strong> material<br />

Jürgen Auersperg, D. Vogel, M.U. Lehr,<br />

M. Grillberger, J. Oswald, S. Rzepka, B. Michel<br />

Micro Materials Center Chemnitz<br />

Heads: Pr<strong>of</strong>. B. Michel <strong>and</strong><br />

Dr. Sven Rzepka


<strong>BEoL</strong> Stack <strong>of</strong> an IC <strong>–</strong>Die Edge Cracking ‐ Interface Fracture Mechanics<br />

CPI<br />

1,40<br />

max. norm. ERR vs Crack Length<br />

orm. G<br />

n<br />

1,20<br />

1,00<br />

0,80<br />

060<br />

0,60<br />

Chip corner<br />

0,40<br />

margin 51 µm to crack-stop-structure<br />

0,20<br />

0,00<br />

margin 51 µm to crack-stop-structure<br />

w/o crack-stop-structure<br />

structure<br />

0 20 40 60 80 100 120<br />

crack length [µm]<br />

Crack stop structure<br />

t<br />

Margin<br />

Jürgen Auersperg, D. Vogel, M.U. Lehr,<br />

M. Grillberger, J. Oswald, S. Rzepka, B. Michel<br />

Micro Materials Center Chemnitz<br />

Heads: Pr<strong>of</strong>. B. Michel <strong>and</strong><br />

Dr. Sven Rzepka


<strong>BEoL</strong> Stack <strong>of</strong> an IC <strong>–</strong>Die Edge Cracking ‐ Interface Fracture Mechanics<br />

CPI<br />

• 10 bimaterial interface paths +<br />

• 4 cohesive crack paths in ULK<br />

3<br />

Max. ERR in diff. Crack Paths, 40 µm Crack Length marg 100<br />

2,9<br />

2,8<br />

ge<br />

en. G<br />

2,7<br />

2,6<br />

Chip corner<br />

2,5<br />

Path<br />

24<br />

2,4<br />

Crack stop structure<br />

t<br />

2,3<br />

1 2 3 4 5 6 7 8 9 path<br />

10<br />

Margin<br />

Jürgen Auersperg, D. Vogel, M.U. Lehr,<br />

M. Grillberger, J. Oswald, S. Rzepka, B. Michel<br />

Micro Materials Center Chemnitz<br />

Heads: Pr<strong>of</strong>. B. Michel <strong>and</strong><br />

Dr. Sven Rzepka


NBC<br />

Reflow Process Dependent<br />

Near‐Bump‐Cracks in <strong>BEoL</strong><br />

Leadfree<br />

Micro Materials Center Chemnitz<br />

Heads: Pr<strong>of</strong>. B. Michel <strong>and</strong><br />

Dr. Sven Rzepka


3d Global‐Local Model Simulations <strong>–</strong>Stress States<br />

NBC<br />

Peeling Stresses at 0 °C (under CPI)<br />

Peeling Stresses at RT (end <strong>of</strong> reflow)<br />

Chip center<br />

Chip center<br />

Chip center<br />

Avoid worst case: white spots in SAM<br />

Jürgen Auersperg, D. Vogel, M.U. Lehr,<br />

M. Grillberger, J. Oswald, S. Rzepka, B. Michel<br />

Micro Materials Center Chemnitz<br />

Heads: Pr<strong>of</strong>. B. Michel <strong>and</strong><br />

Dr. Sven Rzepka


Cooling Down from Soldering <strong>–</strong>Reflow Pr<strong>of</strong>iles<br />

NBC<br />

Highlead<br />

Leadfree<br />

Aggressive cooling<br />

slope<br />

Some studies have shown<br />

that an aggressive cooling<br />

slope can provide optimal<br />

diffusion <strong>of</strong> material <strong>and</strong><br />

fine eutectic grain<br />

<strong>structures</strong><br />

Mohanty, R., Apell, M. C., Burke,<br />

R.: Reflow Process Control<br />

Monitoring, <strong>and</strong> Data Logging,<br />

URL:<br />

http://www.emsnow.com/cnt/fil<br />

es/White%20Papers/speedReflo<br />

wProcessControl.pdf<br />

Jürgen Auersperg, D. Vogel, M.U. Lehr,<br />

M. Grillberger, J. Oswald, S. Rzepka, B. Michel<br />

Micro Materials Center Chemnitz<br />

Heads: Pr<strong>of</strong>. B. Michel <strong>and</strong><br />

Dr. Sven Rzepka


FE‐Modeling <strong>of</strong> the Soldering Process <strong>–</strong>Reflow Pr<strong>of</strong>ile Modification<br />

NBC<br />

• Highest G <strong>for</strong> Leadfree Soldering<br />

• Stress relaxation <strong>of</strong> the solder joints<br />

Temperature vs. Time<br />

300<br />

Leadfree pr<strong>of</strong>ile<br />

250<br />

Leadfree pr<strong>of</strong>ile 02<br />

Highlead pr<strong>of</strong>ile<br />

200 Highled pr<strong>of</strong>ile 02<br />

Highled pr<strong>of</strong>ile 03<br />

150<br />

100<br />

50<br />

0<br />

0 400 800 1200 1600 2000<br />

Cooling down<br />

period discussed<br />

here<br />

Jürgen Auersperg, D. Vogel, M.U. Lehr,<br />

M. Grillberger, J. Oswald, S. Rzepka, B. Michel<br />

Micro Materials Center Chemnitz<br />

Heads: Pr<strong>of</strong>. B. Michel <strong>and</strong><br />

Dr. Sven Rzepka


Crack <strong>and</strong> Damage Initiation/Propagation Investigation<br />

NBC<br />

Damage<br />

Problems:<br />

Material/Interface properties<br />

Integration Stability/Controlability<br />

Damage propagation investigation in order<br />

to find highest damage risk locations<br />

XFEM<br />

XFEM in order to find crack starting locations<br />

<strong>and</strong> paths<br />

Jürgen Auersperg, D. Vogel, M.U. Lehr,<br />

M. Grillberger, J. Oswald, S. Rzepka, B. Michel<br />

Micro Materials Center Chemnitz<br />

Heads: Pr<strong>of</strong>. B. Michel <strong>and</strong><br />

Dr. Sven Rzepka


Chip Package Interaction <strong>and</strong> Initial Stresses<br />

From Manufacturing Processes<br />

Micro Materials Center Chemnitz<br />

Heads: Pr<strong>of</strong>. B. Michel <strong>and</strong><br />

Dr. Sven Rzepka


Local Residual Stress Measurement ‐ Approaches ‐<br />

Electron Back Scattered Diffraction<br />

(EBSD) based method<br />

• de<strong>for</strong>mation <strong>of</strong> Kikuchi diffraction pattern<br />

as measure <strong>of</strong> stress<br />

• determines stress tensor comp.<br />

Residual<br />

Stresses<br />

Stress Release Technique (fibDAC)<br />

utilizing de<strong>for</strong>mation field after trench<br />

milling by FIB<br />

Raman Spectroscopy<br />

• uses shift <strong>of</strong> Raman<br />

b<strong>and</strong>s due to stress<br />

• TERS effect with<br />

potential to obtain<br />

resolution beyond 100<br />

nm<br />

D. Jürgen Vogel, A. Auersperg, Gollhardt<br />

D. Vogel, M.U. Lehr,<br />

M. Grillberger, J. Oswald, S. Rzepka, B. Michel<br />

Micro Materials Center Chemnitz<br />

Heads: Pr<strong>of</strong>. B. Michel <strong>and</strong><br />

Dr. Sven Rzepka


Local stress measurement concept <strong>–</strong>stress relief by FIB milling (fibDAC)<br />

Material removal<br />

by<br />

FIB feature milling<br />

Stress relief, i.e.<br />

de<strong>for</strong>mation<br />

nearby milling pattern<br />

Solution <strong>of</strong> the<br />

Quantifying<br />

mechanical stress relief<br />

Displacement<br />

df de<strong>for</strong>mation field problem by<br />

field fitting<br />

by<br />

Digital Image<br />

Finite Element Analysis<br />

Correlation (DIC)<br />

(FEA)<br />

Stress values<br />

D. Jürgen Vogel, A. Auersperg, Gollhardt<br />

D. Vogel, M.U. Lehr,<br />

M. Grillberger, J. Oswald, S. Rzepka, B. Michel<br />

Micro Materials Center Chemnitz<br />

Heads: Pr<strong>of</strong>. B. Michel <strong>and</strong><br />

Dr. Sven Rzepka


Near‐Bump Cracks in <strong>BEoL</strong> <strong>–</strong> Taking Initial Stresses into Account<br />

Crack Paths 6 <strong>and</strong> 14 with ULK vs. Gen3<br />

During whole processing w/o <strong>and</strong><br />

with initial stresses<br />

1,2<br />

1<br />

max. ERR <strong>for</strong> all Steps at the Crack Front<br />

With initial stresses<br />

1,00000<br />

G<br />

0,8<br />

0,66285<br />

gen.<br />

0,6<br />

0,44671 0,43292<br />

0,4<br />

0,2<br />

0,22349<br />

0,12081<br />

0,18113<br />

0,10560<br />

0<br />

Path 6<br />

Path 6<br />

Path 14<br />

Path 14<br />

Path 6<br />

Path 6<br />

Path 14<br />

Path 14<br />

ULK Gen3 ULK Gen3 ULK is Gen3 is ULK is Gen3 is<br />

Jürgen Auersperg, D. Vogel, M.U. Lehr,<br />

M. Grillberger, J. Oswald, S. Rzepka, B. Michel<br />

Micro Materials Center Chemnitz<br />

Heads: Pr<strong>of</strong>. B. Michel <strong>and</strong><br />

Dr. Sven Rzepka


3D‐Integration ti <strong>–</strong> <strong>TSV</strong> <strong>and</strong> <strong>BEoL</strong><br />

Cracking/Delamination risks during <strong>BEoL</strong>‐manufacturing on top <strong>of</strong> <strong>TSV</strong>s?<br />

Micro Materials Center Chemnitz<br />

Heads: Pr<strong>of</strong>. B. Michel <strong>and</strong><br />

Dr. Sven Rzepka


<strong>TSV</strong> <strong>and</strong> <strong>BEoL</strong>‐structure<br />

Protrusion<br />

Jürgen Auersperg, D. Vogel, M.U. Lehr,<br />

M. Grillberger, J. Oswald, S. Rzepka, B. Michel<br />

Micro Materials Center Chemnitz<br />

Heads: Pr<strong>of</strong>. B. Michel <strong>and</strong><br />

Dr. Sven Rzepka


<strong>TSV</strong> <strong>and</strong> <strong>BEoL</strong>‐structure ‐ Possible Failure Mode <strong>–</strong> Delamination<br />

Protrusion<br />

Jürgen Auersperg, D. Vogel, M.U. Lehr,<br />

M. Grillberger, J. Oswald, S. Rzepka, B. Michel<br />

Micro Materials Center Chemnitz<br />

Heads: Pr<strong>of</strong>. B. Michel <strong>and</strong><br />

Dr. Sven Rzepka


<strong>TSV</strong> <strong>and</strong> <strong>BEoL</strong>‐structure ‐ Possible Failure Mode <strong>–</strong> Delamination<br />

Protrusion<br />

Assumtions:<br />

• Initial delamination between <strong>TSV</strong> <strong>and</strong> barrier<br />

• Initial stresses in <strong>TSV</strong> <strong>and</strong> introduced step by step<br />

during <strong>BEoL</strong>‐processing<br />

• Partly delaminated <strong>BEoL</strong><br />

• Cracks in <strong>BEoL</strong><br />

Jürgen Auersperg, D. Vogel, M.U. Lehr,<br />

M. Grillberger, J. Oswald, S. Rzepka, B. Michel<br />

Micro Materials Center Chemnitz<br />

Heads: Pr<strong>of</strong>. B. Michel <strong>and</strong><br />

Dr. Sven Rzepka


<strong>TSV</strong> <strong>and</strong> <strong>BEoL</strong>‐structure <strong>–</strong> Delamination Investigation<br />

Changing stress<br />

traction direction<br />

Strong dependence on<br />

stress free assumptions<br />

Crack flanks partly in<br />

contact <strong>–</strong> negative Jint<br />

Jürgen Auersperg, D. Vogel, M.U. Lehr,<br />

M. Grillberger, J. Oswald, S. Rzepka, B. Michel<br />

Micro Materials Center Chemnitz<br />

Heads: Pr<strong>of</strong>. B. Michel <strong>and</strong><br />

Dr. Sven Rzepka


Sequential Build Up <strong>–</strong>Cohesive Zone Modeling <strong>–</strong> <strong>BEoL</strong> to MOL Delamination<br />

Cohesive zone elements introduced between MOL <strong>and</strong> <strong>BEoL</strong> <strong>–</strong> damaging during<br />

thermal loading delamination <strong>of</strong> initially undamaged material interface<br />

d<br />

Measure <strong>for</strong> interface<br />

loading (<strong>BEoL</strong> removed <strong>for</strong><br />

better demonstration<br />

Interface totally damaged at<br />

distance ‘d’<br />

<strong>TSV</strong><br />

Jürgen Auersperg, D. Vogel, M.U. Lehr,<br />

M. Grillberger, J. Oswald, S. Rzepka, B. Michel<br />

Silicon<br />

‣ Define CZM‐properties:<br />

Tn, Ts, Tt, GI, GII, GIII, En,<br />

Es, Et (all are estimated<br />

here!)<br />

Micro Materials Center Chemnitz<br />

Heads: Pr<strong>of</strong>. B. Michel <strong>and</strong><br />

Dr. Sven Rzepka


<strong>and</strong> <strong>BEoL</strong>‐structure ‐ Possible Failure Mode <strong>–</strong> Damaging <strong>of</strong> Copper<br />

‣ Define damage ‐<br />

properties:<br />

pl , ‐p/q, rate , G c , …)all<br />

are estimated here!)<br />

Jürgen Auersperg, D. Vogel, M.U. Lehr,<br />

M. Grillberger, J. Oswald, S. Rzepka, B. Michel<br />

Micro Materials Center Chemnitz<br />

Heads: Pr<strong>of</strong>. B. Michel <strong>and</strong><br />

Dr. Sven Rzepka


Material lProperty Dt Determination<br />

ti<br />

Size Dependent Material Behavior<br />

Micro Materials Center Chemnitz<br />

Heads: Pr<strong>of</strong>. B. Michel <strong>and</strong><br />

Dr. Sven Rzepka


Material Behavior ‐ Measure Required Properties<br />

Dynamical‐Mechanical Analysis (DMA) Thermomechanical Analysis (TMA) Creep data eval. (Solder)<br />

Temp.dep. creep data (Epoxy) Stress relaxation data (Epoxy) Poisson’s s ratio eval.<br />

Jürgen Auersperg, D. Vogel, M.U. Lehr,<br />

H. Walter, M. Grillberger, J. Auersperg J. Oswald, S. Rzepka, B. Michel<br />

Micro Materials Center Chemnitz<br />

Heads: Pr<strong>of</strong>. B. Michel <strong>and</strong><br />

Dr. Sven Rzepka


Nanoindentation in low‐K Dielectrics<br />

Bump side<br />

Thin layers<br />

<strong>BEoL</strong> stack<br />

7 µm<br />

F, u<br />

Intenter<br />

Thin Layer<br />

Substrate<br />

t<br />

For <strong>TSV</strong>:<br />

• Initial yield stress<br />

• Hardening ade gbehavior<br />

N]<br />

Force [µ<br />

1400<br />

1200<br />

1000<br />

800<br />

600<br />

400<br />

200<br />

Chip side<br />

Sim<br />

Measurement<br />

Experiment<br />

E=145, sy=1600-10000<br />

0<br />

0 20 40 60 80<br />

-200<br />

Distance [nm]<br />

Experiment Simulation Agreement<br />

Parameter <strong>–</strong> extraction only possible by coupled Sim & Exp<br />

Raul Jürgen<br />

Mrosko, Auersperg,<br />

Saskia Huber, D. Vogel,<br />

O. Wittler<br />

M.U. Lehr,<br />

M. Grillberger, J. Oswald, S. Rzepka, B. Michel<br />

Micro Materials Center Chemnitz<br />

Heads: Pr<strong>of</strong>. B. Michel <strong>and</strong><br />

Dr. Sven Rzepka


<strong>TSV</strong> Copper <strong>–</strong>YOUNGs Modulus by nano‐Indentation<br />

P13 Messung 3<br />

P13 Messung 3<br />

46,405<br />

demo demo demo demo demo<br />

<br />

<br />

<br />

140<br />

120<br />

<br />

<br />

<br />

<br />

Y(mm)<br />

46,400<br />

demo demo demo demo demo<br />

<br />

demo demo demo demo demo<br />

<br />

demo demo demo demo demo<br />

<br />

Er(GPa)<br />

100<br />

80<br />

60<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

46,395<br />

<br />

demo demo demo demo demo<br />

40<br />

-82,275 275 -82,270 270 -82,265 265 -82,260<br />

260<br />

X(mm)<br />

demo demo demo demo demo<br />

<br />

46,390<br />

-82,275 -82,270 -82,265 -82,260<br />

X(mm)<br />

Jürgen Auersperg, D. Vogel, M.U. Lehr,<br />

M. Grillberger, J. Oswald, S. Rzepka, B. Michel<br />

Micro Materials Center Chemnitz<br />

Heads: Pr<strong>of</strong>. B. Michel <strong>and</strong><br />

Dr. Sven Rzepka


Copper Material Behavior<strong>–</strong> Properties Necessary<br />

Necessary to know:<br />

• Young's‐modulus dep. On Temperature<br />

• Initial yield stress<br />

• Hardening vs. plastic strains<br />

• Regarding <strong>TSV</strong>: initial stress state<br />

Xi Liu, Qiao Chen, Pradeep Dixit, Ritwik Chatterjee, Rao R.<br />

Tummala, <strong>and</strong> Suresh K. Sitaraman, Failure Mechanisms <strong>and</strong><br />

Optimum <strong>Design</strong> <strong>for</strong> Electroplated Copper Through‐Silicon Vias<br />

(<strong>TSV</strong>), 2009 Electronic Components <strong>and</strong> Technology<br />

Conference, pp. 624 ‐ 629<br />

Jürgen Auersperg, D. Vogel, M.U. Lehr,<br />

M. Grillberger, J. Oswald, S. Rzepka, B. Michel<br />

Micro Materials Center Chemnitz<br />

Heads: Pr<strong>of</strong>. B. Michel <strong>and</strong><br />

Dr. Sven Rzepka


Size Effects <strong>and</strong> Damage in Thin Metallic Films during Nano‐Indentation<br />

Meso‐mechanics <br />

Homogeneous<br />

• Strain gradient plasticity<br />

• Higher order stress theories<br />

Dislocation movement<br />

restrictions inside boundaries<br />

D. Gross, A. Trondl:<br />

Numerical Simulation <strong>of</strong> Size Effects <strong>and</strong><br />

Damage in Thin Metallic Films during Nano‐<br />

Indentation,<br />

Proc. ICF 12, Ottawa, CA, 2009, Paper on CD:<br />

fin00457.pdf<br />

Jürgen Auersperg, D. Vogel, M.U. Lehr,<br />

M. Grillberger, J. Oswald, S. Rzepka, B. Michel<br />

Micro Materials Center Chemnitz<br />

Heads: Pr<strong>of</strong>. B. Michel <strong>and</strong><br />

Dr. Sven Rzepka


Damage <strong>and</strong> Fracture Toughness Characterization<br />

ti<br />

Size Dependent Material Behavior<br />

Micro Materials Center Chemnitz<br />

Heads: Pr<strong>of</strong>. B. Michel <strong>and</strong><br />

Dr. Sven Rzepka


Interface Fracture Toughness Tests<br />

P<br />

Pull‐<strong>of</strong>f test schematic <strong>of</strong> substrate,<br />

interface <strong>and</strong> pull stud<br />

Modified CT‐specimen<br />

Peel test<br />

Pull‐out test Brazilian disk specimen Superlayer adhesion test<br />

A.A. Volinsky et al. / Acta Materialia 50 (2002) 441<strong>–</strong>466<br />

Jürgen Auersperg, D. Vogel, M.U. Lehr,<br />

M. Grillberger, J. Oswald, S. Rzepka, B. Michel<br />

Micro Materials Center Chemnitz<br />

Heads: Pr<strong>of</strong>. B. Michel <strong>and</strong><br />

Dr. Sven Rzepka


Interface Fracture Toughness Tests ‐ Bending<br />

Asymmetric Double Cantilever Beam<br />

Brazil‐Nut‐S<strong>and</strong>wich<br />

Single Leg Bending<br />

Symmetric Double Cantilever Beam<br />

4‐point bending<br />

Asymmetric DCB<br />

Asymmetric End‐Notched Flexure<br />

End‐Notched Flexure<br />

Sundaraman, Sitaraman 1997<br />

Center Cracked Beam<br />

Yeung, Lam, Yuen 2000<br />

Double Cantilever Beam<br />

Miller, Ho 2000<br />

Jürgen Auersperg, D. Vogel, M.U. Lehr,<br />

M. Grillberger, J. Oswald, S. Rzepka, B. Michel<br />

Micro Materials Center Chemnitz<br />

Heads: Pr<strong>of</strong>. B. Michel <strong>and</strong><br />

Dr. Sven Rzepka


Mode Separation/Evaluation <strong>–</strong>Critical ERR <strong>and</strong> Phase Angle<br />

Measured<br />

fracture<br />

toughness<br />

failure<br />

region<br />

Calculated<br />

crack<br />

loading<br />

Jürgen Auersperg, D. Vogel, M.U. Lehr,<br />

M. Grillberger, J. Oswald, S. Rzepka, B. Michel<br />

Micro Materials Center Chemnitz<br />

Heads: Pr<strong>of</strong>. B. Michel <strong>and</strong><br />

Dr. Sven Rzepka


Mode Separation/Evaluation <strong>–</strong>Critical ERR <strong>and</strong> Phase Angle<br />

<br />

<br />

<br />

1<br />

<br />

1<br />

G c<br />

G<br />

IC<br />

sin<br />

2<br />

<br />

<br />

With (a further material/interface parameter) is<br />

a function <strong>of</strong> temperature <strong>and</strong> moisture<br />

concentration<br />

G c<br />

failure<br />

region<br />

G() initiationi i i<br />

G()<br />

no initiation<br />

<br />

Hutchinson <strong>and</strong> Suo, "Mixed Mode Cracking in Layered<br />

Materials", Advances in Applied Mechanics, Vol. 29, pp.<br />

63-191<br />

Jürgen Auersperg, D. Vogel, M.U. Lehr,<br />

M. Grillberger, J. Oswald, S. Rzepka, B. Michel<br />

K. Liechti, Adhesion Measurements Relative to Electronic<br />

Packaging, Proc. 4th Annual Topical Conference On<br />

Reliability, October 30 - November 1, 2000<br />

Micro Materials Center Chemnitz<br />

Heads: Pr<strong>of</strong>. B. Michel <strong>and</strong><br />

Dr. Sven Rzepka


Nano‐Indentation <strong>for</strong> Interface Fracture Toughness Evaluation<br />

• Nanoindentation <strong>for</strong> “measuring“ Young’s<br />

modulus <strong>and</strong> hardness<br />

• Nanoindentation <strong>for</strong> “measuring“ fracture<br />

toughness<br />

Buckling<br />

• Nanoindentation <strong>for</strong> “measuring“ interfacial<br />

fracture toughness (adhesion) <strong>–</strong> Conical <strong>and</strong><br />

wedge indenters<br />

For instance:<br />

E.E. Gdoutos, A. Volinsky, Interfacial Fracture Toughness <strong>of</strong> Thin Films, Tutorial AC‐Conf., June 6, 2005<br />

M. R. Begley, D. R. Mumm, A. G. Evan, J. W. Hutchinson, Analysis <strong>of</strong> a Wedge Impression Test <strong>for</strong> Measuring the Interface<br />

Toughness Between Films/Coatings <strong>and</strong> Ductile Substrates, Acta mater. 48 (2000) 3211‐3220<br />

Jürgen Auersperg, D. Vogel, M.U. Lehr,<br />

M. Grillberger, J. Oswald, S. Rzepka, B. Michel<br />

Micro Materials Center Chemnitz<br />

Heads: Pr<strong>of</strong>. B. Michel <strong>and</strong><br />

Dr. Sven Rzepka


Stress State t Determination/Verification<br />

ti ifi ti<br />

Fitting modeling assumption with experimental results<br />

Micro Materials Center Chemnitz<br />

Heads: Pr<strong>of</strong>. B. Michel <strong>and</strong><br />

Dr. Sven Rzepka


<strong>TSV</strong> ‐ Stresses near the Surface <strong>–</strong>vs. Raman‐Spectroscopy<br />

zz<br />

rz<br />

<br />

rr<br />

M. Hecker, GlobalFoundries, Dresden<br />

Jürgen Auersperg, D. Vogel, M.U. Lehr,<br />

M. Grillberger, J. Oswald, S. Rzepka, B. Michel<br />

Micro Materials Center Chemnitz<br />

Heads: Pr<strong>of</strong>. B. Michel <strong>and</strong><br />

Dr. Sven Rzepka


Surface vs. Midd‐Stress rr<br />

Surface - rr<br />

Middle - <br />

Middle - rr<br />

Jürgen Auersperg, D. Vogel, M.U. Lehr,<br />

M. Grillberger, J. Oswald, S. Rzepka, B. Michel<br />

Micro Materials Center Chemnitz<br />

Heads: Pr<strong>of</strong>. B. Michel <strong>and</strong><br />

Dr. Sven Rzepka


Summary<br />

Multilevel lFE‐modelling <strong>of</strong> cracks in <strong>BEoL</strong>‐Struktures<br />

For Chip Package Interaction <strong>and</strong><br />

Reflow ‐ leadfree bumping<br />

Goal: Reliability enhancement<br />

Utilizing fracture mechanics concepts (cohesive <strong>and</strong> adhesive) <strong>and</strong>/or<br />

Damage mechanics approaches<br />

Jürgen Auersperg, D. Vogel, M.U. Lehr,<br />

M. Grillberger, J. Oswald, S. Rzepka, B. Michel<br />

Micro Materials Center Chemnitz<br />

Heads: Pr<strong>of</strong>. B. Michel <strong>and</strong><br />

Dr. Sven Rzepka


What we need<br />

Intensive experimental work necessary <strong>for</strong><br />

Evaluation <strong>of</strong> residual stresses from manufacturing,<br />

Evaluation <strong>of</strong> the material behavior (constitutive, size dependent)<br />

Characterization <strong>of</strong> the damage behavior <strong>of</strong> materials<br />

Characterization <strong>of</strong> strength/toughness properties (fracture mechanics<br />

characterization) <strong>of</strong> materials <strong>and</strong> materials interfaces<br />

Verification <strong>of</strong> simulation results<br />

Extensive simulation work necessary<br />

Huge simulation models <strong>and</strong> computing resources<br />

Theoretical work <strong>–</strong> delamination und fracture (CZM, XFEM), materials<br />

behavior (SGPM)<br />

Jürgen Auersperg, D. Vogel, M.U. Lehr,<br />

M. Grillberger, J. Oswald, S. Rzepka, B. Michel<br />

Micro Materials Center Chemnitz<br />

Heads: Pr<strong>of</strong>. B. Michel <strong>and</strong><br />

Dr. Sven Rzepka


What we Need <strong>for</strong> Helpful Simulation Results<br />

Residual stress<br />

characterization<br />

Damage <strong>and</strong> fracture<br />

characterization<br />

Material behavior <strong>and</strong> property<br />

characterization<br />

Simulation results<br />

verification<br />

Jürgen Auersperg, D. Vogel, M.U. Lehr,<br />

M. Grillberger, J. Oswald, S. Rzepka, B. Michel<br />

Micro Materials Center Chemnitz<br />

Heads: Pr<strong>of</strong>. B. Michel <strong>and</strong><br />

Dr. Sven Rzepka


Thank You <strong>for</strong> Your Attention!<br />

ti Micro Materials Center Chemnitz<br />

Heads: Pr<strong>of</strong>. B. Michel <strong>and</strong><br />

Dr. Sven Rzepka

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!