09.11.2013 Views

1 The role of the mantle wedge in subduction zone dynamics and ...

1 The role of the mantle wedge in subduction zone dynamics and ...

1 The role of the mantle wedge in subduction zone dynamics and ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<strong>The</strong> <strong>role</strong> <strong>of</strong> <strong>the</strong> <strong>mantle</strong> <strong>wedge</strong> <strong>in</strong> <strong>subduction</strong> <strong>zone</strong> <strong>dynamics</strong> <strong>and</strong> <strong>the</strong>rmal structure<br />

Peter E. van Keken<br />

Department <strong>of</strong> Geological Sciences<br />

University <strong>of</strong> Michigan<br />

425 East University Avenue<br />

Ann Arbor, MI 48109-1063<br />

USA<br />

Phone: 1-734-764-1497<br />

Fax: 1-734-763-4690<br />

keken@umich.edu<br />

Submitted to Earth <strong>and</strong> Planetary Science Letters - Frontiers, A.N. Halliday, editor.<br />

Number <strong>of</strong> words <strong>in</strong> ma<strong>in</strong> text: 4600<br />

Estimated number <strong>of</strong> pr<strong>in</strong>ted pages: 12<br />

1


Abstract<br />

A large amount <strong>of</strong> water is brought <strong>in</strong>to <strong>the</strong> Earth’s <strong>mantle</strong> at <strong>subduction</strong> <strong>zone</strong>s. Upon<br />

<strong>subduction</strong>, water is released from <strong>the</strong> subduct<strong>in</strong>g slab <strong>in</strong> a series <strong>of</strong> metamorphic<br />

reactions <strong>and</strong> <strong>the</strong> flux <strong>in</strong>to <strong>the</strong> <strong>mantle</strong> <strong>wedge</strong> modifies its chemical <strong>and</strong> physical<br />

properties, by hydration <strong>of</strong> <strong>the</strong> <strong>mantle</strong> <strong>wedge</strong> with associated weaken<strong>in</strong>g, flux melt<strong>in</strong>g<br />

<strong>and</strong> changes <strong>in</strong> <strong>the</strong> <strong>dynamics</strong> <strong>and</strong> <strong>the</strong>rmal structure <strong>of</strong> <strong>subduction</strong> <strong>zone</strong>s. Water guides <strong>the</strong><br />

formation <strong>of</strong> volcanoes, earthquakes, cont<strong>in</strong>ent formation <strong>and</strong> <strong>the</strong> long-term chemical<br />

evolution <strong>of</strong> <strong>the</strong> Earth’s <strong>mantle</strong>. Recent observational advances <strong>in</strong>clude <strong>the</strong> better<br />

documentation <strong>of</strong> <strong>the</strong> <strong>role</strong> <strong>of</strong> water <strong>in</strong> caus<strong>in</strong>g melt<strong>in</strong>g from m<strong>in</strong>or <strong>and</strong> trace elements <strong>in</strong><br />

arc lavas, improved structure <strong>of</strong> <strong>the</strong> <strong>mantle</strong> <strong>wedge</strong> derived from seismic tomography, <strong>and</strong><br />

documentation <strong>of</strong> hydration <strong>of</strong> <strong>the</strong> <strong>mantle</strong> <strong>wedge</strong> from converted phases. High pressure<br />

experiments allow for a quantification <strong>of</strong> <strong>the</strong> <strong>role</strong> <strong>of</strong> water on seismic velocities <strong>and</strong><br />

attenuation <strong>and</strong> rheological changes, which provide essential <strong>in</strong>put <strong>in</strong>to models <strong>of</strong><br />

<strong>subduction</strong> <strong>zone</strong>s. Computational models provide additional evidence for <strong>the</strong> importance<br />

<strong>of</strong> <strong>the</strong> <strong>mantle</strong> <strong>wedge</strong> <strong>in</strong> <strong>subduction</strong> <strong>zone</strong>s <strong>dynamics</strong> <strong>and</strong> <strong>the</strong> need for rheological<br />

weaken<strong>in</strong>g by hydration.<br />

2


Introduction<br />

Subduction <strong>zone</strong>s are <strong>the</strong> dom<strong>in</strong>ant tectonic features <strong>of</strong> <strong>the</strong> Earth. <strong>The</strong>y form <strong>the</strong> location<br />

<strong>of</strong> <strong>the</strong> major underthrust<strong>in</strong>g earthquakes, explosive arc volcanism <strong>and</strong> are <strong>the</strong> only sites <strong>of</strong><br />

deep earthquakes <strong>in</strong> <strong>the</strong> Earth’s <strong>mantle</strong>. <strong>The</strong> <strong>role</strong> <strong>of</strong> <strong>subduction</strong> <strong>zone</strong>s <strong>in</strong> <strong>the</strong> plate tectonic<br />

framework is reasonably well understood from <strong>the</strong> near-surface observations (Figure 1).<br />

Pressure-release melt<strong>in</strong>g <strong>of</strong> <strong>the</strong> Earth’s <strong>mantle</strong> at mid-oceanic ridges causes a<br />

differentiation <strong>in</strong>to a basaltic crust overly<strong>in</strong>g depleted peridotite. Interaction with<br />

seawater by hydro<strong>the</strong>rmal circulation, potentially aided by deep fractures, <strong>and</strong> deposition<br />

<strong>of</strong> sediments derived from biogenic activity <strong>in</strong> <strong>the</strong> oceans <strong>and</strong> from cont<strong>in</strong>ental erosion<br />

add to <strong>the</strong> chemical diversity. While <strong>the</strong> mid-oceanic ridges are generally considered<br />

passive features, caused by <strong>the</strong> pull-apart <strong>of</strong> <strong>the</strong> surround<strong>in</strong>g oceanic lithosphere,<br />

<strong>subduction</strong> <strong>zone</strong>s form <strong>the</strong> ma<strong>in</strong> driv<strong>in</strong>g force for plate tectonics, through <strong>the</strong> s<strong>in</strong>k<strong>in</strong>g<br />

under its own weight <strong>of</strong> <strong>the</strong> old <strong>and</strong> <strong>the</strong>rmally contracted lithosphere. <strong>The</strong> deformation is<br />

accommodated by bend<strong>in</strong>g <strong>of</strong> <strong>the</strong> oceanic lithosphere <strong>and</strong> decoupl<strong>in</strong>g between subduct<strong>in</strong>g<br />

slab <strong>and</strong> overrid<strong>in</strong>g plate by large underthrust<strong>in</strong>g earthquakes <strong>in</strong> <strong>the</strong> seismogenic <strong>zone</strong> to<br />

a depth <strong>of</strong> about 40 km. Below this depth earthquakes occur with<strong>in</strong> <strong>the</strong> slab, ra<strong>the</strong>r than at<br />

<strong>the</strong> slab-<strong>mantle</strong> <strong>in</strong>terface. <strong>The</strong> Wadati-Beni<strong>of</strong>f <strong>zone</strong>s <strong>of</strong> earthquake seismicity are<br />

generally planar features follow<strong>in</strong>g <strong>the</strong> descent <strong>of</strong> <strong>the</strong> slab, but <strong>in</strong> some cases double<br />

Beni<strong>of</strong>f <strong>zone</strong>s occur, <strong>in</strong> which a second plane <strong>of</strong> seismicity is observed at a depth <strong>of</strong> 20-<br />

50 km below <strong>the</strong> first plane. Down-dip from <strong>the</strong> seismogenic <strong>zone</strong> <strong>the</strong> slab draws <strong>the</strong><br />

overly<strong>in</strong>g <strong>mantle</strong> down by viscous coupl<strong>in</strong>g, which <strong>in</strong> turn draws <strong>in</strong> <strong>mantle</strong> from below<br />

<strong>the</strong> overrid<strong>in</strong>g plate. This <strong>zone</strong> <strong>of</strong> viscous deformation between <strong>the</strong> descend<strong>in</strong>g slab <strong>and</strong><br />

rigid portion <strong>of</strong> <strong>the</strong> overrid<strong>in</strong>g plate def<strong>in</strong>es <strong>the</strong> <strong>mantle</strong> <strong>wedge</strong>.<br />

In addition to <strong>the</strong>ir dynamic <strong>and</strong> tectonic importance, <strong>subduction</strong> <strong>zone</strong>s have a<br />

crucial <strong>role</strong> <strong>in</strong> <strong>the</strong> chemical evolution <strong>of</strong> <strong>the</strong> Earth. Upon <strong>subduction</strong> <strong>the</strong> oceanic<br />

lithosphere encounters higher temperature <strong>and</strong> pressure, caus<strong>in</strong>g dehydration <strong>of</strong><br />

sediments <strong>and</strong> oceanic crust through a variety <strong>of</strong> metamorphic reactions. <strong>The</strong> flux <strong>of</strong><br />

water <strong>in</strong>to <strong>the</strong> overly<strong>in</strong>g hot <strong>mantle</strong> <strong>wedge</strong> causes melt<strong>in</strong>g by lower<strong>in</strong>g <strong>the</strong> melt<strong>in</strong>g<br />

temperature <strong>of</strong> peridotite. Partial melt<strong>in</strong>g <strong>of</strong> <strong>the</strong> subducted sediments <strong>and</strong> oceanic crust<br />

<strong>and</strong> pressure-release melt<strong>in</strong>g <strong>of</strong> <strong>the</strong> overly<strong>in</strong>g <strong>mantle</strong> also contribute to <strong>the</strong> magmatism,<br />

which is responsible for arc volcanism <strong>and</strong> for <strong>the</strong> modification <strong>and</strong> formation <strong>of</strong> <strong>the</strong><br />

cont<strong>in</strong>ental crust. <strong>The</strong> deep <strong>subduction</strong> <strong>of</strong> <strong>the</strong> oceanic lithosphere is <strong>the</strong> major <strong>in</strong>put <strong>of</strong><br />

differentiated material <strong>in</strong>to <strong>the</strong> Earth’s <strong>mantle</strong>. <strong>The</strong> recycl<strong>in</strong>g <strong>of</strong> oceanic crust expla<strong>in</strong>s <strong>in</strong><br />

part <strong>the</strong> observed chemical heterogeneity between basalts erupted at mid-oceanic ridges<br />

<strong>and</strong> those seen at hot spot isl<strong>and</strong>s.<br />

In this review I will discuss recent developments <strong>in</strong> our underst<strong>and</strong><strong>in</strong>g <strong>of</strong> <strong>the</strong><br />

<strong>the</strong>rmal structure <strong>and</strong> <strong>dynamics</strong> <strong>of</strong> <strong>the</strong> <strong>mantle</strong> <strong>wedge</strong>, focus<strong>in</strong>g <strong>in</strong> particular on <strong>the</strong> <strong>role</strong> <strong>of</strong><br />

water <strong>in</strong> determ<strong>in</strong><strong>in</strong>g <strong>the</strong> physical <strong>and</strong> chemical structure <strong>of</strong> <strong>subduction</strong> <strong>zone</strong>s.<br />

Water <strong>in</strong> <strong>subduction</strong> <strong>zone</strong>s<br />

Large amounts <strong>of</strong> water are carried <strong>in</strong>to <strong>the</strong> Earth upon <strong>subduction</strong>, both <strong>in</strong> <strong>the</strong> form <strong>of</strong><br />

free water <strong>in</strong> sediments <strong>and</strong> oceanic crust <strong>and</strong> with<strong>in</strong> hydrous m<strong>in</strong>erals. <strong>The</strong> release <strong>of</strong><br />

this water is thought to take place by near cont<strong>in</strong>uous dehydration reactions from <strong>the</strong><br />

3


subduct<strong>in</strong>g oceanic crust <strong>and</strong> sediments <strong>in</strong> a near cont<strong>in</strong>uous fashion to a depth <strong>of</strong> at least<br />

200 km [1]. However, it is not clear how this water is transported to <strong>the</strong> volcanic front<br />

(e.g., [2]). <strong>The</strong> water liberated to <strong>the</strong> overly<strong>in</strong>g <strong>mantle</strong> modifies <strong>the</strong> constitution <strong>and</strong><br />

<strong>dynamics</strong> <strong>of</strong> <strong>the</strong> <strong>mantle</strong> <strong>wedge</strong> <strong>and</strong> has an important <strong>role</strong> <strong>in</strong> generat<strong>in</strong>g arc volcanism [3].<br />

<strong>The</strong> dehydration reactions have been also considered as an important c<strong>and</strong>idate to expla<strong>in</strong><br />

<strong>in</strong>termediate depth earthquakes <strong>in</strong> <strong>the</strong> slab [4,5]. <strong>The</strong> dehydration reactions <strong>and</strong> processes<br />

lead<strong>in</strong>g to melt<strong>in</strong>g <strong>and</strong> earthquake formation are strongly dependent on pressure <strong>and</strong><br />

temperature. <strong>The</strong>se are governed by <strong>the</strong> constitution <strong>and</strong> <strong>dynamics</strong> <strong>of</strong> <strong>the</strong> subduct<strong>in</strong>g slab<br />

<strong>and</strong> <strong>mantle</strong> <strong>wedge</strong>, which are strongly sensitive to temperature, composition <strong>and</strong><br />

rheology. <strong>The</strong>se <strong>in</strong> turn are strongly dependent on temperature <strong>and</strong> water content.<br />

<strong>The</strong> state <strong>of</strong> <strong>the</strong> slab <strong>and</strong> <strong>mantle</strong> <strong>wedge</strong>: observational constra<strong>in</strong>ts<br />

Several observational approaches have been used to better underst<strong>and</strong> <strong>the</strong> <strong>dynamics</strong> <strong>and</strong><br />

<strong>the</strong> <strong>role</strong> <strong>of</strong> water <strong>in</strong> <strong>the</strong> <strong>mantle</strong> <strong>wedge</strong> (Figure 2):<br />

Input <strong>in</strong>to <strong>the</strong> <strong>subduction</strong> <strong>zone</strong><br />

<strong>The</strong> hydration <strong>of</strong> <strong>the</strong> oceanic crust, <strong>mantle</strong> <strong>and</strong> overly<strong>in</strong>g sediments determ<strong>in</strong>es <strong>the</strong> flux <strong>of</strong><br />

water <strong>in</strong>to <strong>the</strong> <strong>subduction</strong> <strong>zone</strong> [6]. It is <strong>the</strong>refore essential to underst<strong>and</strong> <strong>the</strong> chemical<br />

composition <strong>of</strong> <strong>the</strong> <strong>in</strong>com<strong>in</strong>g sediments [7], <strong>the</strong> potential for hydration <strong>of</strong> <strong>the</strong> oceanic<br />

crust <strong>and</strong> uppermost <strong>mantle</strong> through hydro<strong>the</strong>rmal circulation <strong>and</strong> deep fractures [8,9]<br />

<strong>and</strong> shallow processes that modify <strong>the</strong> <strong>subduction</strong> <strong>zone</strong> <strong>in</strong>put such as erosion along <strong>the</strong><br />

marg<strong>in</strong> <strong>and</strong> <strong>the</strong> formation <strong>of</strong> <strong>the</strong> accretionary prism (e.g., [10,11]).<br />

Plate k<strong>in</strong>ematics <strong>and</strong> paleogeography<br />

<strong>The</strong> age <strong>and</strong> speed <strong>of</strong> <strong>the</strong> <strong>subduction</strong> slab provides major controls on <strong>the</strong> <strong>the</strong>rmal structure<br />

<strong>of</strong> <strong>the</strong> subduct<strong>in</strong>g slab. Model comparisons <strong>of</strong> young <strong>and</strong> slow vs. old <strong>and</strong> fast subduct<strong>in</strong>g<br />

<strong>zone</strong>s show that slab-<strong>wedge</strong> temperatures at depth can differ by several hundreds <strong>of</strong><br />

degrees (e.g., [12]) with substantial consequences for <strong>the</strong> dehydration reactions <strong>in</strong> <strong>the</strong><br />

slab [13]. <strong>The</strong> temporal evolution <strong>of</strong> slabs <strong>in</strong>cludes <strong>the</strong> effects <strong>of</strong> trench rollback,<br />

cont<strong>in</strong>ent-cont<strong>in</strong>ent formation, trench jumps <strong>and</strong> slab tear<strong>in</strong>g which may have dramatic<br />

consequences on <strong>the</strong> near- <strong>and</strong> <strong>in</strong>-slab <strong>the</strong>rmal structure.<br />

Distribution <strong>of</strong> arc volcanism<br />

<strong>The</strong> geometry <strong>of</strong> <strong>the</strong> volcanic arc <strong>in</strong> many areas can be described by <strong>the</strong> distribution <strong>of</strong><br />

<strong>the</strong> distances between adjacent volcanoes, existence <strong>of</strong> volcanic gaps, <strong>and</strong> <strong>the</strong> possible<br />

existence <strong>of</strong> double arc cha<strong>in</strong>s (see [14], <strong>and</strong> references <strong>the</strong>re<strong>in</strong>). In addition, <strong>the</strong> depth to<br />

<strong>the</strong> Beni<strong>of</strong>f <strong>zone</strong> below volcanic arcs is typically around 100-125 km [3]. <strong>The</strong>se<br />

geometrical relationships provide important constra<strong>in</strong>ts on <strong>the</strong> pathways <strong>of</strong> fluid <strong>and</strong> melt<br />

migration from <strong>the</strong> slab to <strong>the</strong> volcanic arc.<br />

Composition <strong>of</strong> arc lavas<br />

Chemical analyses <strong>of</strong> arc lavas provide quantitative estimates for <strong>the</strong> temperature <strong>and</strong><br />

pressure conditions <strong>and</strong> <strong>the</strong> <strong>role</strong> <strong>of</strong> water <strong>in</strong> <strong>subduction</strong> <strong>zone</strong>s. Glass <strong>in</strong>clusions <strong>in</strong> mafic<br />

arc lavas exhibit a wide range <strong>in</strong> water contents [15,16] demonstrat<strong>in</strong>g <strong>the</strong> importance <strong>of</strong><br />

water assisted ‘flux’ melt<strong>in</strong>g <strong>in</strong> <strong>the</strong> <strong>wedge</strong> [3] as well as <strong>the</strong> presence <strong>of</strong> dry<br />

4


decompression melt<strong>in</strong>g <strong>in</strong> some arcs [17]. <strong>The</strong> enrichment <strong>of</strong> large ion lithophile<br />

elements (e.g., Rb, K, Cs) <strong>and</strong> light rare earth elements (La, Ce, Nd) compared to midoceanic<br />

ridge basalts also demonstrates <strong>the</strong> importance <strong>of</strong> slab-derived hydrous fluids <strong>in</strong><br />

generat<strong>in</strong>g many arc lavas [18]. Equilibration temperatures <strong>of</strong> basaltic magmas provide<br />

constra<strong>in</strong>ts on pressure <strong>and</strong> temperature conditions <strong>in</strong> <strong>the</strong> <strong>mantle</strong> <strong>wedge</strong> demonstrat<strong>in</strong>g,<br />

for example, hot conditions (T=1300-1450 °C) at pressures correspond<strong>in</strong>g to <strong>the</strong> quite<br />

shallow depth <strong>of</strong> 36-66 km <strong>in</strong> <strong>the</strong> Cascades [19]. Arc lavas conta<strong>in</strong> specific trace<br />

elements, such as B, Be, Th, <strong>and</strong> Pb, that are thought to derive from <strong>the</strong> slab. Elements<br />

such as B can be transported easily <strong>in</strong> aqueous solutions, but <strong>the</strong> efficient recycl<strong>in</strong>g <strong>of</strong> Be<br />

<strong>and</strong> Th from subduct<strong>in</strong>g sediments [20] appears to require sediment melt<strong>in</strong>g at<br />

temperatures <strong>in</strong> excess <strong>of</strong> 700 °C [21]. High temperatures at <strong>the</strong> slab <strong>wedge</strong> <strong>in</strong>terface are<br />

also necessary for <strong>the</strong> melt<strong>in</strong>g <strong>of</strong> basalt or gabbro as <strong>in</strong>ferred from high Mg <strong>and</strong>esites [22,<br />

23] although this is generally limited to arcs that are formed by <strong>the</strong> slow <strong>subduction</strong> <strong>of</strong><br />

young oceanic lithosphere.<br />

Seismic studies<br />

<strong>The</strong> high seismicity <strong>of</strong> most <strong>subduction</strong> <strong>zone</strong>s provides ample data for high resolution<br />

seismic tomography which allows for determ<strong>in</strong><strong>in</strong>g <strong>the</strong> spatial structure <strong>of</strong> seismic P (v p )<br />

<strong>and</strong> S wave velocities (v s ) <strong>and</strong> attenuation (Q -1 ). Reflection <strong>and</strong> refraction studies make it<br />

possible to <strong>in</strong>clude <strong>the</strong> location <strong>of</strong> boundaries with high velocity contrasts, such as <strong>the</strong><br />

slab-<strong>wedge</strong> <strong>in</strong>terface <strong>and</strong> <strong>the</strong> Moho <strong>and</strong> Conrad discont<strong>in</strong>uities, which greatly improves<br />

<strong>the</strong> quality <strong>of</strong> <strong>the</strong> tomographic <strong>in</strong>version (Figure 3) [24]. In most arcs, <strong>the</strong> seismic<br />

structure <strong>of</strong> <strong>the</strong> <strong>mantle</strong> <strong>wedge</strong> is characterized by an extensive <strong>zone</strong> <strong>of</strong> low seismic<br />

velocity that connects <strong>the</strong> plate-<strong>wedge</strong> <strong>in</strong>terface between 150 <strong>and</strong> 200 km depth to <strong>the</strong><br />

volcanic front or back arc bas<strong>in</strong>s [25-30] although <strong>in</strong> some cases, such as <strong>in</strong> <strong>the</strong> Bolivian<br />

Andes, <strong>the</strong> velocity <strong>and</strong> Q anomalies <strong>in</strong> <strong>the</strong> <strong>wedge</strong> are much reduced [31]. Mapp<strong>in</strong>g<br />

attenuation is more complicated due to <strong>the</strong> <strong>in</strong>fluence <strong>of</strong> geometrical effects on <strong>the</strong><br />

amplitude <strong>of</strong> seismic waves [32] but common observations <strong>of</strong> Q <strong>in</strong> <strong>subduction</strong> <strong>zone</strong>s<br />

po<strong>in</strong>t to high attenuation below <strong>the</strong> volcanic front [33,34] which are generally <strong>in</strong> good<br />

agreement with regions <strong>of</strong> low seismic velocities [35,36].<br />

<strong>The</strong> local conditions at <strong>the</strong> slab-<strong>wedge</strong> <strong>in</strong>terface can be <strong>in</strong>vestigated <strong>in</strong> detail us<strong>in</strong>g<br />

conversions <strong>of</strong> seismic phases <strong>in</strong> comb<strong>in</strong>ation with reflection <strong>and</strong> refraction seismics.<br />

<strong>The</strong>se tools can aid <strong>in</strong> mapp<strong>in</strong>g out <strong>the</strong> high-resolution structure <strong>of</strong> <strong>the</strong> crust <strong>of</strong> <strong>the</strong><br />

subduct<strong>in</strong>g <strong>and</strong> overrid<strong>in</strong>g plate. P-to-S conversions can be used to detect <strong>the</strong> top <strong>of</strong> <strong>the</strong><br />

slab <strong>in</strong> many occasions [37]. In some <strong>in</strong>stances complex conversions are observed that<br />

can be expla<strong>in</strong>ed by a th<strong>in</strong> (10 km) anisotropic layer at <strong>the</strong> top <strong>of</strong> <strong>the</strong> slab, which could be<br />

evidence for <strong>the</strong> presence <strong>of</strong> a shear <strong>zone</strong> [38]. Converted phases also <strong>in</strong>dicate <strong>the</strong><br />

presence <strong>of</strong> hydrated oceanic crust to a depth <strong>of</strong> 250 km below <strong>subduction</strong> <strong>zone</strong>s <strong>in</strong> <strong>the</strong><br />

NE Pacific, suggest<strong>in</strong>g that dehydration <strong>of</strong> <strong>the</strong> slab is not complete upon fast <strong>subduction</strong><br />

<strong>of</strong> old slabs [39,40]. <strong>The</strong> absence <strong>of</strong> a Moho <strong>in</strong> <strong>the</strong> tip <strong>of</strong> <strong>the</strong> <strong>mantle</strong> <strong>wedge</strong> under Central<br />

Oregon, as seen <strong>in</strong> studies <strong>of</strong> teleseismic phases [41] <strong>and</strong> confirmed by reflection<br />

seismics [42] suggests wide spread serpent<strong>in</strong>ization <strong>of</strong> <strong>the</strong> forearc <strong>mantle</strong>. Similar<br />

conclusions are drawn for <strong>the</strong> Izu-Bon<strong>in</strong> <strong>subduction</strong> <strong>zone</strong> that is characterized by <strong>the</strong><br />

occurrence <strong>of</strong> serpent<strong>in</strong>e seamounts, which may be fed diapirically from <strong>the</strong> <strong>mantle</strong><br />

<strong>wedge</strong> [43]. <strong>The</strong> weaken<strong>in</strong>g <strong>of</strong> <strong>the</strong> <strong>mantle</strong> associated with <strong>the</strong> serpent<strong>in</strong>ization provides<br />

lubrication between <strong>the</strong> slab <strong>and</strong> overrid<strong>in</strong>g plate <strong>and</strong> can <strong>the</strong>refore help expla<strong>in</strong> <strong>the</strong><br />

5


down-dip limit <strong>of</strong> large underthrust<strong>in</strong>g earthquakes <strong>in</strong> Cascadia <strong>and</strong> <strong>the</strong> near-absence <strong>of</strong><br />

large earthquakes at shallow depths <strong>in</strong> Izu-Bon<strong>in</strong>. Serpent<strong>in</strong>ite-aided decoupl<strong>in</strong>g between<br />

slab <strong>and</strong> <strong>wedge</strong> has also been suggested from <strong>the</strong> occurrence <strong>of</strong> exhumed eclogites <strong>in</strong> <strong>the</strong><br />

Himalayas [44].<br />

Observations <strong>of</strong> shear wave splitt<strong>in</strong>g have provided very <strong>in</strong>terest<strong>in</strong>g, though<br />

puzzl<strong>in</strong>g results for seismic anisotropy <strong>in</strong> <strong>the</strong> <strong>mantle</strong> <strong>wedge</strong>. Experimental <strong>and</strong><br />

observational evidence suggests that oliv<strong>in</strong>e crystals align with <strong>mantle</strong> flow through <strong>the</strong><br />

development <strong>of</strong> lattice-preferred orientation <strong>and</strong> that <strong>the</strong>refore <strong>the</strong> seismically fast<br />

directions <strong>in</strong> <strong>the</strong> uppermost <strong>mantle</strong> record <strong>the</strong> direction <strong>of</strong> <strong>the</strong> flow (e.g., [45]). For <strong>the</strong><br />

simple configuration sketched <strong>in</strong> Figure 1 we would predict that <strong>the</strong> oliv<strong>in</strong>e crystals align<br />

perpendicular to <strong>the</strong> trench. Although this prediction is borne out <strong>in</strong> a few locations [46-<br />

49], a more common observation is that <strong>the</strong> fast axis is (nearly) parallel to <strong>the</strong> trench [49-<br />

53]. This could be due to oblique convergence, remnant anisotropy or crustal processes,<br />

but an <strong>of</strong>ten-cited explanation is that this represents <strong>the</strong> actual flow direction <strong>in</strong> <strong>the</strong> <strong>wedge</strong><br />

or <strong>the</strong> <strong>mantle</strong> underneath <strong>the</strong> slab. This may be caused by arc-parallel extension <strong>in</strong><br />

compressive back-arcs [54], slab roll-back <strong>and</strong> escape <strong>of</strong> <strong>the</strong> underly<strong>in</strong>g <strong>mantle</strong> as<br />

suggested from observations from <strong>the</strong> Andes [49,50], or <strong>mantle</strong> flow around tears <strong>in</strong> <strong>the</strong><br />

subduct<strong>in</strong>g slab as suggested for Kamchatka [55, 56] <strong>and</strong> Tonga [57,58]. Interest<strong>in</strong>gly,<br />

<strong>zone</strong>s <strong>of</strong> low velocity <strong>and</strong> high attenuation <strong>in</strong> Japan are also highly anisotropic [46]<br />

possibly due to alignment <strong>of</strong> magma filled cracks.<br />

Electromagnetic studies<br />

Techniques us<strong>in</strong>g electromagnetic methods have been used to map high conductivity<br />

areas <strong>in</strong> convergent marg<strong>in</strong>s [59-62] that can be <strong>in</strong>terpreted as regions with high water<br />

<strong>and</strong>/or melt content. In general <strong>the</strong>se studies are limited to depths <strong>of</strong> about 40 km [63]. In<br />

some cases deeper images can be obta<strong>in</strong>ed, such as those <strong>of</strong> <strong>the</strong> fluid rich <strong>zone</strong> <strong>in</strong> or<br />

above <strong>the</strong> Cocos slab to 150 km depth [64] <strong>and</strong> <strong>the</strong> conductor <strong>in</strong> <strong>the</strong> Andean <strong>mantle</strong><br />

<strong>wedge</strong> between 80 <strong>and</strong> 180 km depth, which correlated well with models <strong>of</strong> seismic<br />

attenuation [65].<br />

Heatflow, topography, gravity <strong>and</strong> geoid<br />

<strong>The</strong> heat flow variations across <strong>subduction</strong> <strong>zone</strong>s provide important constra<strong>in</strong>ts on <strong>the</strong><br />

<strong>the</strong>rmal structure. In general <strong>the</strong> heatflow <strong>in</strong> <strong>the</strong> fore arc is low due to <strong>the</strong> <strong>subduction</strong> <strong>of</strong><br />

cold lithosphere, moderately high <strong>in</strong> <strong>the</strong> back arc <strong>and</strong> high <strong>in</strong> <strong>the</strong> volcanic arc (e.g., [66-<br />

68]). In <strong>the</strong> Cascades, <strong>the</strong> steep <strong>in</strong>crease <strong>in</strong> <strong>the</strong> arc correlates strongly with <strong>the</strong> presence <strong>of</strong><br />

volcanoes, hydro<strong>the</strong>rmal fields, <strong>and</strong> <strong>the</strong> presence <strong>of</strong> a pronounced negative gravity<br />

anomaly, which can be expla<strong>in</strong>ed by <strong>the</strong> presence <strong>of</strong> extensive melt<strong>in</strong>g at mid-crustal<br />

depths [67].<br />

<strong>The</strong> geoid <strong>and</strong> topography over <strong>subduction</strong> <strong>zone</strong>s provide additional, if <strong>in</strong>direct,<br />

constra<strong>in</strong>ts on <strong>the</strong>rmal structure <strong>and</strong> <strong>dynamics</strong> s<strong>in</strong>ce <strong>the</strong>y are sensitive to <strong>the</strong> distribution<br />

<strong>of</strong> buoyancy <strong>and</strong> viscosity <strong>in</strong> <strong>the</strong> Earth’s <strong>in</strong>terior (see [69,70] for recent overviews). In<br />

summary, <strong>the</strong> topography is <strong>in</strong>fluenced by <strong>the</strong> age <strong>of</strong> <strong>the</strong> oceanic lithosphere, crustal<br />

variations <strong>and</strong> <strong>dynamics</strong>, such as <strong>the</strong> s<strong>in</strong>k<strong>in</strong>g <strong>of</strong> <strong>the</strong> slab <strong>and</strong> <strong>the</strong> correspond<strong>in</strong>g <strong>mantle</strong><br />

deformation. At short wavelengths, <strong>the</strong> geoid shows a m<strong>in</strong>imum that corresponds with <strong>the</strong><br />

deep trench topography, but <strong>in</strong> most <strong>subduction</strong> <strong>zone</strong>s a positive anomaly is seen above<br />

6


<strong>the</strong> arc side. This can be attributed to resistance to slab <strong>subduction</strong> <strong>in</strong> <strong>the</strong> deep <strong>mantle</strong>,<br />

most likely due to an <strong>in</strong>crease <strong>of</strong> viscosity at <strong>the</strong> base <strong>of</strong> <strong>the</strong> <strong>mantle</strong> transition <strong>zone</strong>.<br />

Experimental approaches<br />

<strong>The</strong> <strong>in</strong>terpretation <strong>of</strong> <strong>the</strong> observations is greatly aided by experimental studies <strong>of</strong> Earth<br />

materials under high temperature <strong>and</strong> pressure. For example, melt<strong>in</strong>g experiments<br />

provide temperature <strong>and</strong> pressure constra<strong>in</strong>ts on <strong>the</strong> formation <strong>of</strong> melts that are observed<br />

with specific major or <strong>in</strong>compatible trace element compositions [18, 21, 71]. Predictions<br />

for <strong>the</strong> m<strong>in</strong>eralogy <strong>and</strong> related seismic properties based on laboratory measurements <strong>and</strong><br />

<strong>the</strong>oretical models allow an <strong>in</strong>terpretation <strong>of</strong> seismically observed velocity variations.<br />

Deformation experiments allow for <strong>in</strong>terpretation <strong>of</strong> <strong>the</strong> development <strong>of</strong> lattice-preferred<br />

orientation <strong>and</strong> provide <strong>the</strong> basis for <strong>the</strong> rheological description <strong>of</strong> dynamical models.<br />

Of particular <strong>in</strong>terest is <strong>the</strong> <strong>role</strong> <strong>of</strong> water <strong>in</strong> modify<strong>in</strong>g <strong>the</strong> physical properties <strong>of</strong><br />

<strong>mantle</strong> m<strong>in</strong>erals. Many hydrous m<strong>in</strong>erals significantly reduce friction coefficients [72]<br />

<strong>and</strong> <strong>subduction</strong> <strong>of</strong> clay m<strong>in</strong>erals can provide decoupl<strong>in</strong>g between <strong>the</strong> slab <strong>and</strong> <strong>wedge</strong>, at<br />

least <strong>in</strong> <strong>the</strong> depth <strong>and</strong> temperature ranges <strong>in</strong> which <strong>the</strong>se m<strong>in</strong>erals are stable.<br />

Temperatures are too high <strong>in</strong> <strong>the</strong> majority <strong>of</strong> <strong>the</strong> <strong>subduction</strong> <strong>zone</strong> <strong>and</strong> <strong>mantle</strong> <strong>wedge</strong>, but<br />

significant amounts <strong>of</strong> water can be dissolved <strong>in</strong> nom<strong>in</strong>ally anhydrous m<strong>in</strong>erals such as<br />

oliv<strong>in</strong>e [73,74]. <strong>The</strong> associated hydrogen-related defects <strong>and</strong> enhanced gra<strong>in</strong> boundary<br />

processes <strong>in</strong> m<strong>in</strong>erals cause important changes <strong>in</strong> electrical, seismic, <strong>and</strong> slow creep<br />

properties [75-78], which allows for <strong>the</strong> prospect<strong>in</strong>g <strong>of</strong> water <strong>in</strong> <strong>the</strong> Earth’s <strong>mantle</strong> us<strong>in</strong>g<br />

various observational techniques. A recent overview <strong>of</strong> this approach is provided by<br />

Karato [79] who observes that: 1) major element chemistry strongly <strong>in</strong>fluences seismic<br />

velocities (v p , v s , <strong>and</strong> v p /v s ) through <strong>the</strong> elastic properties; 2) attenuation <strong>and</strong> plastic<br />

deformation are coupled <strong>and</strong> both are strongly <strong>in</strong>fluenced by <strong>the</strong> concentration <strong>of</strong> water<br />

as has been described quantitatively by high pressure experiments [80]; 3) high water<br />

content <strong>of</strong> oliv<strong>in</strong>e can change <strong>the</strong> dom<strong>in</strong>ant slip system <strong>and</strong> substantially change <strong>the</strong><br />

formation <strong>of</strong> lattice-preferred orientation compared to dry oliv<strong>in</strong>e [78]; 4) <strong>the</strong> effects <strong>of</strong><br />

water <strong>and</strong> partial melt on seismic velocities are similar, but <strong>the</strong> effect <strong>of</strong> water on<br />

attenuation is much stronger than that <strong>of</strong> partial melt [81-83]; 5) it is unlikely that a<br />

sufficiently high melt fraction can be susta<strong>in</strong>ed <strong>in</strong> <strong>the</strong> m<strong>in</strong>erals [84] <strong>and</strong> partial melt<strong>in</strong>g is<br />

not likely to strongly <strong>in</strong>fluence seismic velocities. Application <strong>of</strong> <strong>the</strong>se f<strong>in</strong>d<strong>in</strong>gs to <strong>the</strong><br />

seismic observations confirm <strong>the</strong> low melt fraction <strong>in</strong> <strong>the</strong> <strong>mantle</strong> <strong>wedge</strong> <strong>and</strong> suggest <strong>the</strong><br />

presence <strong>of</strong> high water concentrations, <strong>in</strong> excess <strong>of</strong> 1000 ppm H/Si [79]. In addition it is<br />

predicted that <strong>the</strong> change <strong>in</strong> dom<strong>in</strong>ant slip system <strong>in</strong> wet oliv<strong>in</strong>e causes trench-parallel<br />

SKS splitt<strong>in</strong>g, which is similar to that observed <strong>in</strong> many <strong>subduction</strong> <strong>zone</strong>s [78].<br />

<strong>The</strong> <strong>in</strong>fluence <strong>of</strong> water on <strong>the</strong> seismic properties <strong>of</strong> <strong>mantle</strong> m<strong>in</strong>erals can also be<br />

<strong>in</strong>vestigated us<strong>in</strong>g phase diagrams <strong>of</strong> <strong>the</strong> major rock compositions computed from<br />

<strong>the</strong>oretical <strong>and</strong> experimental <strong>the</strong>rmo<strong>dynamics</strong> (e.g., [13, 85]). Application <strong>of</strong> <strong>the</strong>se<br />

techniques demonstrates, among o<strong>the</strong>r f<strong>in</strong>d<strong>in</strong>gs, that <strong>the</strong> lower oceanic crust worldwide is<br />

partially hydrated [13], that <strong>the</strong> high v p /v s ratio obta<strong>in</strong>ed from seismic tomography can be<br />

expla<strong>in</strong>ed by up to 20% alteration <strong>of</strong> <strong>the</strong> <strong>wedge</strong> to stable hydrous m<strong>in</strong>erals such as<br />

serpent<strong>in</strong>ite [13] <strong>and</strong> that <strong>the</strong> existence <strong>of</strong> a th<strong>in</strong> low velocity layer <strong>in</strong> <strong>the</strong> subduct<strong>in</strong>g slab<br />

at a depth <strong>of</strong> 100-250 km can be expla<strong>in</strong>ed by <strong>the</strong> seismic properties <strong>of</strong> lawsonite eclogite<br />

<strong>in</strong>dicat<strong>in</strong>g <strong>the</strong> presence <strong>of</strong> hydrated m<strong>in</strong>erals at those depths [85]. In general, <strong>the</strong> high<br />

7


v p /v s ratio has been used to confirm <strong>the</strong> presence <strong>of</strong> water or fluid filled cracks<br />

[43,86,87].<br />

At <strong>the</strong> high pressures <strong>and</strong> temperatures below 50 km depth most m<strong>in</strong>erals are<br />

predicted to deform plastically <strong>and</strong> it is difficult to expla<strong>in</strong> earthquakes below that depth<br />

by brittle failure. In recent years it has become clear that dehydration <strong>of</strong> hydrated<br />

m<strong>in</strong>erals can cause embrittlement <strong>of</strong> <strong>the</strong> m<strong>in</strong>erals, which would allow a source<br />

mechanism for <strong>the</strong> generation <strong>of</strong> <strong>in</strong>termediate depth earthquakes [4]. <strong>The</strong> observation <strong>of</strong><br />

acoustic emissions <strong>of</strong> dur<strong>in</strong>g <strong>the</strong> dehydration <strong>of</strong> serpent<strong>in</strong>e under realistic slab conditions<br />

[88] streng<strong>the</strong>ns this suggestion. Similarly, <strong>the</strong> correlation <strong>of</strong> large earthquakes with low<br />

velocity <strong>zone</strong>s <strong>in</strong> Japan [89] <strong>and</strong> <strong>the</strong> presence <strong>of</strong> earthquake clusters <strong>in</strong> low Q areas [34]<br />

are <strong>in</strong>dicative <strong>of</strong> <strong>the</strong> <strong>role</strong> <strong>of</strong> water <strong>in</strong> earthquake generation. Dehydration embrittlement<br />

has also been suggested as <strong>the</strong> source for double Beni<strong>of</strong>f <strong>zone</strong>s. For example, Peacock [5]<br />

suggests that <strong>the</strong> upper plane <strong>of</strong> seismicity can be expla<strong>in</strong>ed by dehydration <strong>of</strong> basalt<br />

dur<strong>in</strong>g <strong>the</strong> transformation to eclogite while <strong>the</strong> lower plane <strong>of</strong> seismicity is caused by<br />

serpent<strong>in</strong>ite dehydration. <strong>The</strong> pressure <strong>and</strong> temperature conditions that are predicted at<br />

<strong>the</strong> locations <strong>of</strong> <strong>the</strong> lower plan earthquakes are consistent with this proposal [5, 90].<br />

Subduction <strong>zone</strong> model<strong>in</strong>g<br />

Computational model<strong>in</strong>g <strong>of</strong> <strong>subduction</strong> <strong>zone</strong> <strong>the</strong>rmal structure <strong>and</strong> <strong>dynamics</strong> provide<br />

quantitative tests us<strong>in</strong>g <strong>the</strong> fundamental equations govern<strong>in</strong>g <strong>the</strong> conservation <strong>of</strong> mass,<br />

momentum <strong>and</strong> heat. In addition, attempts have been made to simulate <strong>the</strong> <strong>dynamics</strong> <strong>of</strong><br />

<strong>subduction</strong> <strong>zone</strong>s us<strong>in</strong>g analogue models <strong>of</strong> viscous flow <strong>in</strong> laboratory tanks. In<br />

comb<strong>in</strong>ation with <strong>the</strong> observational <strong>and</strong> experimental approaches, <strong>the</strong>se model<strong>in</strong>g studies<br />

provide important quantitative constra<strong>in</strong>ts to conceptual ideas (as expressed for example<br />

by <strong>the</strong> cartoons sketched <strong>in</strong> Figure 1). Models for <strong>subduction</strong> <strong>zone</strong>s are based on a<br />

description <strong>of</strong> <strong>the</strong> <strong>in</strong>teraction between <strong>the</strong> ma<strong>in</strong> driv<strong>in</strong>g force (<strong>the</strong> negative buoyancy <strong>of</strong><br />

<strong>the</strong> subduct<strong>in</strong>g slab) <strong>and</strong> <strong>the</strong> rheological response <strong>of</strong> <strong>the</strong> slab, overrid<strong>in</strong>g plate <strong>and</strong><br />

underly<strong>in</strong>g <strong>mantle</strong>.<br />

<strong>The</strong> <strong>in</strong>corporation <strong>of</strong> <strong>the</strong>se physical processes <strong>in</strong> computational models is part <strong>of</strong><br />

<strong>the</strong> development towards a full underst<strong>and</strong><strong>in</strong>g <strong>of</strong> <strong>the</strong> <strong>dynamics</strong> <strong>of</strong> <strong>subduction</strong> <strong>zone</strong>s,<br />

which is currently <strong>in</strong>complete. Major obstacles exists <strong>in</strong> <strong>the</strong> road to full self-consistent<br />

models <strong>of</strong> <strong>subduction</strong>, particularly because our lack <strong>of</strong> underst<strong>and</strong><strong>in</strong>g <strong>of</strong> <strong>the</strong> <strong>role</strong> <strong>of</strong><br />

rheology <strong>and</strong> <strong>the</strong> <strong>in</strong>teraction <strong>of</strong> physical processes at short spatial <strong>and</strong> temporal scales<br />

with those <strong>of</strong> <strong>in</strong>terest at geological scales, although substantial progress has been made <strong>in</strong><br />

recent years. See [91] for a recent review <strong>of</strong> <strong>the</strong> approaches that may lead toward <strong>the</strong><br />

<strong>in</strong>tegration <strong>of</strong> plate tectonic processes <strong>in</strong> <strong>mantle</strong> convection models.<br />

<strong>The</strong> cornerflow model for <strong>wedge</strong> <strong>dynamics</strong><br />

As a consequence <strong>of</strong> <strong>the</strong> <strong>in</strong>complete dynamical description <strong>of</strong> <strong>subduction</strong> many<br />

researchers have focused on models that describe <strong>the</strong> slab k<strong>in</strong>ematically <strong>and</strong> focus on <strong>the</strong><br />

<strong>dynamics</strong> <strong>of</strong> <strong>the</strong> <strong>wedge</strong> <strong>and</strong> geometry <strong>of</strong> <strong>the</strong> overrid<strong>in</strong>g plate. In some cases analytical<br />

solutions describ<strong>in</strong>g <strong>the</strong> temperature distribution <strong>in</strong> <strong>subduction</strong> <strong>zone</strong>s can be found after a<br />

number <strong>of</strong> simplify<strong>in</strong>g assumptions (e.g., [92-94]). Due to <strong>the</strong> growth <strong>of</strong> computational<br />

8


esources, it has become common to use numerical methods, such as f<strong>in</strong>ite element or<br />

f<strong>in</strong>ite difference methods, which allow for accurate <strong>and</strong> consistent solution <strong>of</strong> <strong>the</strong> heat<br />

equation <strong>and</strong> solution <strong>of</strong> <strong>the</strong> dynamical equations <strong>in</strong> at least <strong>the</strong> <strong>mantle</strong> <strong>wedge</strong>.<br />

It is a common to associate <strong>mantle</strong> <strong>wedge</strong> <strong>dynamics</strong> with <strong>the</strong> cornerflow model as<br />

sketched <strong>in</strong> Figure 1. <strong>The</strong> ma<strong>in</strong> features <strong>of</strong> this model are <strong>the</strong> viscous coupl<strong>in</strong>g <strong>of</strong> <strong>the</strong><br />

subduct<strong>in</strong>g plate below <strong>the</strong> seismogenic <strong>zone</strong>, <strong>the</strong> associated advection <strong>of</strong> <strong>mantle</strong> <strong>wedge</strong><br />

material to greater depth, <strong>and</strong> <strong>the</strong> result<strong>in</strong>g flow <strong>of</strong> <strong>mantle</strong> from under <strong>the</strong> overrid<strong>in</strong>g plate<br />

<strong>in</strong>to <strong>the</strong> corner formed by <strong>the</strong> base <strong>of</strong> <strong>the</strong> lithosphere <strong>of</strong> <strong>the</strong> overrid<strong>in</strong>g plate <strong>and</strong> <strong>the</strong> top <strong>of</strong><br />

<strong>the</strong> slab. If <strong>the</strong> boundaries <strong>of</strong> <strong>the</strong> flow are straight <strong>and</strong> <strong>the</strong> <strong>wedge</strong> flow is isoviscous an<br />

analytical solution exists [95], which has been conveniently exploited <strong>in</strong> various models<br />

<strong>of</strong> <strong>the</strong> <strong>subduction</strong> <strong>zone</strong> <strong>the</strong>rmal structure (e.g., [12, 92; See 96 for a review].<br />

<strong>The</strong> isoviscous cornerflow model is conceptually <strong>in</strong>structive, but oversimplified<br />

because <strong>of</strong> its assumptions <strong>of</strong> <strong>the</strong> geometry, driv<strong>in</strong>g forces <strong>and</strong> rheology. <strong>The</strong> sketch <strong>in</strong><br />

Figure 4 <strong>in</strong>dicates a number <strong>of</strong> physical processes that should be taken <strong>in</strong>to account <strong>in</strong><br />

order to develop a better underst<strong>and</strong><strong>in</strong>g <strong>of</strong> <strong>wedge</strong> <strong>dynamics</strong>. <strong>The</strong>se <strong>in</strong>clude: a) slab<br />

parameters such as geometry, age <strong>and</strong> speed; b) slab evolution, with particular emphasis<br />

on temporal variations <strong>in</strong> slab age <strong>and</strong> speed, trench migration <strong>and</strong> 3D effects such as slab<br />

tear<strong>in</strong>g <strong>and</strong> <strong>in</strong>flow <strong>of</strong> <strong>mantle</strong> material around slab edges; c) <strong>the</strong> nature <strong>of</strong> <strong>the</strong> overrid<strong>in</strong>g<br />

plate, <strong>in</strong> particular <strong>the</strong> rheology <strong>and</strong> buoyancy <strong>of</strong> <strong>the</strong> crust <strong>and</strong> uppermost <strong>mantle</strong>; d) <strong>the</strong><br />

rheology <strong>of</strong> <strong>the</strong> <strong>wedge</strong> which is <strong>in</strong>fluenced by temperature, pressure, stra<strong>in</strong>-rate, <strong>and</strong><br />

composition (<strong>in</strong>clud<strong>in</strong>g <strong>the</strong> distribution <strong>of</strong> hydrated m<strong>in</strong>erals, water, <strong>and</strong> melt); e)<br />

buoyancy forces <strong>in</strong> <strong>the</strong> <strong>wedge</strong>, which become important upon sufficient reduction <strong>of</strong><br />

<strong>mantle</strong> <strong>wedge</strong> viscosity.<br />

In recent years, several studies have addressed one or more <strong>of</strong> <strong>the</strong>se issues us<strong>in</strong>g<br />

k<strong>in</strong>ematically driven or fully dynamical models <strong>of</strong> <strong>subduction</strong> <strong>zone</strong>s. For example, it has<br />

been shown that <strong>the</strong> rheology <strong>of</strong> <strong>the</strong> <strong>wedge</strong> asserts important controls on <strong>the</strong> <strong>the</strong>rmal<br />

structure <strong>of</strong> <strong>the</strong> slab <strong>and</strong> <strong>wedge</strong> environment [97-101]. <strong>The</strong> strong temperature<br />

dependence <strong>of</strong> <strong>mantle</strong> silicates causes a dist<strong>in</strong>ct change <strong>in</strong> <strong>the</strong> <strong>mantle</strong> flow pattern<br />

compared to isoviscous calculations. Figure 5 shows <strong>the</strong> <strong>the</strong>rmal structure <strong>of</strong> <strong>the</strong> Izu-<br />

Bon<strong>in</strong> <strong>subduction</strong> <strong>zone</strong> as recalculated from [102] us<strong>in</strong>g <strong>the</strong> high resolution f<strong>in</strong>ite element<br />

approach described <strong>in</strong> [98]. <strong>The</strong> results for an isoviscous <strong>wedge</strong> (figure 5a) show <strong>the</strong><br />

<strong>in</strong>flow <strong>of</strong> hot material from <strong>the</strong> back-arc <strong>in</strong>to <strong>the</strong> tip <strong>of</strong> <strong>the</strong> <strong>mantle</strong> <strong>wedge</strong>. <strong>The</strong> effects <strong>of</strong><br />

temperature-dependent viscosity (figure 5b) much enhance this flow <strong>in</strong>to <strong>the</strong> <strong>wedge</strong> tip as<br />

a non-l<strong>in</strong>ear, but logical, consequence <strong>of</strong> reduc<strong>in</strong>g viscosity <strong>in</strong> <strong>the</strong> hot regions. <strong>The</strong> strong<br />

<strong>in</strong>crease <strong>of</strong> <strong>the</strong> temperature at <strong>the</strong> slab-<strong>wedge</strong> <strong>in</strong>terface leads to high temperature<br />

gradients <strong>in</strong> <strong>the</strong> sediment <strong>and</strong> oceanic crust <strong>of</strong> <strong>the</strong> slab. This may expla<strong>in</strong> <strong>the</strong> apparent<br />

conflict between high slab temperatures derived from <strong>the</strong> melt<strong>in</strong>g <strong>of</strong> sediments [21] <strong>and</strong><br />

<strong>the</strong> lower temperature estimates from <strong>the</strong> release <strong>of</strong> B [103] if we assume that <strong>the</strong> boron<br />

is release from dehydration reactions <strong>in</strong> <strong>the</strong> subduct<strong>in</strong>g oceanic crust [98].<br />

<strong>The</strong>se steady-state results show <strong>the</strong> balance between heat advected <strong>in</strong>to <strong>the</strong> <strong>wedge</strong><br />

towards <strong>the</strong> slab <strong>and</strong> <strong>the</strong> cool<strong>in</strong>g <strong>of</strong> <strong>the</strong> top <strong>and</strong> slab sides <strong>of</strong> <strong>the</strong> <strong>wedge</strong>. In this model <strong>the</strong><br />

effects <strong>of</strong> <strong>the</strong>rmal buoyancy <strong>in</strong> <strong>the</strong> <strong>wedge</strong> are ignored. Substantial low viscosity regions<br />

may develop because <strong>of</strong> high temperature, high stra<strong>in</strong>-rate, <strong>and</strong> high volatile content, <strong>in</strong><br />

which case <strong>the</strong>rmal buoyancy <strong>and</strong> related time-dependent convection may become<br />

important <strong>in</strong> <strong>the</strong> <strong>mantle</strong> <strong>wedge</strong> [101]. <strong>The</strong> dist<strong>in</strong>ct upward component <strong>of</strong> flow towards <strong>the</strong><br />

9


trench side <strong>of</strong> <strong>the</strong> <strong>wedge</strong> could provide a moderate contribution <strong>of</strong> pressure-release<br />

melt<strong>in</strong>g to <strong>the</strong> arc lavas [99].<br />

<strong>The</strong> geometry <strong>of</strong> <strong>the</strong> <strong>wedge</strong> <strong>in</strong> figure 5 is controlled <strong>in</strong> part by fix<strong>in</strong>g <strong>the</strong> depth <strong>of</strong><br />

<strong>the</strong> overrid<strong>in</strong>g plate (50 km) <strong>and</strong> decoupl<strong>in</strong>g <strong>the</strong> <strong>in</strong>terface between <strong>the</strong> slab <strong>and</strong> <strong>wedge</strong> to<br />

a depth <strong>of</strong> 70 km. Both assumptions keep <strong>the</strong> <strong>wedge</strong> flow from ris<strong>in</strong>g to shallower depths<br />

towards <strong>the</strong> trench. If <strong>the</strong> overrid<strong>in</strong>g plate is described <strong>in</strong> a more consistent manner, by<br />

<strong>the</strong> formation <strong>of</strong> <strong>the</strong> cold lithosphere <strong>of</strong> <strong>the</strong> overrid<strong>in</strong>g plate, <strong>the</strong> depth <strong>of</strong> decoupl<strong>in</strong>g<br />

between <strong>the</strong> slab <strong>and</strong> <strong>wedge</strong> becomes dom<strong>in</strong>ant. A logical upper limit to this depth is <strong>the</strong><br />

down-dip extent <strong>of</strong> <strong>the</strong> seismogenic <strong>zone</strong> (typically at <strong>the</strong> Moho around 40 km depth<br />

[104]), which would cause <strong>the</strong> <strong>in</strong>flux <strong>of</strong> hot <strong>mantle</strong> close to <strong>the</strong> Earth’s surface [99, 101].<br />

This has been used to expla<strong>in</strong> <strong>the</strong> presence <strong>of</strong> pressure-release melt<strong>in</strong>g [99] or<br />

components <strong>of</strong> slab melt<strong>in</strong>g <strong>in</strong> arcs overly<strong>in</strong>g old oceanic lithosphere [101]. It should be<br />

noted that this type <strong>of</strong> model require an <strong>of</strong>fset <strong>in</strong> <strong>the</strong> maximum <strong>of</strong> heat flow away from<br />

<strong>the</strong> location <strong>of</strong> <strong>the</strong> volcanic arc toward <strong>the</strong> trench <strong>and</strong> <strong>the</strong> assumption that <strong>the</strong> observed<br />

high heatflow over <strong>the</strong> volcanic arc is dom<strong>in</strong>ated by conductive, ra<strong>the</strong>r than magmatic<br />

processes [67]. <strong>The</strong> strong <strong>the</strong>rmal erosion that is predicted <strong>in</strong> <strong>the</strong>se models has been used<br />

to suggest that <strong>the</strong> compositional buoyancy <strong>of</strong> <strong>the</strong> overrid<strong>in</strong>g plate, ra<strong>the</strong>r than its<br />

rheology, controls <strong>the</strong> geometry <strong>of</strong> <strong>the</strong> overrid<strong>in</strong>g plate [105]. <strong>The</strong> hydration <strong>of</strong> <strong>the</strong><br />

overly<strong>in</strong>g <strong>wedge</strong> provides ano<strong>the</strong>r important mechanism to reduce <strong>the</strong> <strong>the</strong>rmal erosion <strong>of</strong><br />

<strong>the</strong> overrid<strong>in</strong>g plate by decoupl<strong>in</strong>g <strong>the</strong> slab <strong>and</strong> <strong>wedge</strong> to greater depths [97].<br />

Dynamically it can be shown that <strong>the</strong> decoupl<strong>in</strong>g is required <strong>in</strong> order to have any <strong>the</strong>rmal<br />

erosion <strong>of</strong> <strong>the</strong> overrid<strong>in</strong>g plate, s<strong>in</strong>ce o<strong>the</strong>rwise <strong>the</strong> overrid<strong>in</strong>g plate is entra<strong>in</strong>ed <strong>and</strong> <strong>the</strong><br />

subduct<strong>in</strong>g becomes two-sided (e.g., [100]).<br />

Dynamic <strong>subduction</strong> models<br />

In recent years we have also seen a better development <strong>of</strong> <strong>subduction</strong> <strong>zone</strong> models <strong>in</strong><br />

which <strong>the</strong> slab is not k<strong>in</strong>ematically prescribed but s<strong>in</strong>ks dynamically under its own<br />

weight. It is necessary to provide some form <strong>of</strong> decoupl<strong>in</strong>g between subduct<strong>in</strong>g <strong>and</strong><br />

overrid<strong>in</strong>g plate <strong>in</strong> order to allow for one-sided <strong>subduction</strong> to take place. Most recent<br />

work <strong>in</strong>cludes <strong>the</strong> use <strong>of</strong> weak <strong>zone</strong>s [69, 106] or special f<strong>in</strong>ite element formulations that<br />

allow for this decoupl<strong>in</strong>g <strong>in</strong> viscous models [107, 108].<br />

By <strong>the</strong>ir nature, dynamical models allow for <strong>the</strong> <strong>in</strong>vestigation <strong>of</strong> <strong>the</strong> trade-<strong>of</strong>f<br />

between driv<strong>in</strong>g <strong>and</strong> resistive forces <strong>and</strong> <strong>the</strong> time-dependent evolution <strong>of</strong> <strong>subduction</strong><br />

<strong>zone</strong>s. For example, models <strong>of</strong> <strong>subduction</strong> <strong>zone</strong> <strong>in</strong>itiation [106] suggested that <strong>the</strong> slab<br />

surface temperature reaches a steady state after some 500-600 km <strong>of</strong> <strong>subduction</strong> <strong>and</strong> that<br />

variable viscosity causes <strong>the</strong> stagnation <strong>of</strong> <strong>the</strong> slab <strong>wedge</strong> corner due to <strong>the</strong> cool<strong>in</strong>g from<br />

<strong>the</strong> <strong>in</strong>itial state, although it can be expected that <strong>the</strong> effect <strong>of</strong> volatilization <strong>of</strong> <strong>the</strong> <strong>wedge</strong><br />

will counteract this rheological effect. <strong>The</strong> <strong>subduction</strong> <strong>of</strong> oceanic plateaus provides<br />

additional chemical buoyancy. This may cause flat <strong>subduction</strong>, unless counteracted by<br />

<strong>the</strong> densification <strong>of</strong> <strong>the</strong> oceanic crust upon transformation to eclogite [108]. <strong>The</strong> observed<br />

flat <strong>subduction</strong> <strong>in</strong> for example <strong>the</strong> Andes or Shikoku (Nankai trough) suggest that <strong>the</strong><br />

basalt must rema<strong>in</strong> metastable <strong>in</strong> <strong>the</strong> eclogite stability field, which appears consistent<br />

with <strong>the</strong> seismic observations <strong>in</strong> Japan [109]. A study on <strong>the</strong> relative contribution <strong>of</strong> slab<br />

driv<strong>in</strong>g forces <strong>in</strong> <strong>the</strong> presence <strong>of</strong> trench roll back for start<strong>in</strong>g slabs shows <strong>the</strong> formation <strong>of</strong><br />

an eddy <strong>in</strong> <strong>the</strong> back-arc region which causes shallow slabs to be sucked up to <strong>the</strong><br />

10


overrid<strong>in</strong>g plate [110]. <strong>The</strong>se last few studies strongly suggest that <strong>the</strong> <strong>mantle</strong> <strong>wedge</strong> has<br />

to be weak.<br />

In contrast to <strong>the</strong> k<strong>in</strong>ematically driven cornerflow models <strong>the</strong>se dynamic models<br />

allow for <strong>the</strong> calculation <strong>of</strong> dynamic topography, which allows for use <strong>of</strong> <strong>the</strong> observed<br />

topography <strong>and</strong> geoid <strong>in</strong> validat<strong>in</strong>g <strong>the</strong> models [69,70,107,111]. Instantaneous 3D flow<br />

models for <strong>the</strong> Tonga <strong>subduction</strong> <strong>zone</strong> show that <strong>the</strong> <strong>mantle</strong> <strong>wedge</strong> has important<br />

consequences for <strong>the</strong> force balance is essential. A substantial viscosity reduction is<br />

necessary to expla<strong>in</strong> <strong>the</strong> gravity <strong>and</strong> geoid [111] as well as <strong>the</strong> observed back-arc<br />

extension, shallow slab compression <strong>and</strong> absence <strong>of</strong> deep back arc bas<strong>in</strong>s [70].<br />

Outlook<br />

In recent years, <strong>the</strong> comb<strong>in</strong>ed use <strong>of</strong> observational, experimental <strong>and</strong> <strong>the</strong>oretical work has<br />

yielded significant advances <strong>in</strong> our underst<strong>and</strong><strong>in</strong>g <strong>of</strong> <strong>the</strong> <strong>mantle</strong> <strong>wedge</strong> environment. We<br />

can identify a number <strong>of</strong> key areas <strong>of</strong> future research <strong>in</strong> which <strong>the</strong> <strong>role</strong> <strong>of</strong> water is<br />

particularly important:<br />

(1) Input to <strong>the</strong> <strong>mantle</strong> <strong>wedge</strong> through <strong>the</strong> dehydration <strong>of</strong> <strong>the</strong> slab. This <strong>in</strong>cludes<br />

<strong>the</strong> <strong>role</strong> <strong>of</strong> metamorphic reactions <strong>in</strong> generat<strong>in</strong>g seismicity <strong>and</strong> volcanism, <strong>the</strong><br />

quantification <strong>of</strong> volume <strong>of</strong> flux melt<strong>in</strong>g compared to slab or decompression melt<strong>in</strong>g, <strong>and</strong><br />

<strong>the</strong> ability <strong>of</strong> water transport to <strong>the</strong> deep <strong>mantle</strong> [112, 113].<br />

(2) Transport <strong>of</strong> water <strong>and</strong> melt from <strong>the</strong> slab to <strong>the</strong> volcanic front [2]. It is still<br />

largely unknown whe<strong>the</strong>r melt is transported through cracks, <strong>in</strong> diapirs or by hydrological<br />

processes although recent laboratory models <strong>in</strong> conjunction with seismic observations <strong>of</strong><br />

<strong>the</strong> correlation between volcanoes <strong>and</strong> <strong>the</strong> velocity structure <strong>in</strong> <strong>the</strong> shallow <strong>mantle</strong> may<br />

suggest a revival <strong>of</strong> <strong>the</strong> diapiric transport model [14,114,115].<br />

(3) Role <strong>of</strong> water <strong>in</strong> chang<strong>in</strong>g rheological <strong>and</strong> seismological properties. This is<br />

essential for underst<strong>and</strong><strong>in</strong>g how geophysical tools can be used <strong>in</strong> prospect<strong>in</strong>g for water<br />

[79] <strong>and</strong> for improv<strong>in</strong>g dynamical models <strong>of</strong> <strong>subduction</strong>.<br />

(4) Fur<strong>the</strong>r development <strong>of</strong> 3D time-dependent <strong>subduction</strong> <strong>zone</strong> models that<br />

<strong>in</strong>corporate tectonic history. This will allow <strong>the</strong> use <strong>of</strong> more extensive data sets to tests<br />

dynamical hypo<strong>the</strong>sis such as, for example, <strong>the</strong> flow <strong>of</strong> <strong>the</strong> <strong>mantle</strong> <strong>in</strong> response to<br />

<strong>subduction</strong> [116-118].<br />

11


Acknowledgments<br />

This paper benefited greatly from conversations with <strong>and</strong> suggestions by Ge<strong>of</strong>f Abers,<br />

Magali Billen, Tim Grove, Shun Karato, Peter Kelemen, Scott K<strong>in</strong>g, Bill Leeman, Jason<br />

McKenna, Jason Phipps Morgan, Terry Plank, Lars Ruepke, Larry Ruff, Simon Peacock,<br />

Marc Spiegelman, Jeroen van Hunen, <strong>and</strong> Doug Wiens, both with<strong>in</strong> <strong>and</strong> outside <strong>the</strong><br />

context <strong>of</strong> <strong>the</strong> MARGINS workshop on <strong>the</strong>rmal structure <strong>and</strong> <strong>dynamics</strong> <strong>of</strong> <strong>subduction</strong><br />

<strong>zone</strong>s (Ann Arbor, Michigan, October 2002). Magali Billen, Tim Grove, Shun Karato,<br />

Simon Peacock, <strong>and</strong> Jennifer Rill<strong>in</strong>g are thanked for provid<strong>in</strong>g advance copies <strong>of</strong> <strong>the</strong>ir<br />

papers <strong>in</strong> press. This research is supported by National Science Foundation (EAR-<br />

0111459 <strong>and</strong> EAR-0208310).<br />

References<br />

[1] M.W. Schmidt, S. Poli, What causes <strong>the</strong> position <strong>of</strong> <strong>the</strong> volcanic front?<br />

Experimentally based water budgets for dehydrat<strong>in</strong>g slabs <strong>and</strong> consequences for arc<br />

magma generation, Earth Planet. Sci. Lett. 163 (1998) 361-379.<br />

[2] H. Iwamori, Transportation <strong>of</strong> H 2 O <strong>and</strong> melt<strong>in</strong>g <strong>in</strong> <strong>subduction</strong> <strong>zone</strong>s, Earth Planet.<br />

Sci. Lett. 160 (1998) 65-80.<br />

[3] J. Gill, Orogenic Andesites <strong>and</strong> Plate Tectonics, Spr<strong>in</strong>ger-Verlag, New York (1981)<br />

390 pp.<br />

[4] S. Kirby, E.R. Engdahl, R. Denl<strong>in</strong>ger, Intermediate-depth <strong>in</strong>traslab earthquakes <strong>and</strong><br />

arc volcanism as physicaql expressions <strong>of</strong> crustal <strong>and</strong> uppermost <strong>mantle</strong><br />

metamorphism <strong>in</strong> subduct<strong>in</strong>g slabs (overview), <strong>in</strong>: Subduction, Top to Bottom, G.E.<br />

Bebout, D.W. Scholl, S.H. Kirby, J.P. Platt (eds), Geophysical Monograph 96,<br />

American Geophysical Union, Wash<strong>in</strong>gton DC (1996) 195-214.<br />

[5] S.M. Peacock, Are double seismic <strong>zone</strong>s caused by serpent<strong>in</strong>e dehydration reactions<br />

<strong>in</strong> <strong>the</strong> subduct<strong>in</strong>g oceanic <strong>mantle</strong>? Geology 29 (2001) 299-302.<br />

[6] D.K. Rea, L.J. Ruff, Composition <strong>and</strong> mass flux <strong>of</strong> sediment enter<strong>in</strong>g <strong>the</strong> world’s<br />

<strong>subduction</strong> <strong>zone</strong>s: implications for global sediment budgets, great earthquakes, <strong>and</strong><br />

volcanism, Earth Planet. Sci. Lett. 140 (1996) 1-12.<br />

[7] T. Plank, H. Langmuir, <strong>The</strong> chemical composition <strong>of</strong> subduct<strong>in</strong>g sediment <strong>and</strong> its<br />

consequences for <strong>the</strong> crust <strong>and</strong> <strong>mantle</strong>, Chem. Geol. 145 (1998) 325-394.<br />

[8] H.J.B. Dick et al., A long <strong>in</strong> situ section <strong>of</strong> <strong>the</strong> lower oceanic crust: Results <strong>of</strong> ODP<br />

Leg 176 drill<strong>in</strong>g at <strong>the</strong> Southwest Indian Ridge, Earth Planet. Sci. Lett. 179 (2000)<br />

31-51.<br />

[9] J.C. Alt, D.A.H. Teagle, Hydro<strong>the</strong>rmal alteration <strong>and</strong> fluid fluxes <strong>in</strong> ophiolites <strong>and</strong><br />

oceanic crust, <strong>in</strong> Ophiolites <strong>and</strong> Oceanic Crust: New Insights from Field Studies<br />

<strong>and</strong> Ocean Drill<strong>in</strong>g Program, edited by Y. Dilek et al., Geol. Soc. Amer. Spec.<br />

Paper, 349 (2000) 273-282.<br />

[10] R. Von Huene, D.W. Scholl, Observations at convergent marg<strong>in</strong>s concern<strong>in</strong>g<br />

sediment <strong>subduction</strong>, <strong>subduction</strong> erosion, <strong>and</strong> <strong>the</strong> growth <strong>of</strong> <strong>the</strong> cont<strong>in</strong>ental crust,<br />

Rev. Geophys. 29 (1991) 279-316.<br />

[11] C. Ranero, R. von Huene, Subduction erosion along <strong>the</strong> Middle America convergent<br />

marg<strong>in</strong>, Nature 404 (2000) 748-752.<br />

12


[12] S.M. Peacock, K. Wang, Seismic consequences <strong>of</strong> warm versus cool <strong>subduction</strong><br />

metamorphism: examples from southwest <strong>and</strong> nor<strong>the</strong>ast Japan, Science 286 (1999)<br />

937-941.<br />

[13] B.R. Hacker, G.A. Abers, S.M. Peacock, Subduction factory 1. <strong>The</strong>oretical<br />

m<strong>in</strong>eralogy, densities, seismic wave speeds, <strong>and</strong> H 2 O contents, J. Geophys. Res.<br />

108 (2003) 2029 doi:10.1029/2001JB001127.<br />

[14] Y. Tamura, Y. Tatsumi, D. Zhao, Y. Kido, H. Shukuno, Hot f<strong>in</strong>gers <strong>in</strong> <strong>the</strong> <strong>mantle</strong><br />

<strong>wedge</strong>: new <strong>in</strong>sights <strong>in</strong>to magma genesis <strong>in</strong> <strong>subduction</strong> <strong>zone</strong>s, Earth Planet. Sci.<br />

Lett. 197 (2002) 105-116.<br />

[15] S. Newman, E. Stolper, E. Stern, H 2 0 <strong>and</strong> CO 2 <strong>in</strong> magmas from <strong>the</strong> Mariana arc <strong>and</strong><br />

back arc systems, Geochem. Geophys. Geosys. 1 (2000).<br />

[16] T.L. Grove, S.W. Parman, S.A. Bowr<strong>in</strong>g, R.C. Prive, M.B. Baker, <strong>The</strong> <strong>role</strong> <strong>of</strong> an<br />

H 2 O-rich fluid component <strong>in</strong> <strong>the</strong> generation <strong>of</strong> primitive basaltic <strong>and</strong>esites <strong>and</strong><br />

<strong>and</strong>esites from <strong>the</strong> Mt Shasta region, N California, Contrib. M<strong>in</strong>eral. Petrol. 142<br />

(2002) 375-396.<br />

[17] T.W. Sisson, S. Bronto, Evidence for pressure-release melt<strong>in</strong>g beneath magmatic<br />

arcs from basalt at Galunggung, Indonesia, Nature 391 (1998) 883-886.<br />

[18] P. Ulmer, Partial melt<strong>in</strong>g <strong>in</strong> <strong>the</strong> <strong>mantle</strong> <strong>wedge</strong> – <strong>the</strong> <strong>role</strong> <strong>of</strong> H 2 O <strong>in</strong> <strong>the</strong> genesis <strong>of</strong><br />

<strong>mantle</strong> derived ‘arc-related’ magmas, Phys. Earth Planet. Inter. 127 (2001) 215-232.<br />

[19] L.T. Elk<strong>in</strong>s Tanton, T.L. Grove, J. Donnelly-Nolan, Hot, shallow melt<strong>in</strong>g under <strong>the</strong><br />

Cascades volcanic arc, Geology 29 (2001) 631-634.<br />

[20] T. Elliott, T. Plank, A. Z<strong>in</strong>dler, W. White, B. Bourdon, Element transport from slab<br />

to volcanic front at <strong>the</strong> Mariana arc, J. Geophys. Res. 102 (1997) 14,991-15,019.<br />

[21] M.C. Johnson, T. Plank, Dehydration <strong>and</strong> melt<strong>in</strong>g experiments constra<strong>in</strong> <strong>the</strong> fate <strong>of</strong><br />

subducted sediments, Geochem. Geophys. Geosys. 1 (1999).<br />

[22] Y. Tatsumi, N. Ishikawa, K. Anno, K. Ishizaka, T. Itaya, Tectonic sett<strong>in</strong>g <strong>of</strong> high-<br />

Mg <strong>and</strong>esite magmatism <strong>in</strong> <strong>the</strong> SW Japan Arc: K-Ar chronology <strong>of</strong> <strong>the</strong> Setouchi<br />

volcanic belt, Geophys. J. Int. 144 (2001) 625-631.<br />

[23] G.M. Yogodz<strong>in</strong>ski, J.M. Lees, T.G. Churikova, F. Dorendorf, G. Woerner, O.N.<br />

Volynets, Geochemical evidence for <strong>the</strong> melt<strong>in</strong>g <strong>of</strong> <strong>subduction</strong> oceanic lithosphere<br />

at plate edges, Nature 409 (2001) 500-504.<br />

[24] D.P. Zhao, Seismological structure <strong>of</strong> <strong>subduction</strong> <strong>zone</strong>s <strong>and</strong> its implications for arc<br />

magmatism <strong>and</strong> <strong>dynamics</strong>, Phys. Earth Planet. Inter. 127 (2001) 197-214.<br />

[25] D.P. Zhao, X. Y<strong>in</strong>gbiao, D.A. Wiens, L. Dorman, J. Hildebr<strong>and</strong>, S. Webb, Depth<br />

extent <strong>of</strong> <strong>the</strong> Lau back-arc spread<strong>in</strong>g center <strong>and</strong> its relation to <strong>subduction</strong> processes,<br />

Science (1997) 254-257.<br />

[26] A. Gorbatov, J. Dom<strong>in</strong>guez, G. Suarez, V. Kostoglodov, D. Zhao, E. Gordeev,<br />

Tomographic imag<strong>in</strong>g <strong>of</strong> <strong>the</strong> P-wave velocity structure beneath <strong>the</strong> Kamchatka<br />

pen<strong>in</strong>sula, Geophys. J. Int. 137 (1999) 269-279.<br />

[27] F. Graeber, G. Asch, Three-dimensional models <strong>of</strong> P wave velocity <strong>and</strong> P-to-S<br />

velocity ratio <strong>in</strong> <strong>the</strong> sou<strong>the</strong>rn central Andes by simultaneous <strong>in</strong>version <strong>of</strong> local<br />

earthquake data, J. Geophys. Res. 104 (1999) 20,237-20,256.<br />

[28] H. Iwamori, D.P. Zhao, Melt<strong>in</strong>g <strong>and</strong> seismic structure beneath <strong>the</strong> nor<strong>the</strong>ast Japan<br />

arc, Geophys. Res. Lett. 27 (2000) 425-428.<br />

[29] D.P. Zhao, K. Asamori, H. Iwamori, Seismic structure <strong>and</strong> magmatism <strong>of</strong> <strong>the</strong> young<br />

Kyushu <strong>subduction</strong> <strong>zone</strong>, Geophys. Res. Lett. 27 (2000) 2057-2060.<br />

13


[30] D.P. Zhao, K. Wang, G.C. Rogers, S.M. Peacock, Tomographic image <strong>of</strong> low P<br />

velocity anomalies above slab <strong>in</strong> nor<strong>the</strong>r Cascadia <strong>subduction</strong> <strong>zone</strong>. Earth Planets<br />

Space 53 (2001) 285-293.<br />

[31] S.C. Myers, S. Beck, G. Z<strong>and</strong>t, T. Wallace, Lithospheric scale structure across <strong>the</strong><br />

Bolivian Andes from tomographic images <strong>of</strong> velocity <strong>and</strong> attenuation for P <strong>and</strong> S<br />

waves, J. Geophys. Res. 103 (1998) 21,233-21,252.<br />

[32] B. Romanowicz, J.J. Durek, Seismological constra<strong>in</strong>ts on attenuation <strong>in</strong> <strong>the</strong> Earth: a<br />

review, In: Earth’s deep <strong>in</strong>terior: M<strong>in</strong>eral physics <strong>and</strong> tomography from <strong>the</strong> atomic<br />

to <strong>the</strong> global scale, edited by S. Karato, A.M. Forte, R.C. Liebermann, G. Masters,<br />

<strong>and</strong> L. Stixrude, American Geophysical Union, Wash<strong>in</strong>gton DC (2000) 161-179.<br />

[33] T. Takenami, S.I. Sacks, A. Hasegawa, Attenuation structure beneath <strong>the</strong> volcanic<br />

front <strong>in</strong> nor<strong>the</strong>astern Japan from broad-b<strong>and</strong> seismograms, Phys. Earth Planet. Inter.<br />

121 (2000) 339-357.<br />

[34] C. Haberl<strong>and</strong>, A. Rietbrock, Attenuation tomography <strong>in</strong> <strong>the</strong> western central Andes: a<br />

detailed <strong>in</strong>sight <strong>in</strong>to <strong>the</strong> structure <strong>of</strong> a magmatic arc, J. Geophys. Res., 106 (2001)<br />

11,151-11,167.<br />

[35] E.G. Roth, D.A. Wiens, D.P. Zhao, An empirical relationship between seismic<br />

attenuation <strong>and</strong> velocity anomalies <strong>in</strong> <strong>the</strong> upper <strong>mantle</strong>, Geophys. Res. Lett. 27<br />

(2000) 601-604.<br />

[36] N. Tsumura, S. Matsumoto, S. Horiuchi, A. Hasegawa, Three-dimensional<br />

attenuation structure beneath <strong>the</strong> nor<strong>the</strong>astern Japan arc estimated from spectra <strong>of</strong><br />

small earthquakes, Tectonophysics 319 (2000) 241-260.<br />

[37] G. Bock, B. Schurr, G. Asch, High-resolution image <strong>of</strong> <strong>the</strong> oceanic Moho <strong>in</strong> <strong>the</strong><br />

subduct<strong>in</strong>g Nazca plate from P-S converted waves, Geophys. Res. Lett. 27 (2000)<br />

3929-3932.<br />

[38] V. Lev<strong>in</strong>, J. Park, M. Br<strong>and</strong>on, J. Lees, V. Peyton, E. Gordeev, A. Ozerov, Crust <strong>and</strong><br />

upper <strong>mantle</strong> <strong>of</strong> Kamchatka from teleseismic receiver functions, Tectonophysics<br />

358 (2002) 233-265.<br />

[39] G. Helffrich, G.A. Abers, Slab low-velocity layer <strong>in</strong> <strong>the</strong> eastern Aleutian <strong>subduction</strong><br />

<strong>zone</strong>, Geophys. J. Int. 130 (1997) 640-648.<br />

[40] G.A. Abers, Hydrated subducted crust at 100-250 km depth, Earth Planet. Sci. Lett.<br />

176 (2000) 323-330.<br />

[41] M.G. Bostock, R.D. Hyndman, S. Rondenay, S.M. Peacock, An <strong>in</strong>verted cont<strong>in</strong>ental<br />

Moho <strong>and</strong> <strong>the</strong> serpent<strong>in</strong>ization <strong>of</strong> <strong>the</strong> forearc <strong>mantle</strong>, Nature 417 (2002) 536-538.<br />

[42] T.M. Brocher, T. Parsons, A.M. Tréhu, C.M. Snelson, M.A. Fisher, Seismic<br />

evidence for widespread serpentenized forearc upper <strong>mantle</strong> along <strong>the</strong> Cascadia<br />

marg<strong>in</strong>, Geology 31 (2003) 267-270.<br />

[43] A. Kamimura, J. Kasahara, M. Sh<strong>in</strong>ohara, R. H<strong>in</strong>o, H. Shiobara, G. Fujie, T.<br />

Kanazawa, Crustal structure study at <strong>the</strong> Izu-Bon<strong>in</strong> <strong>subduction</strong> <strong>zone</strong> around 31N:<br />

implications <strong>of</strong> serpent<strong>in</strong>ized materials along <strong>the</strong> <strong>subduction</strong> plate boundary, Phys.<br />

Earth Planet. Inter. 132 (2002) 105-129.<br />

[44] S. Guillot, K.H. Hattori, J. de Sigoyer, Mantle <strong>wedge</strong> serpent<strong>in</strong>ization <strong>and</strong><br />

exhumation <strong>of</strong> eclogites: <strong>in</strong>sights from eastern Ladakh, northwest Himalaya,<br />

Geology 28 (2000) 199-202.<br />

[45] J. Park, V. Lev<strong>in</strong>, Seismic anisotropy: trac<strong>in</strong>g plate <strong>dynamics</strong> <strong>in</strong> <strong>the</strong> <strong>mantle</strong>, Science<br />

296 (2002) 485-489<br />

14


[46] T. Okada, T. Matsuzawa, A. Hasegawa, Shear-wave polarization anisotropy beneath<br />

<strong>the</strong> north-eastern part <strong>of</strong> Honshu, Japan, Geophys. J. Int., 123 (1995) 781-797.<br />

[47] M. Fouch, K.M. Fischer, Shear wave anisotropy <strong>in</strong> <strong>the</strong> Mariana <strong>subduction</strong> <strong>zone</strong>,<br />

Geophys. Res. Lett. 25 (1998) 1221-1224.<br />

[48] K.M. Fischer, M.J. Fouch, D.A. Wiens, M.S. Boettcher, Anisotropy <strong>and</strong> flow <strong>in</strong><br />

Pacific <strong>subduction</strong> <strong>zone</strong> back-arcs, Pure Appl. Geophys. 151 (1998) 463-475.<br />

[49] J. Polet, P.G. Silver, S. Beck, T. Wallace, G. Z<strong>and</strong>t, S. Rupper, R. K<strong>in</strong>d, A. Rudl<strong>of</strong>f,<br />

Shear wave anisotropy beneath <strong>the</strong> Andes from <strong>the</strong> BANJO, SEDA, <strong>and</strong> PISCO<br />

experiments, J. Geophys. Res. 105 (2000) 6287-6304.<br />

[50] R.M. Russo, P.G. Silver, Trench-parallel flow beneath <strong>the</strong> Nazca plate from seismic<br />

anisotropy, Science 263 (1994) 1105-1111.<br />

[51] S. Wiemer, G. Tytgat, M. Wyss, U. Duenkel, Evidence for shear wave anisotropy <strong>in</strong><br />

<strong>the</strong> <strong>mantle</strong> <strong>wedge</strong> beneath south central Alaska, Bull. Seism. Soc. Amer., 89 (1999)<br />

1313-1322.<br />

[52] K. Marson-Pidgeon, M.K. Savage, K. Gledhill, G. Stuart, Seismic anisotropy<br />

beneath <strong>the</strong> lower half <strong>of</strong> <strong>the</strong> North Isl<strong>and</strong>, New Zeal<strong>and</strong>, J. Geophys. Res. 104<br />

(1999) 20,277-20,286.<br />

[53] M.K. Savage, Seismic anisotropy <strong>and</strong> <strong>mantle</strong> deformation: what have we learned<br />

from shear wave splitt<strong>in</strong>g? Rev. Geophys. 37 (1999) 65-106.<br />

[54] X.P. Yang, K.M. Fischer, G.A. Abers, Seismic anisotropy beneath <strong>the</strong> Shumag<strong>in</strong><br />

Isl<strong>and</strong>s segment <strong>of</strong> <strong>the</strong> Aleutian-Alaska <strong>subduction</strong> <strong>zone</strong>, J. Geophys. Res. 100<br />

(1995) 18,165-18,177.<br />

[55] V. Peyton, V. Lev<strong>in</strong>, J. Park, M.T. Br<strong>and</strong>on, J. Lees, E. Gordeev, <strong>and</strong> A. Ozerov,<br />

Mantle flow at a slab edge: seismic anisotropy <strong>in</strong> <strong>the</strong> Kamchatka region, Geophys.<br />

Res. Lett. 28 (2001) 379-382.<br />

[56] J. Park, V. Lev<strong>in</strong>, J. Lees, M.T. Br<strong>and</strong>on, V. Peyton, E. Gordeev, A. Ozerov,<br />

Seismic anisotropy <strong>and</strong> <strong>mantle</strong> flow <strong>in</strong> <strong>the</strong> Kamchatka-Aleutian corner, In: S. Ste<strong>in</strong><br />

(ed), Plate Boundary Zones, Geophysical Monograph, American Geophysical<br />

Union, Wash<strong>in</strong>gton DC (2002).<br />

[57] G.P. Smith, D.A. Wiens, K.M. Fischer, L.M. Dorman, S.C. Webb, J.A. Hildebr<strong>and</strong>,<br />

A complex pattern <strong>of</strong> <strong>mantle</strong> flow <strong>in</strong> <strong>the</strong> Lau backarc, Science 292 (2001) 713-716.<br />

[58] D.A. Wiens, G.P. Smith, Seismological constra<strong>in</strong>ts on structure <strong>and</strong> flow patterns<br />

with<strong>in</strong> <strong>the</strong> <strong>mantle</strong> <strong>wedge</strong>, In: J. Eiler (ed) <strong>The</strong> Subduction Factory, Geophysical<br />

Monograph, American Geophysical Union, Wash<strong>in</strong>gton DC (<strong>in</strong> press)<br />

[59] G. Schwarz, D. Kruger, Resistivity cross section through <strong>the</strong> sou<strong>the</strong>rn central Andes<br />

as <strong>in</strong>ferred from magnetotelluric <strong>and</strong> geomagnetic deep sounds, J. Geophys. Res.<br />

102 (1997) 11,957-11,978.<br />

[60] Y. Fuj<strong>in</strong>awa, N. Kawakami, J. Inoue, T.H. Asch, S. Takasugi, Y. Honkura, 2-D<br />

georesistivity structure <strong>in</strong> <strong>the</strong> central part <strong>of</strong> <strong>the</strong> nor<strong>the</strong>astern Japan arc, Earth<br />

Planets Space 51 (1999) 1035-1046.<br />

[61] M. Ichiki, N. Sumitomo, T. Kagiyama, Resistivity structure <strong>of</strong> high-angle<br />

<strong>subduction</strong> <strong>zone</strong> <strong>in</strong> <strong>the</strong> sou<strong>the</strong>rn Kyushu district, southwestern Japan, Earth Planets<br />

Space 52 (2000) 539-548.<br />

[62] H. Brasse, P. Lezaeta, V. Rath, K. Schwalenberg, W. Soyer, V. Haak, <strong>The</strong> Bolivian<br />

Altiplano conductivity anomaly, J. Geophys. Res. 107 (2002) doi:<br />

10.1029/2001JB000391.<br />

15


[63] K. Schwalenberg, V. Rath, V. Haak, Sensitivity studies applied to a two-dimensional<br />

resistivity model from <strong>the</strong> Central Andes, Geophys. J. Int. 105 (2002) 673-686.<br />

[64] J.A. Arzate, M. Mareschal, D. Livelybrooks, Electrical image <strong>of</strong> <strong>the</strong> <strong>subduction</strong> <strong>zone</strong><br />

Cocos plate from magnetotelluric observations, Geology 23 (1995) 703-706.<br />

[65] P. Lezaeta, M. Munoz, H. Brasse, Magnetotelluric image <strong>of</strong> <strong>the</strong> crust <strong>and</strong> upper<br />

<strong>mantle</strong> <strong>in</strong> <strong>the</strong> back arc <strong>of</strong> <strong>the</strong> northwestern Argent<strong>in</strong>ean Andes, Geophys. J. Int. 142<br />

(2000) 841-854.<br />

[66] Y. Furukawa, S. Uyeda, <strong>The</strong>rmal state under <strong>the</strong> Tohoku Arc with consideration <strong>of</strong><br />

crust heat generation, Tectonophysics 164 (1989) 175-187.<br />

[67] D.D. Blackwell, J.L. Steele, M.K. Frohme, C.F. Murphey, G.R. Priest, G.L. Black,<br />

Heat flow <strong>in</strong> <strong>the</strong> Oregon Cascade Range <strong>and</strong> its correlation with regional gravity,<br />

Curie po<strong>in</strong>t depths, <strong>and</strong> geology, J. Geophys. Res. 95 (1990) 19,475-19,493.<br />

[68] R.D. Hyndman, K. Wang, <strong>The</strong> rupture <strong>zone</strong> <strong>of</strong> Cascadia great earthquakes from<br />

current deformation <strong>and</strong> <strong>the</strong> <strong>the</strong>rmal regime, J. Geophys. Res 100 (1995) 22,133-<br />

22,154.<br />

[69] S.D. K<strong>in</strong>g, Geoid <strong>and</strong> topography over <strong>subduction</strong> <strong>zone</strong>s: <strong>The</strong> effect <strong>of</strong> phase<br />

transformations, J. Geophys. Res. 107 (2002) doi: 10.1029/2000JB000141.<br />

[70] M.I. Billen, M. Gurnis, M. Simons, Multiscale <strong>dynamics</strong> <strong>of</strong> <strong>the</strong> Tonga-Kermadec<br />

<strong>subduction</strong> <strong>zone</strong>, Geophys. J. Int. <strong>in</strong> press.<br />

[71] Y. Tatsumi, Geochemical model<strong>in</strong>g <strong>of</strong> partial melt<strong>in</strong>g <strong>of</strong> subduct<strong>in</strong>g sediments <strong>and</strong><br />

subsequent melt-<strong>mantle</strong> <strong>in</strong>teraction: generation <strong>of</strong> high-Mg <strong>and</strong>esites <strong>in</strong> <strong>the</strong><br />

Setouchi volcanic belt, southwest Japan, Geology 29 (2001) 323-326.<br />

[72] T. Shimamoto, J.M. Logan, Effects <strong>of</strong> simulated clay gauches on <strong>the</strong> slid<strong>in</strong>g<br />

behavior <strong>of</strong> <strong>the</strong> Tennessee s<strong>and</strong>stone, Tectonophysics 75 (1981) 243-255.<br />

[73] D.L. Kohlstedt, H. Keppler, D.C. Rubie, Solubility <strong>of</strong> water <strong>in</strong> <strong>the</strong> α, β, <strong>and</strong> γ phases<br />

<strong>of</strong> (Mg,Fe) 2 SiO 4 , Contrib. M<strong>in</strong>eral. Petrol. 123 (1996) 345-357.<br />

[74] J. Igr<strong>in</strong>, H. Skogby, Hydrogen <strong>in</strong> nom<strong>in</strong>ally anhydrous upper-<strong>mantle</strong> m<strong>in</strong>erals:<br />

concentration levels <strong>and</strong> implications, Eur. J. M<strong>in</strong>eral. 12 (2000) 543-570.<br />

[75] P.N. Chopra, M.S. Paterson, <strong>The</strong> <strong>role</strong> <strong>of</strong> water <strong>in</strong> <strong>the</strong> deformation <strong>of</strong> dunite, J.<br />

Geophys. Res. 89 (1984) 7861-7876.<br />

[76] S. Mei, D.L. Kohlstedt, Influence <strong>of</strong> water on plastic deformation <strong>in</strong> oliv<strong>in</strong>e<br />

aggregates, 1. Diffusion creep regime, J. Geophys. Res. 105 (2000) 21,457-21,469.<br />

[77] S. Mei, D.L. Kohlstedt, Influence <strong>of</strong> water on plastic deformation <strong>in</strong> oliv<strong>in</strong>e<br />

aggregates, 2. Dislocation creep regime, J. Geophys. Res. 105 (2000) 21,471-<br />

21,481.<br />

[78] H. Jung, S. Karato, Water-<strong>in</strong>duced fabric transition <strong>in</strong> oliv<strong>in</strong>e, Science 293 (2001)<br />

1460-1463.<br />

[79] S. Karato, Mapp<strong>in</strong>g water content <strong>in</strong> <strong>the</strong> Earth’s <strong>mantle</strong>, In: J. Eiler (ed.) <strong>The</strong><br />

Subduction Factory, Geophysical Monograph, American Geophysical Union,<br />

Wash<strong>in</strong>gton DC, <strong>in</strong> press.<br />

[80] S. Karato, H. Jung, Effects <strong>of</strong> pressure <strong>of</strong> high-temperature dislocation creep <strong>in</strong><br />

oliv<strong>in</strong>e, Phil. Mag. 83 (2003) 401-414.<br />

[81] W.C. Hammond, E.D. Humphreys, Upper <strong>mantle</strong> seismic wave attenuation: effects<br />

<strong>of</strong> realistic partial melt geometries, J. Geophys. Res. 105 (2000) 10,987-10,999.<br />

[82] W.C. Hammond, E.D. Humphreys, Upper <strong>mantle</strong> seismic wave velocity: effects <strong>of</strong><br />

realistic partial melt geometries, J. Geophys. Res. 105 (2000) 10,975-10,986.<br />

16


[83] Y. Takei, Acoustic properties <strong>of</strong> partially molten media studied on a simple b<strong>in</strong>ary<br />

system with a controllable dihedral angle, J. Geophys. Res. 105 (2000) 16,665-<br />

16,682.<br />

[84] D.L. Kohlstedt, Structure, rheology <strong>and</strong> permeability <strong>of</strong> partially molten rocks at low<br />

melt fractions, In: Mantle flow <strong>and</strong> melt generation at mid-oceanic ridges (J.P.<br />

Morgan, D.K. Blackman, J.M. S<strong>in</strong>ton, eds) American Geophysical Union,<br />

Wash<strong>in</strong>gton DC (1992) 102-121.<br />

[85] J.A.D. Connolly, D.M. Kerrick, Metamorphic controls on seismic velocity <strong>of</strong><br />

subducted oceanic crust at 100-250 km depth, Earth Planet. Sci. Lett. 204 (2002)<br />

61-74.<br />

[86] S. Kamiya, Y. Kobayashi, Seismological evidence for <strong>the</strong> existence <strong>of</strong> serpent<strong>in</strong>ized<br />

<strong>wedge</strong> <strong>mantle</strong>, Geophys. Res. Lett. 27 (2000) 819-822.<br />

[87] J. Nakajima, T. Matsuzawa, A. Hasegawa, D. Zhao, Three-dimensional structure <strong>of</strong><br />

V p , V s , <strong>and</strong> V p /V s beneath nor<strong>the</strong>astern Japan: Implications for arc magmatism <strong>and</strong><br />

fluids, J. Geophys. Res. 106 (2001) 21,843-21857.<br />

[88] D.P. Dobson, P.G. Meredith, S.A. Boon, Simulation <strong>of</strong> <strong>subduction</strong> <strong>zone</strong> seismicity<br />

by dehydration <strong>of</strong> serpent<strong>in</strong>e, Science 298 (2002) 1407-1410.<br />

[89] D.P. Zhao, O.P. Mishra, R. S<strong>and</strong>a, Influence <strong>of</strong> fluids <strong>and</strong> magma on earthquakes:<br />

seismological evidence, Phys. Earth Planet. Sci. 132 (2002) 249-267.<br />

[90] B.R. Hacker, S.M. Peacock, G.A. Abers, S.D. Holloway, Subduction factory 2. Are<br />

<strong>in</strong>termediate-depth earthquakes <strong>in</strong> subduct<strong>in</strong>g slabs l<strong>in</strong>ked to metamorphic<br />

dehydration reactions? J. Geophys. Res. 108 (2003) 2030 doi:<br />

10.1029/2001JB001129.<br />

[91] D. Bercovici, <strong>The</strong> generation <strong>of</strong> plate tectonics from <strong>mantle</strong> convection, Earth<br />

Planet. Sci. Lett. 205 (2003) 107-121.<br />

[92] D.P. McKenzie, Speculations on <strong>the</strong> consequences <strong>and</strong> causes <strong>of</strong> plate motions,<br />

Geophys. J. R. Astron. Soc. 18 (1969) 1-32.<br />

[93] D.L. Harry, N.L. Green, Slab dehydration <strong>and</strong> basalt petrogenesis <strong>in</strong> <strong>subduction</strong><br />

systems <strong>in</strong>volv<strong>in</strong>g very young oceanic lithosphere, Chem. Geol. 160 (1999) 309-<br />

333.<br />

[94] J.H. Davies, Simple analytic model for <strong>subduction</strong> <strong>zone</strong> <strong>the</strong>rmal structure, Geophys.<br />

J. Int. 139 (1999) 823-828.<br />

[95] G.K. Batchelor, An <strong>in</strong>troduction to fluid <strong>dynamics</strong>, Cambridge University Press,<br />

Cambridge, UK (1967) 615 pp.<br />

[96] S.M. Peacock, <strong>The</strong>rmal <strong>and</strong> petrological structure <strong>of</strong> <strong>subduction</strong> <strong>zone</strong>s, In: G.E.<br />

Bebout, D.W. Scholl, S.H. Kirby, J.P. Platt (eds), Subduction: Top to Bottom,<br />

Geophysical Monograph 96, American Geophysical Union, Wash<strong>in</strong>gton DC (1996)<br />

119-133.<br />

[97] Y. Furukawa, Depth <strong>of</strong> <strong>the</strong> decoupl<strong>in</strong>g plate <strong>in</strong>terface <strong>and</strong> <strong>the</strong>rmal structure under<br />

arcs, J. Geophys. Res. 98 (1993) 20,005-20,013.<br />

[98] P.E. van Keken, B. Kiefer, S. Peacock, High resolution models <strong>of</strong> <strong>subduction</strong> <strong>zone</strong>s:<br />

implications for <strong>mantle</strong> dehydration reactions <strong>and</strong> <strong>the</strong> transport <strong>of</strong> water <strong>in</strong>to <strong>the</strong><br />

deep <strong>mantle</strong>, Geochem. Geophys. Geosys. 3 (2002) doi: 10.1029/2001GC000256.<br />

[99] J.A. Conder, D.A. Wiens, J. Morris, On <strong>the</strong> decompression melt<strong>in</strong>g structure at<br />

volcanic arcs <strong>and</strong> back-arc spread<strong>in</strong>g centers, Geophys. Res. Lett. 29 (2002) doi:<br />

10.1029/2002GL015390.<br />

17


[100] M.A. Eberle, O. Grasset, C. Sot<strong>in</strong>, A numerical study <strong>of</strong> <strong>the</strong> <strong>in</strong>teraction <strong>of</strong> <strong>the</strong><br />

<strong>mantle</strong> <strong>wedge</strong>, subduct<strong>in</strong>g slab, <strong>and</strong> overrid<strong>in</strong>g plate, Phys. Earth Planet. Inter. 134<br />

(2002) 191-202.<br />

[101] P.B. Kelemen, J.L. Rill<strong>in</strong>g, E.M. Parmentier, L. Mehl, B.R. Hacker, <strong>The</strong>rmal<br />

structure due to solid-state flow <strong>in</strong> <strong>the</strong> <strong>mantle</strong> <strong>wedge</strong> beneath arcs, <strong>in</strong>: J. Eiler (ed)<br />

<strong>The</strong> Subduction Zone Factory, Geophysical Monograph, American Geophysical<br />

Union, Wash<strong>in</strong>gton DC, <strong>in</strong> press.<br />

[102] S.M. Peacock, <strong>The</strong>rmal structure <strong>and</strong> metamorphic evolution <strong>of</strong> subduct<strong>in</strong>g slabs,<br />

In: J. Eiler (ed.) <strong>The</strong> Subduction Factory, Geophysical Monograph, American<br />

Geophysical Union, Wash<strong>in</strong>gton DC, (<strong>in</strong> press).<br />

[103] W.P. Leeman, Boron <strong>and</strong> o<strong>the</strong>r fluid-mobile elements <strong>in</strong> volcanic arc lavas:<br />

Implications for <strong>subduction</strong> processes, <strong>in</strong>: G.E. Bebout, D.W. Scholl, S.H. Kirby,<br />

J.P. Platt (eds), Subduction: Top to Bottom, Geophysical Monograph 96, American<br />

Geophysical Union, Wash<strong>in</strong>gton DC (1996) 269-276.<br />

[104] L.J. Ruff, B.W. Tichelaar, What controls <strong>the</strong> seismogenic plate <strong>in</strong>terface <strong>in</strong><br />

<strong>subduction</strong> <strong>zone</strong>s? In: G.E. Bebout, D.W. Scholl, S.H. Kirby, J.P. Platt (eds),<br />

Subduction: top to bottom, Geophysical Monograph 96, American Geophysical<br />

Union, Wash<strong>in</strong>gton DC (1996) 105-111.<br />

[105] A. Rowl<strong>and</strong>, J.H. Davies, Buoyancy ra<strong>the</strong>r than rheology controls <strong>the</strong> thickness <strong>of</strong><br />

<strong>the</strong> overrid<strong>in</strong>g mechanical lithosphere at <strong>subduction</strong> <strong>zone</strong>s, Geophys. Res. Lett. 26<br />

(1999) 3037-3040.<br />

[106] C. K<strong>in</strong>caid, I.S. Sacks, <strong>The</strong>rmal <strong>and</strong> dynamical evolution <strong>of</strong> <strong>the</strong> upper <strong>mantle</strong> <strong>in</strong><br />

<strong>subduction</strong> <strong>zone</strong>s, J. Geophys. Res. 102 (1997) 12,295-12,315.<br />

[107] S. Zhong, M. Gurnis, L. Moresi, Role <strong>of</strong> faults, nonl<strong>in</strong>ear rheology, <strong>and</strong> viscosity<br />

structure <strong>in</strong> generat<strong>in</strong>g plates from <strong>in</strong>stantaneous <strong>mantle</strong> flow models, J. Geophys.<br />

Res. 103 (1998) 15,255-15,268.<br />

[108] J. van Hunen, A.P. van den Berg, N.J. Vlaar, On <strong>the</strong> <strong>role</strong> <strong>of</strong> subduct<strong>in</strong>g oceanic<br />

plateaus <strong>in</strong> <strong>the</strong> development <strong>of</strong> shallow flat <strong>subduction</strong>, Tectonophysics 352 (2002)<br />

317-333.<br />

[109] T. Okhura, Structure <strong>of</strong> <strong>the</strong> upper part <strong>of</strong> <strong>the</strong> Philipp<strong>in</strong>e Sea plate estimated by later<br />

phases <strong>of</strong> upper <strong>mantle</strong> earthquakes <strong>in</strong> <strong>and</strong> around Shikoku, Japan, Tectonophysics<br />

321 (2000) 17-36.<br />

[110] R.O. W<strong>in</strong>der, S.M. Peacock, Viscous forces act<strong>in</strong>g on subduct<strong>in</strong>g lithosphere, J.<br />

Geophys. Res. 106 (2001) 21,937-21,951.<br />

[111] M.I. Billen <strong>and</strong> M. Gurnis, A low viscosity <strong>wedge</strong> <strong>in</strong> <strong>subduction</strong> <strong>zone</strong>s, Earth<br />

Planet. Sci. Lett. 193 (2001) 227-236.<br />

[112] D.M. Kerrick, J.A.D. Connolly, Metamorphic devolatilization <strong>of</strong> subducted oceanic<br />

metabasalts: implications for seismicity, arc magmatism <strong>and</strong> volatile recycl<strong>in</strong>g,<br />

Earth Planet. Sci. Lett. 189 (2001) 19-29.<br />

[113] L.H. Ruepke, J. Phipps Morgan, M. Hort, J.A.D. Connolly, Are <strong>the</strong> regional<br />

variations <strong>in</strong> Central American arc lavas due to differ<strong>in</strong>g basaltic versus peridotitic<br />

slab sources <strong>of</strong> fluids? Geology 30 (2002) 1035-1038.<br />

[114] P.S. Hall, C. K<strong>in</strong>caid, Diapiric flow at <strong>subduction</strong> <strong>zone</strong>s: A recipe for rapid<br />

transport, Science 292 (2001) 2472-2475.<br />

[115] M. Spiegelman, D. McKenzie, Simple 2D models for melt extraction at mid-ocean<br />

ridges <strong>and</strong> isl<strong>and</strong> arcs, Earth Planet. Sci. Lett. 83 (1987) 137-152.<br />

18


[116] J. Buttles <strong>and</strong> P. Olson, A laboratory model <strong>of</strong> <strong>subduction</strong> <strong>zone</strong> anisotropy, Earth<br />

Planet. Sci. Lett. 164 (1998) 245-262.<br />

[117] K.M. Fischer, E.M. Parmentier, A.R. St<strong>in</strong>e, E.R. Wolf, Model<strong>in</strong>g anisotropy <strong>and</strong><br />

plate-driven flow <strong>in</strong> <strong>the</strong> Tonga <strong>subduction</strong> <strong>zone</strong> back arc, J. Geophys. Res. (2000)<br />

16,181-16,191.<br />

[118] C.E. Hall, K.M. Fischer, E.M. Parmentier, D.K. Blackman, <strong>The</strong> <strong>in</strong>fluence <strong>of</strong> plate<br />

motions on three-dimensional back arc <strong>mantle</strong> flow <strong>and</strong> shear wave splitt<strong>in</strong>g, J.<br />

Geophys. Res. 105 (2000) 28,009-28,033.<br />

.<br />

19

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!