09.11.2013 Views

Full text in PDF - Geological Society of India

Full text in PDF - Geological Society of India

Full text in PDF - Geological Society of India

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

JOURNAL GEOLOGICAL SOCIETY OF INDIA<br />

Vol.76, December 2010, pp.589-606<br />

Komatiite with<strong>in</strong> Chhotanagpur Gneissic Complex at Semra, Palamau<br />

District, Jharkhand: Petrological and Geochemical F<strong>in</strong>gerpr<strong>in</strong>ts<br />

D. K. BHATTACHARYA 1 , D. MUKHERJEE 2# and V. C. BARLA 3<br />

1 Post Graduate Department <strong>of</strong> Geology, Ranchi University, Ranchi – 834 008<br />

2 202, Manna Surti Complex, Lohianagar, Kankarbagh, Patna – 800 020<br />

# Present Address: <strong>Geological</strong> Survey <strong>of</strong> <strong>India</strong>, Operation: Bihar, Patna – 800 020<br />

3 P.G. Department <strong>of</strong> Geology, V<strong>in</strong>oba Bhave University, Hazaribag – 821 305<br />

Email: dkbpr<strong>of</strong>ru78@gmail.com; dmukherjeegsi@gmail.com<br />

Abstract: Komatiite near Semra village, southwest <strong>of</strong> Daltonganj <strong>in</strong> Palamau District <strong>of</strong> Jharkhand, occurs with<strong>in</strong><br />

tremolite act<strong>in</strong>olite schist <strong>of</strong> ultramafic parentage. The fragmented oliv<strong>in</strong>e phenocrysts show mutually parallel as well as<br />

angular alignment, represent<strong>in</strong>g relict sp<strong>in</strong>ifex <strong>text</strong>ure. M<strong>in</strong>eralogically the Semra ultramafic is lehrzolite <strong>in</strong> composition.<br />

The cumulates lack visible deformation suggest<strong>in</strong>g orig<strong>in</strong>al magmatic crystallization <strong>of</strong> these ultramafic rocks. The<br />

present occurrence <strong>of</strong> Sp<strong>in</strong>ifex Textured Peridotitic Komatiite (STPK) <strong>in</strong> Chhotanagpur Gneissic Complex (CGC) at<br />

northwestern part <strong>of</strong> Eastern <strong>India</strong>n Shield is <strong>of</strong> great significance as it opens up a possibility <strong>of</strong> the presence <strong>of</strong> Archaean<br />

rock <strong>in</strong> CGC, which is yet to be established.<br />

These ultramafics are geochemically characterised by dist<strong>in</strong>ctive high MgO, Ni, Cr and poor <strong>in</strong> alkali, TiO 2<br />

, Ba, Cs,<br />

Rb, Nb, Hf and Y contents. It has low abundance <strong>of</strong> <strong>in</strong>compatible elements and is LREE depleted [(La/Yb) n<br />

= 0.74 –<br />

1.07] with enriched flat HREE pr<strong>of</strong>ile, represent<strong>in</strong>g chondrite like composition. This shows diagnostic convex upward<br />

REE pr<strong>of</strong>ile. All these together with relict but dist<strong>in</strong>ct sp<strong>in</strong>ifex <strong>text</strong>ure confirm the komatiitic character <strong>of</strong> Semra ultramafic.<br />

The chemical data plots for ultramafics conf<strong>in</strong>e to komatiite field <strong>in</strong> discrim<strong>in</strong>ate diagrams. The Mg# (>74) <strong>of</strong> the Semra<br />

ultramafics are comparable to primitive upper mantle Mg# (89.8) and high enough for rocks derived from ultramagnesian<br />

liquid <strong>of</strong> the mantle derived source. Considerably high Zr concentration <strong>in</strong> Semra ultramafic is attributed to Zr-enriched<br />

mantle source. Geochemically Semra ultramafics is comparable with “Al-undepleted” Munro type komatiites. Depleted<br />

<strong>in</strong>compatible trace elements also po<strong>in</strong>t towards Al-undepleted nature for the <strong>in</strong>vestigated ultramafics, which are<br />

characterised by dist<strong>in</strong>ctive low SiO 2<br />

content <strong>in</strong> comparison to many well known komatiites <strong>of</strong> the world. The low K 2<br />

O<br />

content <strong>in</strong>dicate plume related magmatism for its generation. Tectonic sett<strong>in</strong>g <strong>of</strong> this STPK with dist<strong>in</strong>ctive cumulus<br />

nature is suggestive <strong>of</strong> its emplacement <strong>in</strong> an extensional tectonic regime.<br />

Keywords: Komatiite, Plume magmatism, Extensional Regime, Chhotanagpur Gneissic Complex, Semra, Palamau,<br />

Jharkhand.<br />

INTRODUCTION<br />

Komatiite represents an important group <strong>of</strong> igneous rock<br />

(Nesbitt et al. 1979). The term “Sp<strong>in</strong>ifex <strong>text</strong>ure” was co<strong>in</strong>ed<br />

by Nesbitt (1971) referr<strong>in</strong>g to large, skeletal, platy, bladed<br />

or acicular gra<strong>in</strong>s <strong>of</strong> oliv<strong>in</strong>e, <strong>in</strong>itially called “crystall<strong>in</strong>e<br />

quench <strong>text</strong>ure” <strong>of</strong> Komatiites <strong>in</strong> the Barberton greenstone<br />

belt, South Africa (Viljoen and Viljoen, 1969). Komatiite<br />

was def<strong>in</strong>ed by Arndt and Nesbitt (1982) as ultramafic<br />

mantle-derived volcanic rock hav<strong>in</strong>g sp<strong>in</strong>ifex <strong>text</strong>ure (Arndt<br />

and Lesher, 1992). Subsequently as per IUGS classification,<br />

komatiites were def<strong>in</strong>ed as conta<strong>in</strong><strong>in</strong>g >18 wt% MgO with<br />


590 D. K. BHATTACHARYA AND OTHERS<br />

magmatism, spann<strong>in</strong>g over a prolong period (Mukherjee and<br />

Ghose, 1999). The earliest magmatism recorded <strong>in</strong> CGC is<br />

represented by the highly altered mafic-ultramafic suite,<br />

considered as late Archaean or Early Palaeo-Proterozoic <strong>in</strong><br />

age (Mukherjee and Ghose, 1992). The ultramafics <strong>of</strong> CGC<br />

are well differentiated, rang<strong>in</strong>g <strong>in</strong> composition from<br />

peridotite to pyroxenite and metamorphosed to serpent<strong>in</strong>ite<br />

or talc tremolite or chlorite schist (Ghose and Mukherjee,<br />

2000). Large clusters <strong>of</strong> these rocks are known from<br />

Daltonganj, Dumka, Parasnath Hill to Mathurapur, Hura-<br />

Puncha areas and also along North Purulia Shear Zone<br />

(NPSZ) <strong>in</strong> Purulia district <strong>of</strong> West Bengal (Mahadevan,<br />

2002; Mandal et al., 2007, Mandal and Ray, 2009). The<br />

ultramafic enclaves are also reported from the granulite<br />

belts <strong>of</strong> Adra <strong>in</strong> Purulia district (Mahadevan, 1992) and<br />

Dumka area (Bhattacharya, 1975). Mahadevan (2002)<br />

suggested possible l<strong>in</strong>kage with sub-crustal peridotitic<br />

layers. Most <strong>of</strong> the mafic rocks <strong>of</strong> CGC <strong>in</strong>clud<strong>in</strong>g those <strong>of</strong><br />

Palamau Districts (Ghose et al. 1983, Srivastava et al. 1984)<br />

and also the ultramafics with<strong>in</strong> the CGC (Mandal and Ray,<br />

2009) have been assigned tholeiitic parentage.In marked<br />

contrast, the presently <strong>in</strong>vestigated Semra ultramafic at<br />

northwestern sector <strong>of</strong> CGC is represent<strong>in</strong>g Komatiitic<br />

characters.<br />

Komatiites are rare and exotic rocks serv<strong>in</strong>g as w<strong>in</strong>dows<br />

to the earth’s mantle. Its potentiality as host <strong>of</strong> Cu-Ni-Fe<br />

sulfides and PGE make the study <strong>of</strong> Semra Komatiite<br />

extremely important and reward<strong>in</strong>g both from academic as<br />

well as economic po<strong>in</strong>ts <strong>of</strong> view. The present occurrence <strong>of</strong><br />

Komatiite with<strong>in</strong> CGC probably represents only one <strong>of</strong> its<br />

k<strong>in</strong>d, thereby bears great significance to elucidate early<br />

magmatic history <strong>of</strong> this vast mobile belt. The nearest<br />

known occurrence <strong>of</strong> Komatiite is reported from Kunchia<br />

belong<strong>in</strong>g to Proterozoic volcanosedimentary sequence<br />

north <strong>of</strong> Dalma (Das et al. 2001), occurr<strong>in</strong>g just south <strong>of</strong><br />

southern marg<strong>in</strong> <strong>of</strong> CGC. The present work primarily<br />

focused to evaluate komatiitic character <strong>of</strong> Semra ultramafic<br />

by evaluat<strong>in</strong>g its petrological and chemical attributes. This<br />

will be helpful <strong>in</strong> understand<strong>in</strong>g nature <strong>of</strong> mantle <strong>in</strong> this<br />

part <strong>of</strong> CGC.<br />

GEOLOGICAL SETTING<br />

<strong>Geological</strong> map <strong>of</strong> Eastern <strong>India</strong>n Shield (northern part,<br />

Fig.1) depicts the regional geological and tectonic sett<strong>in</strong>g<br />

<strong>of</strong> the study area with<strong>in</strong> CGC. The spatial disposition <strong>of</strong><br />

Chhotanagpur Gneissic Complex (CGC) with respect to<br />

different cratonic blocks <strong>of</strong> <strong>India</strong>n shield is shown <strong>in</strong> Fig.1<br />

(Inset A). The episodic igneous activity with<strong>in</strong> the CGC was<br />

spann<strong>in</strong>g about two billion years over an ensialic basement<br />

(Mukherjee and Ghose, 1999; Ghose and Mukherjee, 2000;<br />

Ghose et al. 2005; Ghose and Chatterjee, 2008). The study<br />

area comprises ma<strong>in</strong>ly <strong>of</strong> granite gneisses that conta<strong>in</strong><br />

enclaves <strong>of</strong> older supracrustals <strong>of</strong> vary<strong>in</strong>g dimensions<br />

oriented parallel to NNW-SSE to NW-SE regional trend.<br />

These supracrustals comprise <strong>of</strong> metabasics, metapelites and<br />

metapsammites (Lahiri and Das, 1984; Srivastava et al.<br />

1984). There are several lenses <strong>of</strong> mafic/ultramafic rocks<br />

with<strong>in</strong> the granite gneiss/migmatite gneiss country rock. The<br />

later is ma<strong>in</strong>ly represented by diorite, granodiorite, tonalite<br />

and leucogranite, which are the result <strong>of</strong> late- to post-tectonic<br />

large scale granitic activities and pegmatite <strong>in</strong>trusions.<br />

Numerous small size ultramafic bodies <strong>of</strong> different<br />

geological ages with<strong>in</strong> CGC have been classified <strong>in</strong>to three<br />

categories: (i) Pre-tectonic Ultramafics, (ii) Syn-tectonic<br />

Ultramafics and (iii) Post-tectonic Ultramafics (Mishra<br />

et al. 2004; Ghose and Chatterjee, 2008). The ultramafic<br />

clusters along the Auranga-Koel valley at south and<br />

southwest <strong>of</strong> Daltonganj (viz. Sua (23°59'35":84°06'12",<br />

73A/1), Kauria (23°58'45":84°06'34", 73A/1), Semra<br />

(24°00'02":83 o 59'40", 63P/16), Salatua (24°02'45":<br />

83°57'10", 63P/16), Datam (23°56'’50":84°02’33", 73A/1),<br />

Biwabathan (23°54'59":84°02'50", 73A/1), Gore (23°58'<br />

13":83°58'33", 64M/13), Nawadih (23°57'31":83°59'07",<br />

64M/13) and Mahawat-Murie (23°55'45":84°04', 73A/1)),<br />

have been considered as Pre-tectonic ultramafics (Ghose<br />

and Chatterjee, op.cit). These represent the oldest magmatic<br />

rock <strong>in</strong> the CGC (Ghose, 1983, 1992; Mukherjee and Ghose,<br />

1992; Ghose and Mukherjee, 2000). The earliest ultramafic<br />

magmatism appears to be contemporaneous with early<br />

depositional history predat<strong>in</strong>g fold<strong>in</strong>g and metamorphism.<br />

Basic <strong>in</strong>trusives (accompany<strong>in</strong>g second generation <strong>of</strong><br />

fold<strong>in</strong>g) are now represented by amphibolites and<br />

metagabbros which occur mostly as concordant bodies c<strong>of</strong>olded<br />

with gneisses and migmatites. The basic magmatism<br />

was succeeded by large scale granitic activities and<br />

pegmatite <strong>in</strong>trusions which are syn- to post-tectonic<br />

(Mukherjee and Ghose, 1999; Ghose and Mukherjee, 2000).<br />

The presently <strong>in</strong>vestigated ultramafic rocks <strong>in</strong> the<br />

Auranga-Koel valley occurr<strong>in</strong>g at the northwestern part <strong>of</strong><br />

the CGC is located near Semra (24°00'02"N; 83°59'40"E)<br />

village, about 8.5 km SW <strong>of</strong> Daltonganj town (Fig.1) <strong>in</strong><br />

Palamau District <strong>of</strong> Jharkhand. Semra-Salatua area <strong>of</strong><br />

Palamau district is well known for numerous bands <strong>of</strong><br />

tremolite-act<strong>in</strong>olite-magnetite schists <strong>in</strong> places with<br />

cumm<strong>in</strong>gtonite-grunerite schists and amphibolites<br />

(Mahadevan, 2002, p.275), which have been assigned<br />

magmatic orig<strong>in</strong> by Das Gupta et al. (1994) and S<strong>in</strong>ha and<br />

Bhattacharya (1995). The petrology <strong>of</strong> different rock types<br />

occurr<strong>in</strong>g southeast <strong>of</strong> the present area has been studied by<br />

JOUR.GEOL.SOC.INDIA, VOL.76,DEC.2010


KOMATIITE WITHIN CHHOTANAGPUR GNEISSIC COMPLEX AT SEMRA, JHARKHAND 591<br />

Fig.1. <strong>Geological</strong> map <strong>of</strong> Eastern <strong>India</strong>n Shield (modified after Acharyya, 2003), show<strong>in</strong>g the regional geological and tectonic sett<strong>in</strong>g<br />

<strong>of</strong> the study area with<strong>in</strong> CGC. 1 – S<strong>in</strong>ghbhum and other Granites, 2 – Iron Ore Group, 3 – Unclassified metamorphics,<br />

4 – Dhanjori Volcanosediments, 5 – Dalma Volcanics, 6 – Older Metasediments, 7 – Granulites, 8 – Chhotanagpur Gneiss and<br />

Granites <strong>in</strong>clud<strong>in</strong>g Bihar Mica Belt, 9 – Bengal Anorthosite, 10 – Mahakoshal–Rajgir–Munger–Metasediments, 11 – V<strong>in</strong>dhayan<br />

Supergroup, 12 – Gondwana Supergroup, 13 – Rajmahal Volcanics, 14 – Indogangetic Alluvium, 15 – Major L<strong>in</strong>eament/Shear<br />

Zone/Fault. AKGB – Auranga-Koel Gondwana Bas<strong>in</strong>; GDGB – Garhwa-Daltonganj Gondwana Bas<strong>in</strong>; SNNF – Son Narmada<br />

Northern Fault. SNSF - Son Narmada Southern Fault, BTF – Balarampur Tatapani Fault, NPSZ – North Purulia Shear Zone,<br />

SPSZ – South Purulia Shear Zone, SSZ – S<strong>in</strong>ghbhum Shear Zone. DM – Dumka, DL – Daltonganj, DU – Dudhi, MU – Munger,<br />

PR – Purulia, RN – Ranchi. Inset: Spatial disposition <strong>of</strong> Chhotanagpur Gneissic Complex (CGC) at Eastern <strong>India</strong>n Shield <strong>in</strong><br />

relation to Eastern Ghats Mobile Belt (EGMB), Central <strong>India</strong>n Tectonic Zone (CITZ), Shillong-Meghalaya Gneissic Complex<br />

(SMGC) and S<strong>in</strong>ghbhum Mobile Belt (SMB), SC – S<strong>in</strong>ghbhum Craton, BC – Bastar Craton, BuC – Bundelkhand and<br />

KC – Karnataka Craton (modified after Acharyya et al. 1998).<br />

Lahiri and Das (1984), Srivastava et al. (1984), and Ghose<br />

and Srivastava (2001), and east <strong>of</strong> present area by Kar and<br />

Sarkar (1989). In the northwestern part <strong>of</strong> CGC, ultramafic<br />

rocks are rare and post-tectonic <strong>in</strong>trusion <strong>of</strong> ultramafic rocks<br />

(two hornblende peridotite dykes) have also been reported<br />

from the southern marg<strong>in</strong> <strong>of</strong> Gondwana Bas<strong>in</strong> at Richughuta<br />

(Ghose, 1970).<br />

TECTONIC SETTING<br />

The tectonic framework surround<strong>in</strong>g the study area is<br />

shown <strong>in</strong> geological map <strong>of</strong> Eastern <strong>India</strong>n shield (northern<br />

part) (Fig.1).Spatial disposition <strong>of</strong> Chhotanagpur Gneissic<br />

Complex (CGC) <strong>in</strong> relation to other major lithotectonic<br />

prov<strong>in</strong>ces are shown <strong>in</strong> Fig.1 (Inset A). The proximity <strong>of</strong><br />

the study area to Son-Narmada South Fault (SNSF) at north<br />

JOUR.GEOL.SOC.INDIA, VOL.76,DEC.2010


592 D. K. BHATTACHARYA AND OTHERS<br />

and Balarampur-Tattapani Fault (BTF) to the south (Fig.1;<br />

cf. Fig.2 <strong>of</strong> Acharyya and Roy, 2000; Mukherjee, 1998) is a<br />

significant spatial aspect <strong>of</strong> its tectonic sett<strong>in</strong>g. The SNSF<br />

is an ENE-WSW brittle-ductile shear zone marked by<br />

discont<strong>in</strong>uous fault breccia and mylonite separat<strong>in</strong>g the<br />

Mahakoshal belt from the CGC (Mazumdar, 1988; Roy et<br />

al. 2002; Mohan et al. 2007). The eastern cont<strong>in</strong>uation <strong>of</strong><br />

SNSF is also locally referred as Nagar Untari (68P/7) -<br />

Chhatarpur (72D/3) Shear zone, which is located 38 Kms<br />

north <strong>of</strong> study area. In addition to these, immediately<br />

adjo<strong>in</strong><strong>in</strong>g Semra, the Garhwa-Daltonganj Gondwana bas<strong>in</strong><br />

(GDGB) at north and Auranga-Koel Gondwana bas<strong>in</strong><br />

(AKGB) at south (Fig.1) are located, which are characterised<br />

by number <strong>of</strong> bas<strong>in</strong> marg<strong>in</strong> faults and transverse faults. The<br />

easterly strikes <strong>of</strong> the bas<strong>in</strong> boundary fault (Fig.1) co<strong>in</strong>cide<br />

with the general strike trends <strong>of</strong> the Precambrian basement.<br />

Such parallelism with the strikes <strong>of</strong> basement rocks lends<br />

credence to the possibility that the Gondwana formations<br />

have responded to tectonic forces along pre-exist<strong>in</strong>g l<strong>in</strong>es<br />

<strong>of</strong> least resistance (Pascoe, 1959). Some <strong>of</strong> these bas<strong>in</strong><br />

boundary faults cont<strong>in</strong>ue for more than 80 km across the<br />

<strong>in</strong>terven<strong>in</strong>g Precambrian basement (Chatterjee and Ghosh,<br />

1970), signify<strong>in</strong>g that these major faults are pre-Gondwana<br />

precursor faults (Dutta and Mitra, 1984; quoted by Sarkar,<br />

1988, p.132). Precambrian ancestry may have provided<br />

broad tectonised basement framework for Gondwana bas<strong>in</strong>s<br />

(Mahadevan, 2002, p.374).<br />

The pattern <strong>of</strong> the <strong>in</strong>trabas<strong>in</strong>al faults and bas<strong>in</strong>-bound<strong>in</strong>g<br />

faults represent both extensional and strike-slip regimes <strong>in</strong><br />

the Precambrian basement lead<strong>in</strong>g to the development <strong>of</strong><br />

Gondwana bas<strong>in</strong>s along the E-W direction (Mukherjee and<br />

Ghose, 1999; Chakraborty et al. 2003; Srivasatava et al.<br />

2009). The tectonics <strong>of</strong> Gondwana bas<strong>in</strong>s formation<br />

have been l<strong>in</strong>ked largely to distensional stress fields<br />

(Mahdevan, 2002) and their development is <strong>of</strong>ten attributed<br />

to epiorogenic processes and to deep crust-mantle<br />

<strong>in</strong>teractions (Chatterjee and Ghose, 1970; Niyogi, 1987).<br />

Lamprophyric/lamproite with<strong>in</strong> the Gondawana bas<strong>in</strong>s<br />

are essentially fault controlled (Mukherjee and Ghose,<br />

1999) which are the manifestation <strong>of</strong> plume generated<br />

magmatism.<br />

Five major <strong>in</strong>tra-cont<strong>in</strong>ental rift/shear zones largely<br />

controlled magmatism <strong>in</strong> the CGC (Ghose and Chatterjee,<br />

2008). These <strong>in</strong>tra-cont<strong>in</strong>ental rift/shear zones (Fig.1)<br />

represent major extensional zone <strong>of</strong> tectonism. The<br />

widespread mafic-ultramafic magmatism <strong>in</strong> the CGC<br />

mostly occurs <strong>in</strong> proximity to these major <strong>in</strong>tra-cont<strong>in</strong>ental<br />

rift/shear zones, suggest<strong>in</strong>g their emplacement under<br />

extensional tectonism (Mukherjee and Ghose, 1999). Such<br />

widespread occurrence <strong>of</strong> <strong>in</strong>trusive and extrusive magmatic<br />

rocks rang<strong>in</strong>g from Late Palaeoproterozoic to Early Tertiary<br />

signifies reactivation <strong>of</strong> the <strong>in</strong>tra-cont<strong>in</strong>ental rift/shear zones<br />

time and aga<strong>in</strong> (Mukherjee and Ghose, op.cit.; Ghose and<br />

Chatterjee, 2008.). The orig<strong>in</strong> <strong>of</strong> Son-Narmada Graben has<br />

also been attributed to an <strong>in</strong>tracratonic rift related to mantle<br />

upwell<strong>in</strong>g (Das and Patel, 1984; Shankar, 1991) or a backarc<br />

rift bas<strong>in</strong> dur<strong>in</strong>g the northward subduction (Roy and<br />

Prasad, 2003). Proterozoic rift<strong>in</strong>g <strong>in</strong> the CGC marks the<br />

earliest major extensional tectonism. Thus the occurrences<br />

<strong>of</strong> the mafic-ultramafic suites <strong>of</strong> rock <strong>in</strong> proximity to the<br />

palaeo-suture was <strong>in</strong>duced by th<strong>in</strong>n<strong>in</strong>g and fractur<strong>in</strong>g <strong>of</strong> the<br />

crust as a result <strong>of</strong> extensional tectonism <strong>in</strong>volv<strong>in</strong>g shallower<br />

depths <strong>of</strong> the mantle probably not exceed<strong>in</strong>g 250-300 kms.<br />

(Ghose and Chatterjee, 2008).<br />

NATURE OF OCCURRENCE<br />

The Semra ultramafics at northwestern part <strong>of</strong> CGC<br />

(Fig.1) occur as two isolated NNW–SSE trend<strong>in</strong>g lensoidal<br />

massive bodies with<strong>in</strong> tremolite act<strong>in</strong>olite schist <strong>of</strong> ultramafic<br />

parentage <strong>in</strong> a predom<strong>in</strong>antly granite gneiss and migmatite<br />

gneiss country. Concordant relationship <strong>of</strong> these bodies with<br />

reference to the dom<strong>in</strong>ant structural gra<strong>in</strong> such as foliation/<br />

gneissosity <strong>in</strong> the country rocks has been observed. These<br />

rocks are dark greyish black <strong>in</strong> colour when fresh and pale<br />

to dark brown on weathered surface.<br />

The presence <strong>of</strong> sp<strong>in</strong>ifex <strong>text</strong>ure has been recognised as<br />

a diagnostic feature <strong>of</strong> komatiite flows (Nisbet, 1982;<br />

Donaldson, 1982; Arndt and Nesbitt, 1984). This sp<strong>in</strong>ifex<br />

<strong>text</strong>ure is present <strong>in</strong> many, but not <strong>in</strong> all komatiite flows<br />

(Nesbitt, 1971). Accord<strong>in</strong>g to Hanski and Smolk<strong>in</strong>, (1995),<br />

Sp<strong>in</strong>ifex <strong>text</strong>ures are, however, not a diagnostic feature <strong>of</strong><br />

komatiites, as some picritic rocks also show this <strong>text</strong>ure.<br />

Sp<strong>in</strong>ifex is <strong>text</strong>ural term to describe an array <strong>of</strong> criss-cross<br />

sheafs or booklets characterised by numerous closely<br />

spaced and parallel blade or plate-like crystals <strong>of</strong> oliv<strong>in</strong>e<br />

(Pyke et al. 1973). Thus the sp<strong>in</strong>ifex <strong>text</strong>ure <strong>of</strong> komatiite<br />

is characterised by the presence <strong>of</strong> large skeletal long<br />

acicular phenocrysts <strong>of</strong> oliv<strong>in</strong>e (or pseudomorphs after<br />

oliv<strong>in</strong>e), giv<strong>in</strong>g rise to a bladed appearance especially on a<br />

weathered surface. The sp<strong>in</strong>ifex <strong>text</strong>ure <strong>in</strong> the <strong>in</strong>vestigated<br />

rocks is not very conv<strong>in</strong>c<strong>in</strong>g on the surface outcrop,<br />

which is generally manifested as either parallel or<br />

mutually at low acute angle l<strong>in</strong>ear fracture-like growth.<br />

However, the criss-cross relationship between elongated<br />

crystals <strong>of</strong> oliv<strong>in</strong>e (Fig.2A) is very much conspicuous on<br />

polished rock slab viewed under microscopes. The plate<br />

like or bladed crystals <strong>of</strong> oliv<strong>in</strong>e <strong>in</strong> Semra ultramafic rock<br />

varies <strong>in</strong> length from 50 mm to 2 cm and 0.5 mm to 5 mm<br />

<strong>in</strong> thickness.<br />

JOUR.GEOL.SOC.INDIA, VOL.76,DEC.2010


KOMATIITE WITHIN CHHOTANAGPUR GNEISSIC COMPLEX AT SEMRA, JHARKHAND 593<br />

PETROGRAPHY<br />

Semra ultramafics are medium to coarse gra<strong>in</strong>ed massive<br />

rocks. The variation <strong>in</strong> <strong>text</strong>ure and structure <strong>of</strong> these rocks<br />

are primarily due to presence or absence <strong>of</strong> oriented bladed<br />

or acicular mafic phenocrysts embedded <strong>in</strong> a granular mafic<br />

groundmass. This has given rise to two megascopically<br />

dist<strong>in</strong>guishable varieties <strong>of</strong> ultramafic rocks. The most<br />

commonly occurr<strong>in</strong>g one is massive ultramafic and other<br />

occasionally recorded one is sp<strong>in</strong>ifex (relict) <strong>text</strong>ured<br />

ultramafic. M<strong>in</strong>eralogically these are composed <strong>of</strong> oliv<strong>in</strong>e<br />

(29-51 vol%), cl<strong>in</strong>opyroxene (30-37 vol%), orthopyroxene<br />

(12-21 vol%) with magnetite ±sp<strong>in</strong>el ± serpent<strong>in</strong>e ±<br />

phlogopite ± sphene (Fig.2C and Fig.3C). The relative<br />

proportion <strong>of</strong> oliv<strong>in</strong>e and pyroxene varies widely giv<strong>in</strong>g rise<br />

to dom<strong>in</strong>ance <strong>of</strong> oliv<strong>in</strong>e over pyroxene at one place and the<br />

reverse relation at other place. Thus, m<strong>in</strong>eralogically Semra<br />

ultramafic is lherzolite. At places sp<strong>in</strong>el has also become an<br />

essential constituent. Presence <strong>of</strong> appreciable amount <strong>of</strong><br />

sulphide m<strong>in</strong>erals are noteworthy feature recorded at places,<br />

which are represented by pyrrhotite, pentlandite,<br />

chalcopyrite, pyrite and arsenopyrite.<br />

Sp<strong>in</strong>ifex <strong>text</strong>ure on a polished rock slab (under the<br />

microscope) is def<strong>in</strong>ed by criss-cross fragmented oliv<strong>in</strong>e<br />

shelfs (Fig.2A, marked by two l<strong>in</strong>es). The <strong>in</strong>tersection <strong>of</strong><br />

two elongated skeletal serpent<strong>in</strong>ised oliv<strong>in</strong>e (black) def<strong>in</strong><strong>in</strong>g<br />

microsp<strong>in</strong>ifex <strong>text</strong>ure is reasonably perceptible <strong>in</strong> the<br />

microphotograph (Fig.2B) as a relict feature. In contrast,<br />

parallely aligned bladed / acicular fragmented skeletal<br />

oliv<strong>in</strong>e phenocrysts with<strong>in</strong> an equigranular mosaic <strong>of</strong> augite<br />

and oliv<strong>in</strong>e with sp<strong>in</strong>el and magnetite also def<strong>in</strong>es micr<strong>of</strong>low<br />

layer / l<strong>in</strong>e (Fig.3A). Occasionally near parallel<br />

orientation <strong>of</strong> euhedral cl<strong>in</strong>opyroxene and orthopyroxene<br />

under the microscope also def<strong>in</strong>es micro-flow layer / l<strong>in</strong>e<br />

Fig.2. (A) Polished rock slab image <strong>of</strong> Semra komatiite under the microscope show<strong>in</strong>g crisscrossed relationship between elongated<br />

crystal <strong>of</strong> oliv<strong>in</strong>e def<strong>in</strong><strong>in</strong>g the relict nature <strong>of</strong> sp<strong>in</strong>ifex <strong>text</strong>ure, (B) Microphotograph <strong>of</strong> Semra komatiite exhibit<strong>in</strong>g relict microsp<strong>in</strong>ifex<br />

<strong>text</strong>ure def<strong>in</strong>ed by elongated skeletal serpent<strong>in</strong>ised oliv<strong>in</strong>e (black), (C) Microphotograph document<strong>in</strong>g m<strong>in</strong>eral composition<br />

and granular <strong>text</strong>ure <strong>of</strong> Semra Komatiite def<strong>in</strong>ed by anhedral to subhedral oliv<strong>in</strong>e (OL), cl<strong>in</strong>opyroxene (CPX) and sp<strong>in</strong>el (SP)<br />

gra<strong>in</strong>s. Note the anhedral nature <strong>of</strong> oliv<strong>in</strong>e, and (D) Microphotograph <strong>of</strong> Semra komatiite exhibit<strong>in</strong>g flow layer def<strong>in</strong>ed by<br />

euhedral prismatic oliv<strong>in</strong>e and pyroxene crystals under the microscope.<br />

JOUR.GEOL.SOC.INDIA, VOL.76,DEC.2010


594 D. K. BHATTACHARYA AND OTHERS<br />

Fig.3. (A) Microphotograph <strong>of</strong> Semra komatiite show<strong>in</strong>g parallely oriented platy oliv<strong>in</strong>e def<strong>in</strong><strong>in</strong>g micro-flow layer/l<strong>in</strong>e with<strong>in</strong> oliv<strong>in</strong>ecl<strong>in</strong>opyroxene-orthopyroxene-sp<strong>in</strong>el<br />

ground mass, (B) Concentration <strong>of</strong> cumulates at places (left lower part) def<strong>in</strong>es<br />

glomeroporphyritic <strong>text</strong>ure <strong>in</strong> Semra komatiite under the microscope. Note the gra<strong>in</strong> size differences. (C) Microphotograph<br />

exhibit<strong>in</strong>g random orientation <strong>of</strong> euhedral cl<strong>in</strong>opyroxene (CPX). Note orthopyroxene (OPX) is marg<strong>in</strong>ally encircled by sp<strong>in</strong>el<br />

and opaque ores. (D) Anhedral oliv<strong>in</strong>e (OL) with typical reticulated cracks is be<strong>in</strong>g marg<strong>in</strong>ally penetrated by later grow<strong>in</strong>g<br />

cl<strong>in</strong>opyroxene (CPX). Note the occasional presence <strong>of</strong> phlogopite (PH).<br />

(Fig.2D) .However mostly anhedral near equant crystal <strong>of</strong><br />

oliv<strong>in</strong>e and augite def<strong>in</strong>es <strong>in</strong>tergranular <strong>text</strong>ure (Fig.2C).<br />

Locally there is a development <strong>of</strong> glomeroporphyritic <strong>text</strong>ure<br />

def<strong>in</strong>ed by subhedral oliv<strong>in</strong>e or pyroxene cumulates<br />

(Fig.3B). The euhedral to subhedral cl<strong>in</strong>opyroxene gra<strong>in</strong>s<br />

at other places are randomly oriented (Fig.3C).<br />

Both oliv<strong>in</strong>e and pyroxene occur as phenocrysts as well<br />

as equigranular groundmass. Oliv<strong>in</strong>e crystals (altered to<br />

serpent<strong>in</strong>e/antigorite <strong>in</strong> vary<strong>in</strong>g degree) are <strong>of</strong> various shapes<br />

and sizes. Oliv<strong>in</strong>e phenocrysts occur either as fragmented<br />

bladed / acicular skeletal oliv<strong>in</strong>e (Fig.3A) or as anhedral<br />

oliv<strong>in</strong>e phenocrysts (Fig.3D). However the oliv<strong>in</strong>e gra<strong>in</strong>s<br />

form<strong>in</strong>g groundmass are mostly <strong>of</strong> anhedral habit (Fig.2C).<br />

Prom<strong>in</strong>ent serpent<strong>in</strong>isation along reticulated cracks <strong>of</strong><br />

skeletal primary oliv<strong>in</strong>e (Fig.3D) with<strong>in</strong> the granular mass<br />

<strong>of</strong> pyroxene and tremolite is an ubiquitous feature. Though<br />

pyroxene is represented by both cl<strong>in</strong>opyroxene and<br />

orthopyroxene, the dom<strong>in</strong>ance <strong>of</strong> former one over the other<br />

is noticed. Sp<strong>in</strong>el mostly occurs as subhedral to anhedral<br />

gra<strong>in</strong>s along <strong>in</strong>tergranular space. The complete lack <strong>of</strong><br />

plagioclase gra<strong>in</strong>s is a noticeable feature, denot<strong>in</strong>g its<br />

formation beyond the stability field <strong>of</strong> this m<strong>in</strong>eral. Presence<br />

<strong>of</strong> euhedral crystals <strong>of</strong> green sp<strong>in</strong>el (pleonaste?) support<br />

this contention. Small gra<strong>in</strong>s <strong>of</strong> devitrified glass preferably<br />

occur along <strong>in</strong>tergranular space. The orthopyroxene is<br />

marg<strong>in</strong>ally encircled by sp<strong>in</strong>el and magnetite (Fig.3C).<br />

Anhedral oliv<strong>in</strong>e with reticulated cracks is marg<strong>in</strong>ally<br />

penetrated by lately grown cl<strong>in</strong>opyroxene (Fig.3D). This<br />

<strong>in</strong>terpenetrative relationship suggests that anhedral oliv<strong>in</strong>e<br />

started crystalliz<strong>in</strong>g prior to pyroxene. Aga<strong>in</strong> anhedral<br />

oliv<strong>in</strong>e is also found to be <strong>in</strong>terpenetrat<strong>in</strong>g along cleavage<br />

traces <strong>of</strong> pyroxene (Fig.3D). These two divergent mutual<br />

relationships among oliv<strong>in</strong>e and pyroxene are possible<br />

only when crystallization <strong>of</strong> oliv<strong>in</strong>e cont<strong>in</strong>ued even after<br />

pyroxene crystallization. This is further be<strong>in</strong>g corroborated<br />

by the presence <strong>of</strong> pyroxene <strong>in</strong>clusions <strong>in</strong> oliv<strong>in</strong>e.<br />

JOUR.GEOL.SOC.INDIA, VOL.76,DEC.2010


KOMATIITE WITHIN CHHOTANAGPUR GNEISSIC COMPLEX AT SEMRA, JHARKHAND 595<br />

Pyroxene <strong>in</strong>clusion <strong>in</strong> sp<strong>in</strong>el, cl<strong>in</strong>opyroxene surrounded by<br />

sp<strong>in</strong>el and occurrence <strong>of</strong> sp<strong>in</strong>el and magnetite along<br />

<strong>in</strong>tergranular spaces <strong>of</strong> pyroxene suggest that pyroxene has<br />

crystallised prior to sp<strong>in</strong>el and magnetite. Thus the<br />

paragenetic sequence <strong>of</strong> crystallisation <strong>of</strong> Semra ultramafic<br />

is oliv<strong>in</strong>e- pyroxene sp<strong>in</strong>el-magnetite (Fig.3C) with<br />

partial overlapp<strong>in</strong>g <strong>in</strong> crystallization history <strong>of</strong> constituent<br />

m<strong>in</strong>erals.<br />

less magnesian volcanic rocks (Cattell and Taylor, 1990;<br />

Arndt et al. 2008). Such a high concentration <strong>of</strong> MgO and<br />

their variation <strong>of</strong> about 5 wt% <strong>in</strong> a restricted area are possibly<br />

attributable to different degree <strong>of</strong> oliv<strong>in</strong>e cumulate<br />

fractionation, which is very conspicuous even <strong>in</strong> th<strong>in</strong> section<br />

(Fig.3B). The <strong>in</strong>vestigated samples conf<strong>in</strong>e to Komatiite<br />

field <strong>in</strong> TAS diagram <strong>of</strong> Le Maitre et al. (1989, Fig.4A) and<br />

also <strong>in</strong> Na 2<br />

O + K 2<br />

O vs MgO diagram (Le Bas, 2000;<br />

Fig. 4B). Numbers <strong>of</strong> samples show dist<strong>in</strong>ctly higher MgO<br />

GEOCHEMISTRY<br />

Present work ma<strong>in</strong>ly deals with major and trace elements<br />

geochemistry <strong>of</strong> Semra ultramafic occurr<strong>in</strong>g with<strong>in</strong><br />

Chhotanagpur Gneissic Complex. Rare earth elements <strong>of</strong><br />

three representative samples selected on basis <strong>of</strong><br />

preservation <strong>of</strong> orig<strong>in</strong>al <strong>text</strong>ure and m<strong>in</strong>eralogy, have also<br />

been taken <strong>in</strong>to consideration for geochemical<br />

characterisation <strong>of</strong> Semra ultramafic rocks. Due care have<br />

been taken <strong>in</strong> select<strong>in</strong>g least altered samples for chemical<br />

analysis by detailed petrographic exam<strong>in</strong>ation. Whole rock<br />

analyses <strong>of</strong> five representative samples were carried out by<br />

Philips-PW 1450/20 Sequential Automatic X-ray<br />

Fluorescence Spectrophotometer at Chemical Division,<br />

Eastern Region, <strong>Geological</strong> Survey <strong>of</strong> <strong>India</strong>, Kolkata. Three<br />

other samples were analysed at Research and Development<br />

Centre for Iron and Steel, Ranchi by Perk<strong>in</strong> Elmer model<br />

ELAN ICP-MS. Trace elements analyses <strong>of</strong> first five<br />

samples were carried out by AAS (Varian model 1475)<br />

<strong>in</strong>stalled at Institute <strong>of</strong> M<strong>in</strong>erals and Materials Technology,<br />

Bhubaneswar. Values <strong>of</strong> Fe 2<br />

O 3<br />

(total) obta<strong>in</strong>ed from XRF<br />

have been cross checked by determ<strong>in</strong><strong>in</strong>g the amount <strong>of</strong> Fe 2<br />

O 3<br />

and FeO by classical methods. LOI was determ<strong>in</strong>ed by<br />

heat<strong>in</strong>g powdered sample for 2 hours at 900°C. Precisions<br />

<strong>of</strong> analyses <strong>of</strong> major, trace and REE from all the laboratories<br />

are <strong>of</strong> comparable accuracy as checked by runn<strong>in</strong>g<br />

<strong>in</strong>ternational standard samples and these are with<strong>in</strong> the error<br />

limit <strong>of</strong> ±5% <strong>in</strong> all cases. Normative composition (Table 1)<br />

was calculated by us<strong>in</strong>g SINCLAS s<strong>of</strong>tware (Verma et al.<br />

2002). The analytical data are presented <strong>in</strong> Tables 1-3.<br />

These also <strong>in</strong>cludes data <strong>of</strong> known komatiitic ultramafic<br />

<strong>of</strong> Eastern <strong>India</strong>n Shield along with other well known<br />

Komatiites <strong>of</strong> <strong>India</strong>n, Canadian, Australian and<br />

African Shield areas for a comparative evaluation and<br />

characterisation <strong>of</strong> Semra ultramafic rocks.<br />

Semra ultramafics are typically characterised by high<br />

MgO content rang<strong>in</strong>g from 24.48 to 29.90 wt% (Table 1)<br />

with an average <strong>of</strong> 26.90 wt% (n=8). All the samples<br />

(except<strong>in</strong>g one with 24.48 wt%) conta<strong>in</strong> more than 25 wt%<br />

MgO. This is characteristically much above the limit <strong>of</strong><br />

18 wt% MgO at which komatiites are dist<strong>in</strong>guished from<br />

Fig.4. (A) Semra ultramafic (open square) plotted <strong>in</strong> TAS diagram<br />

(after Le Maitre et al. 1989) which are compared with<br />

average komatiite (open triangle) (after Cattle and Taylor,<br />

1990) and Kunchia ultrabasics (open circle) <strong>of</strong> S<strong>in</strong>ghbhum<br />

(Das et al. 2001). (B) Plot <strong>of</strong> sp<strong>in</strong>ifex <strong>text</strong>ure Semra<br />

ultramafic (Open square) <strong>in</strong> total alkalis vs MgO diagram<br />

show<strong>in</strong>g the classification fields proposed for high-Mg<br />

rocks by the IUGS sub commission (Le Bas, 2000, Kerr<br />

and Arndt, 2001). Sp<strong>in</strong>ifex-<strong>text</strong>ured komatiites from<br />

Gorgona (filled rectangle) are plotted for a comparison.<br />

(Data sources: Echeverria (1980); Kerr et al. (1996); Arndt<br />

et al. (1997).<br />

JOUR.GEOL.SOC.INDIA, VOL.76,DEC.2010


596 D. K. BHATTACHARYA AND OTHERS<br />

Table 1. Major oxide and normative composition <strong>of</strong> Semra ultramafic from Chhotanagpur Gneiss Granulite Complex and other occurrences <strong>of</strong> Komatiite<br />

Averages <strong>of</strong> STPK from Different Shields #<br />

Sample No. DB 10<br />

DB 3<br />

DB 12<br />

DB 15<br />

DB 18<br />

DB 8<br />

DB 6<br />

DB 5<br />

Av. Km<br />

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17<br />

SiO 2<br />

35.84 34.87 40.65 37.1 35.6 30.2 27.5 28.2 43.56 47.4 49.2 45.6 46.8 45.9 47.2 45.2 47.17<br />

TiO 2<br />

0.40 0.41 0.45 0.39 0.32 0.37 0.48 0.33 0.69 0.46 0.43 0.4 0.33 0.41 0.38 0.28 0.5<br />

Al 2<br />

O 3<br />

7.98 7.67 8.58 7.05 6.68 8.4 7.94 8.04 8.17 6.76 3.76 7.95 3.42 7.97 4.09 5.7 7.58<br />

Fe 2<br />

O 3<br />

(T) 13.06 13.07 11.2 9.9 12.66 18 17.3 20.5 11.53 12.2 11 14.07* 12.51* 12.30* 13.35* 11.7 12.78*<br />

MnO 0.27 0.23 0.14 0.16 0.18 0.24 0.15 0.17 0.17 0.19 0.17 0.2 0.19 0.21 0.2 0.21 0.25<br />

MgO 25.56 27.72 24.48 25.4 29.9 25.1 28 29.1 21.85 20.4 20 25 31.5 26.4 28 30.9 21.70<br />

CaO 10.77 9.50 7.19 9.3 6.6 5.95 8.68 5.88 7.46 8.31 9.31 7.6 5.67 7.74 6.61 5.6 9.22<br />

Na 2<br />

O 0.32 0.09 0.13 0.07 0.14 0.32 0.27 0.21 0.61 0.39 0.1 0.01 0.12 0.43 0.37 0.43 0.19<br />

K 2<br />

O 0.01 0.52 0.02 0.03 0.02 0.23 0.11 0.17 0.08 0.06 0.02 0.02 0.08 0.09 0.04 0.02 0.14<br />

P 2<br />

O 5<br />

0.07 0.06 0.02 0.08 0.05 0.36 0.21 0.22 0.10 0.02 0.03<br />

LOI 6.02 6.70 7.04 9.4 8.22 10 9.02 8.04 5.71 6.38<br />

Total 100.30 100.84 99.90 98.8 100.4 99.2 99.7 101 99.93 96.1 94 86.8 88.1 89.1 86.8 106 86.78<br />

Orthoclase — — 0.13 — — — — —<br />

Albite — — 1.19 — — — — —<br />

Anorthite 21.78 20.40 24.75 21.26 19.35 23.73 22.56 22.47<br />

Leucite 0.05 — — 0.16 0.10 — — —<br />

Nephel<strong>in</strong>e 1.57 0.45 — 0.36 0.61 1.67 1.39 1.05<br />

Diopside 2.02 — 11.01 18.37 2.27 — — —<br />

Hypersthene — — 18.59 — — — — —<br />

Oliv<strong>in</strong>e 59.27 63.98 39.38 53.23 68.62 68.47 72.43 76.47<br />

Ilmenite 0.82 0.87 0.93 0.84 0.67 0.82 1.02 0.69<br />

Magnetite 4.25 4.31 3.97 3.40 4.13 5.72 5.01 5.91<br />

Apatite 0.17 0.15 0.05 0.21 0.13 0.95 0.54 0.56<br />

Sum 89.94 90.11 100 97.82 95.86 101.36 102.95 107.15<br />

* = Total iron converted as Fe 2<br />

O 3<br />

(T)<br />

Present Data:1 to 8 for Ultramafics <strong>of</strong> Semra, Palamau District, # 9 = Kunchia<br />

Ultrabasics, East S<strong>in</strong>ghbhum District. (Das et al. 2001), 10 = Average Highalum<strong>in</strong>a<br />

Geluk type komatiite. (Gupta et al. 1980), 11 = Average low-alum<strong>in</strong>a<br />

Geluk type komatiite. (Viljoen and Viljoen, 1969), 12 = Al-undepleted komatiite<br />

from Munro Township, Ontario. (Arndt and Nesbitt, 1984), 13 = Al-depleted<br />

komatiite from Barberton, South Africa. (Smith and Erlank, 1982), 14 = Average<br />

<strong>of</strong> 22 Al-undepleted komatiites. (Nesbitt et al. 1979; Arndt and Nesbitt, 1984;<br />

Cattell and Arndt, 1987; Nisbet et al. 1987), 15 = Average <strong>of</strong> 18 Al-depleted<br />

komatiites. (Nesbitt et al. 1979; Smith and Erlank, 1982), 16 = Average <strong>of</strong> 7<br />

STP from Yilgarn Block, Australia. (Nesbitt and Sun, 1976), 17 = Komatiite<br />

(2.7 Ga), Newton township, Canada (Cattell and Taylor, 1990).<br />

Table 2. Trace element composition and ratios <strong>of</strong> Semra ultramafic from Chhotanagpur Gneissic Complex and other occurrences <strong>of</strong> Komatiite<br />

Sample No. DB 10<br />

DB 3<br />

DB 12<br />

DB 15<br />

DB 18<br />

DB 8<br />

DB 6<br />

DB 5<br />

Averages <strong>of</strong> STPK from Different Shields# Av.Km CI<br />

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 Chondrite<br />

Cr 3000 2800 3300 3400 3195 3364 3192 3092 2075<br />

Ni 1650 1520 850 750 1725 1810 1625 1587 1406<br />

V 120 115 167 181 135 210 200 230 186<br />

Sc 21.9 24.6 21.6 24.7 21.9 23.08 22.1 24.8<br />

Sr 10 16 12 9 30 12.2 7.19 13.1 29 7.26<br />

Ba 2 3 4 3 5 4.5 2.9 3.84 1 2.41<br />

Rb 3 4 1 2 5 3.79 2.45 3.6 4 2.32<br />

Cs 0.279 0.36 0.365 0.281 0.275 0.372 0.37 0.36<br />

Zr 31.5 35.2 34.8 36.4 33.3 37.2 33.1 36.5 28 3.87<br />

Hf 0.749 0.73 0.735 0.739 0.75 0.73 0.73 0.75 0.107<br />

Nb 1 3 2 1 1 0.425 0.42 0.41 2 0.246<br />

Y 9 11 10 12 14 9.95 12 12.1 10 1.57<br />

P 30.55 26.2 8.73 34.91 21.82 157.1 91.6 96 43.6 445<br />

Ti 239.8 246 269.78 233.8 191.8 221.8 288 198 414 276 258 239.8 197.8 245.8 228 167.86 299.75<br />

RATIOS<br />

CaO/Al 2<br />

O 3<br />

1.35 1.24 0.84 1.32 0.99 0.71 1.09 0.73 0.91 1.23 2.48 0.96 1.66 0.97 1.62 0.98 1.22 0.79<br />

CaO/TiO 2<br />

26.93 23.2 15.98 23.85 20.63 16.08 18.1 17.8 10.8 18.1 21.7 19 17.18 18.88 17.4 20 18.44 17.45<br />

Al 2<br />

O 3<br />

/TiO 2<br />

19.95 18.7 19.07 18.08 20.88 22.7 22.7 22.7 11.8 14.7 8.74 19.88 10.36 19.43 10.8 20.36 15.16 22<br />

MgO/TiO 2<br />

63.9 67.6 54.4 65 93.44 67.78 58.3 88.2 31.7 44.3 46.6 62.5 95.48 64.34 73.6 110.5 43.4 220.27<br />

MgO/Al 2<br />

O 3<br />

3.2 3.61 2.85 3.6 4.48 2.99 3.52 3.62 2.67 3.02 5.33 3.14 9.21 3.31 6.84 5.43 2.86 10.01<br />

Fe 2<br />

O 3<br />

T/TiO 2<br />

32.65 31.9 24.88 25.38 39.56 48.73 36.1 62.2 16.7 26.4 25.6 35.18 37.91 30 35.1 41.71 25.56 365.73<br />

Ti/Zr 7.61 6.98 7.75 6.42 5.76 5.96 8.7 5.42 110 100 114.99<br />

V/Zr 3.81 3.27 4.8 4.97 4.05 5.65 6.05 6.3<br />

Zr/Y 3.5 3.2 3.48 3.03 2.38 3.74 2.77 3.03 2.5 2.8 to 2.47<br />

4.6<br />

Ti/Y 26.64 22.4 26.98 19.48 13.7 22.29 24.1 16.4 283.44<br />

Zr/Nb 31.5 11.7 17.4 36.4 33.3 87.53 78 89.9 0.44<br />

Zr/Sm 25.66 24.5 26.3<br />

Hf/Nd 0.218 0.21 0.2<br />

(La/Yb) n<br />

0.822 0.74 1.07<br />

(La/Sm) n<br />

0.525 0.41 0.56<br />

(Gd/Yb)<br />

n<br />

1.542 1.74 1.96<br />

(Nd/Sm) n<br />

0.757 0.85 0.87<br />

Mg. No. 82.02 83.2 83.59 85.65 84.63 76.43 79 76.8 77.9 83.3 80.9 80.6 75.3<br />

Mg# = (MgO/40.13)/(MgO/40.13)+Fe 2<br />

O 3<br />

T*0.8998/71.85*(1-0.15)*100 (After Zhou & Li, 2006) . # Samples and other details as <strong>in</strong> Table 1<br />

JOUR.GEOL.SOC.INDIA, VOL.76,DEC.2010


KOMATIITE WITHIN CHHOTANAGPUR GNEISSIC COMPLEX AT SEMRA, JHARKHAND 597<br />

Table 3. Rare earth element concentration <strong>of</strong> Semra ultramafics from<br />

Chhotanagpur gneissic complex<br />

Sample No. DB8 DB6 DB5 Chondrite*<br />

La 1.18 0.855 1.2 0.237<br />

Ce 3.2 2.17 3.17 0.613<br />

Pr 0.629 0.54 0.601 0.093<br />

Nd 3.35 3.52 3.71 0.457<br />

Sm 1.45 1.35 1.39 0.148<br />

Eu 0.469 0.461 0.532 0.056<br />

Gd 1.92 1.75 1.9 0.199<br />

Tb 0.415 0.321 0.327 0.036<br />

Dy 1.89 1.86 1.93 0.246<br />

Ho 0.388 0.365 0.381 0.055<br />

Er 1.15 1.01 1.07 0.160<br />

Tm 0.161 0.128 0.125 0.025<br />

Yb 1.03 0.83 0.802 0.161<br />

Lu 0.122 0.115 0.157 0.025<br />

ΣREE 17.354 15.275 17.295 2.511<br />

ΣLREE 8.359 7.085 8.681 1.411<br />

ΣHREE 2.463 2.083 2.154 0.3864<br />

*McDonough, W.F. and Sun, S.S. (1995)<br />

concentration at the same level <strong>of</strong> Na 2<br />

O + K 2<br />

O. The Semra<br />

ultramafics plots exclusively <strong>in</strong> komatiite field <strong>in</strong> Jensen’s<br />

(1976) Al–(Fe+Ti)–Mg cation discrim<strong>in</strong>ation diagram<br />

(Fig.5A) and also <strong>in</strong> Kulikov’s TiO 2<br />

*10-Al 2<br />

O 3<br />

-MgO<br />

discrim<strong>in</strong>ate diagram (Fig.5B) for classification <strong>of</strong> ultramafic<br />

series <strong>of</strong> rocks. In the CaO–MgO–Al 2<br />

O 3<br />

ternary diagram<br />

(Fig.5C), the Semra ultramafics fall <strong>in</strong> the peridotitic<br />

komatiite field (after Arndt et al. 1977). When these samples<br />

are compared with Barbarton (BR) type, Geluk (GL) type<br />

and Badplass (BD) type komatiites (all fields after Viljoen<br />

and Viljoen, 1969), the samples mostly show resemblance<br />

with Geluk komatiite (Fig.5C). With respect to average<br />

komatiite (Cattle and Taylor, 1990) and Kunchia ultrabasics<br />

<strong>of</strong> S<strong>in</strong>ghbhum (Das et al. 2001), the Semra ultramafic is<br />

very much dist<strong>in</strong>ctive by their lower SiO 2<br />

content (Fig.4A).<br />

The Semra ultramafics are dist<strong>in</strong>ctly characterised by higher<br />

MgO (Fig.4B) with respect to Sp<strong>in</strong>ifex-<strong>text</strong>ured Cretaceous<br />

komatiites from Gorgona (Echeverria, 1980; Kerr et al.<br />

1996; Arndt et al. 1997).<br />

Petrologically most important element <strong>in</strong> komatiites is<br />

alum<strong>in</strong>um and variations <strong>of</strong> Al 2<br />

O 3<br />

/TiO 2<br />

or CaO/Al 2<br />

O 3<br />

form<br />

important factors <strong>of</strong> all komatiite classifications (Arndt et<br />

al. 2008). Al 2<br />

O 3<br />

content <strong>of</strong> Semra ultramafics vary between<br />

6.68 to 8.58 wt% (Table 1, Av. 7.79 wt%). The Al 2<br />

O 3<br />

/TiO 2<br />

ratio <strong>of</strong> Semra ultramafics varies from 16.54 to 24.36 wt%<br />

(Table 2, Av.20.04 wt %) show<strong>in</strong>g similarity with accepted<br />

chondritic value (Al 2<br />

O 3<br />

/TiO 2<br />

= 20.4 Schmus and Hayes,<br />

1974); with “Munro type” Komatiites (Fan and Kerrich,<br />

1997) and also with Al-undepleted komatiites <strong>of</strong> late-<br />

Fig.5. (A) Jensen’s (1976) (Fe+Ti)-Mg-Al cation discrim<strong>in</strong>ate plot<br />

<strong>of</strong> Semra ultramafics (Open square). (B) Semra ultramafics<br />

(Open square) plotted <strong>in</strong> TiO 2<br />

*10- Al 2<br />

O 3<br />

–MgO<br />

discrim<strong>in</strong>ate diagram (after Kulikov) for classify<strong>in</strong>g<br />

Ultramafic rocks. (C) CaO–MgO–Al 2<br />

O 3<br />

diagram (after<br />

Arndt, Naldrett and Pyke, 1977) for Semra ultramafic (Open<br />

Square) show<strong>in</strong>g fields <strong>of</strong> Barbarton (BR) type, Geluk (GL)<br />

type and Badplass (BD) type komatiites (after Viljoen and<br />

Viljoen, 1969) and peridotitic (I), pyroxenitic (II), basaltic<br />

(III) komatiite and tholeiites (IV) (after Arndt et al. 1977)<br />

are shown.<br />

JOUR.GEOL.SOC.INDIA, VOL.76,DEC.2010


598 D. K. BHATTACHARYA AND OTHERS<br />

Archaean (~2.7 Ga) Abitibi greenstone belt (Fan and<br />

Kerrich, op. cit.). This is <strong>in</strong> marked contrast with Barberton<br />

komatiite hav<strong>in</strong>g Al 2<br />

O 3<br />

/TiO 2<br />

ratios <strong>of</strong> about 11 (Nesbitt et<br />

al 1979). Most other komatiites are characterised by Al 2<br />

O 3<br />

/<br />

TiO 2<br />

ratio around 20 (a value close to the chondrite value).<br />

Al 2<br />

O 3<br />

vs TiO 2<br />

b<strong>in</strong>ary plot (Fig,6A) shows that Semra<br />

ultramafics generally scatter about the chondritic l<strong>in</strong>e and<br />

show resemblance with Archaean Al-undepleted ultramafic<br />

<strong>of</strong> Sandur greenstone belt <strong>of</strong> Karnataka (Naqvi et al. 2002)<br />

and dist<strong>in</strong>ct from Al-depleted ultramafic (Naqvi et al. op.<br />

cit.). Semra ultramafics show a dist<strong>in</strong>ct similarity with<br />

Al-undepleted ultramafic <strong>of</strong> Sandur greenstone belt <strong>of</strong><br />

Karnataka (Naqvi et al. Op.cit.), particularly <strong>in</strong> terms <strong>of</strong><br />

MgO vs Al 2<br />

O 3<br />

plot (Fig.6E). Similar behaviour is also<br />

shown by the mobile CaO (Fig.6C) and immobile TiO 2<br />

(Fig.6F).<br />

Accord<strong>in</strong>g to Brooks and Hart (1974), the komatiites<br />

must have CaO/Al 2<br />

O 3<br />

ratios greater than one and that the<br />

low TiO 2<br />

content be emphasised. But Nesbitt et al (1979) is<br />

<strong>of</strong> the op<strong>in</strong>ion that parameters such as Ca/Al and TiO 2<br />

content should not be the prime factors used <strong>in</strong> the<br />

identification <strong>of</strong> peridotitic komatiite (PK), rather the high<br />

ratio should be close to or greater than one (Arndt et al,<br />

1977; Nesbitt et al, 1979).The CaO/Al 2<br />

O 3<br />

ratio <strong>of</strong> Semra<br />

ultramafics varies from 0.71 to 1.35 wt% (Table 2, Av.1.03<br />

wt%), which is comparable with average Munro Township<br />

sp<strong>in</strong>ifex <strong>text</strong>ured komatiite (Arndt et al. 1977), average<br />

Komatiite (2.7 Ga) <strong>of</strong> Newton Township, Canada (Cattle<br />

and Taylor, 1990), and also average High-alum<strong>in</strong>a Geluk<br />

type komatiite (Gupta et al. 1980). In terms <strong>of</strong> CaO/Al 2<br />

O 3<br />

ratio, the Semra ultramafic shows similarity only with<br />

Kunchia ultrabasic <strong>of</strong> S<strong>in</strong>ghbhum district (Das et al. 2001),<br />

whereas most <strong>of</strong> the komatiite <strong>of</strong> S<strong>in</strong>ghbhum (Ray, 1984;<br />

Bhattacharya et al. 1996) and Mayurbhanj (Sahu and<br />

Mukherjee, 2001) districts <strong>of</strong> Eastern <strong>India</strong> Shield dist<strong>in</strong>ctly<br />

show higher CaO/Al 2<br />

O 3<br />

ratio <strong>in</strong> comparison to Semra<br />

ultramafic. The CaO/TiO 2<br />

ratio rang<strong>in</strong>g from 15.98 to 26.93<br />

wt% (Table 2, Av. 20.32,) <strong>of</strong> these rocks is well comparable<br />

with the chondritic value. In the CaO vs TiO 2<br />

diagram, Semra<br />

ultramafics (Fig.6B), plot mostly along chondrite l<strong>in</strong>e with<br />

variation <strong>in</strong> their ratio and it shows resemblance with Munro<br />

and Geluk komatiite.<br />

All the <strong>in</strong>vestigated samples fall close to the oliv<strong>in</strong>e<br />

fractionation l<strong>in</strong>e as def<strong>in</strong>ed <strong>in</strong> MgO vs Al 2<br />

O 3<br />

plot (Fig.6E)<br />

<strong>in</strong>dicat<strong>in</strong>g their komatiitic aff<strong>in</strong>ities and also shows their<br />

similarities with Archaean Alum<strong>in</strong>a-undepleted Komatiite<br />

(AUDK) <strong>of</strong> Sandur Schist Belt (cf. Naqvi et al. 2002) and<br />

also with Munro komatiite (Nesbitt et al. 1979). MgO vs<br />

Fe 2<br />

O 3<br />

b<strong>in</strong>ary plot <strong>of</strong> Semra ultramafic (Fig.6D) shows wide<br />

variation <strong>of</strong> Fe 2<br />

O 3<br />

<strong>in</strong> the same range <strong>of</strong> MgO. MgO vs Fe 2<br />

O 3<br />

and MgO vs TiO 2<br />

b<strong>in</strong>ary plot <strong>of</strong> Semra ultramafic (Fig.6D<br />

and 6F) do not show any dist<strong>in</strong>ctive relationship with<br />

Archaean komatiite <strong>of</strong> Greenstone belt <strong>of</strong> Karnataka (Naqvi<br />

et al. 2002).<br />

These rocks display high Mg# vary<strong>in</strong>g from 76.43 to<br />

85.65 (Table 1), comparable to primitive upper mantle Mg#<br />

(89.8), suggest<strong>in</strong>g their mantle derived source. This high<br />

Mg# suggests the rock to be <strong>of</strong> Archaean komatiite <strong>in</strong><br />

composition (Glikson, 1983). High normative oliv<strong>in</strong>e (Avg.<br />

62.73, rang<strong>in</strong>g from 39.38 to 76.47, Table 1) <strong>in</strong>dicate that<br />

these rocks have experienced crystal fractionation as<br />

reflected by the presence <strong>of</strong> oliv<strong>in</strong>e cumulates at places<br />

(Fig.3C).<br />

The extremely low K 2<br />

O content (0.01 to 0.17 wt% with<br />

one exotic value <strong>of</strong> 0.52 wt %) <strong>of</strong> these ultramafics appear<br />

to be <strong>of</strong> primary nature (Das et al. 2001). The rock has<br />

dist<strong>in</strong>ctly low value <strong>of</strong> SiO 2<br />

<strong>in</strong> comparison to many well<br />

known komatiites <strong>of</strong> the world and may represent plume<br />

related magmatism for its generation (Parman, 2001).<br />

Majority <strong>of</strong> the samples are characterised by typically high<br />

LOI values, possibly attributable to alteration/hydration <strong>of</strong><br />

oliv<strong>in</strong>e and cl<strong>in</strong>opyroxene <strong>in</strong>to hydrous secondary phases<br />

viz serpent<strong>in</strong>e and also due to presence <strong>of</strong> amphiboles.<br />

In terms <strong>of</strong> Al 2<br />

O 3<br />

/TiO 2<br />

ratio vs CaO/Al 2<br />

O 3<br />

ratio (Fig.7A),<br />

the Semra ultramafics are comparable to well known<br />

komatiites from different shields (Nesbitt et al. 1979) like<br />

Munro, Geluk and Scotia, Yakab<strong>in</strong>die, Burges komatiite.<br />

However these are dist<strong>in</strong>ctly differentiable from Barberton<br />

komatiite (Nesbitt et al. op.cit.) and Cretaceous komatiite<br />

<strong>of</strong> Gorgona Island, Colombia (Echeverria, 1980; Fig.7A).<br />

In the same variation diagram, the Semra ultramafics plots<br />

near the estimated source composition for Early Archaean<br />

to Late Archaean Komatiites (cf. Fig.6 <strong>of</strong> Walter, 1998)<br />

illustrat<strong>in</strong>g that this komatiite is ak<strong>in</strong> to the estimated source<br />

composition for Early Archaean to Late Archaean Komatiites<br />

and dist<strong>in</strong>ctly different chemical signature with respect to<br />

the estimated source composition for Cretaceous Komatiites<br />

(Walter, 1998.).The CaO/TiO 2<br />

vs Al 2<br />

O 3<br />

/TiO 2<br />

variation<br />

diagrams <strong>of</strong> Semra ultramafic (Fig.7B) illustrates its<br />

similarities with Munro komatiite (Arndt et al. 1977; Nesbitt<br />

et al. 1979). The <strong>in</strong>tersection <strong>of</strong> chondrite values for these<br />

element pairs are marked by the cross at centre (Fig.7B).<br />

The major oxide ratios like MgO/TiO 2<br />

, MgO/Al 2<br />

O 3<br />

and<br />

Fe 2<br />

O 3<br />

/TiO 2<br />

(Table 2) show near similarity with Munro type<br />

Komatiite.<br />

The Semra ultramafics are characterised by very high<br />

values <strong>of</strong> Ni (750 – 1810 ppm) and Cr (2800-3400 ppm)<br />

with<strong>in</strong> the same level <strong>of</strong> MgO as <strong>in</strong> Sandur Komatiite <strong>of</strong><br />

Karnataka, reflect<strong>in</strong>g oliv<strong>in</strong>e + pyroxene fractionation. This<br />

is also be<strong>in</strong>g reflected <strong>in</strong> MgO vs Al 2<br />

O 3<br />

and TiO 2<br />

variation<br />

JOUR.GEOL.SOC.INDIA, VOL.76,DEC.2010


KOMATIITE WITHIN CHHOTANAGPUR GNEISSIC COMPLEX AT SEMRA, JHARKHAND 599<br />

Fig.6. (A) Al 2<br />

O 3<br />

vs TiO 2<br />

variation diagram illustrat<strong>in</strong>g the position <strong>of</strong> Semra ultramafic (open square) relative to chondrite l<strong>in</strong>e,<br />

Archaean Al-depleted ultramafic (open circle) and Al-undepleted ultramafic (open triangle) <strong>of</strong> Sandur greenstone belt <strong>of</strong> Karnataka<br />

(Naqvi et al. 2002), Munro (<strong>in</strong>verted triangle) and Geluk (closed circle) komatiite (after Nesbitt et al. 1979). (B) CaO vs TiO 2<br />

variation diagram demonstrates the position <strong>of</strong> Semra ultramafic (open square) <strong>in</strong> relation to chondrite l<strong>in</strong>e and Munro (<strong>in</strong>verted<br />

triangle) and Geluk (open circle) komatiite. (C) MgO vs CaO variation diagram show<strong>in</strong>g the variation <strong>of</strong> Cao at same level <strong>of</strong><br />

MgO <strong>in</strong> Semra ultramafic (open square) (D) MgO vs Fe 2<br />

O 3<br />

variation diagram exhibit<strong>in</strong>g the position <strong>of</strong> Semra ultramafic (open<br />

square) relative to Archaean Al-depleted ultramafic (open circle) and Al-undepleted ultramafic (closed triangle) <strong>of</strong> Sandur greenstone<br />

belt <strong>of</strong> Karnataka (Naqvi et al. 2002). (E) MgO vs Al 2<br />

O 3<br />

variation diagram illustrat<strong>in</strong>g the position <strong>of</strong> Semra ultramafic (open<br />

square) <strong>in</strong> relation to oliv<strong>in</strong>e fractionation l<strong>in</strong>e (dotted l<strong>in</strong>e) and their relationship with typical Archaean Al-depleted (open<br />

circle) and Al-undepleted (closed triangle) komatiitic ultramafic schist <strong>of</strong> Sandur Greenstone belt (Naqvi et al. 2002). Munro and<br />

Barbarton l<strong>in</strong>es are after Nesbitt, Sun and Purvis (1979). (F) MgO vs TiO 2<br />

variation diagram demonstrat<strong>in</strong>g the position <strong>of</strong><br />

Semra ultramafic (open square) <strong>in</strong> relation to typical Archaean Al-depleted (open circle) and Al-undepleted (closed triangle)<br />

komatiitic ultramafic schist <strong>of</strong> Sandur Greenstone belt (Naqvi et al. 2002).<br />

JOUR.GEOL.SOC.INDIA, VOL.76,DEC.2010


600 D. K. BHATTACHARYA AND OTHERS<br />

Fig.7. (A) Al 2<br />

O 3<br />

/TiO 2<br />

vs CaO/Al 2<br />

O 3<br />

variation diagram <strong>of</strong> Semra ultramafics (open square) with respect to other well known komatiites<br />

<strong>of</strong> different shields (after Nesbitt et al.1979). The position <strong>of</strong> Semra ultramafics are exam<strong>in</strong>ed with reference to the estimated<br />

source composition for Early Archaean, Late Archaean and Cretaceous Komatiites (Walter, 1998). (B) CaO/TiO 2<br />

vs Al 2<br />

O 3<br />

/TiO 2<br />

variation diagrams <strong>in</strong>dicates the position <strong>of</strong> Semra ultramafic (open square) <strong>in</strong> relation to Munro komatiite after Arndt et al.<br />

(1977) (open circle) and after Nesbitt et al. (1979) (closed circle). The cross represents the <strong>in</strong>tersection <strong>of</strong> chondrite values for<br />

these element pairs. (C) MgO vs. Zr variation diagrams illustrates the dist<strong>in</strong>ctly high and uniform Zr concentration <strong>in</strong> the Semra<br />

ultramafic (open square) relative to typical Archaean Al-depleted (open circle) and Al-undepleted (closed triangle) komatiitic<br />

ultramafic schist <strong>of</strong> Sandur Greenstone belt (Naqvi et al. 2002). (D) MgO vs. Ni variation diagram exhibits the spread <strong>of</strong> Ni<br />

(shown by dashed l<strong>in</strong>e) <strong>in</strong> the same range <strong>of</strong> MgO. (E) MgO vs Nb variation diagrams shows the Nb concentration <strong>in</strong> the Semra<br />

ultramafic (open square) is well comparable to typical Archaean Al-undepleted (closed triangle) komatiitic ultramafic schist and<br />

not Al-depleted (open circle) one <strong>of</strong> Sandur Greenstone belt (Naqvi et al. 2002). (F) Chondrite normalized REE pr<strong>of</strong>ile for Semra<br />

STPK (Normalisation factor after McDoungh and Sun,1995).<br />

JOUR.GEOL.SOC.INDIA, VOL.76,DEC.2010


KOMATIITE WITHIN CHHOTANAGPUR GNEISSIC COMPLEX AT SEMRA, JHARKHAND 601<br />

diagrams (Fig.6E, 6F). Ni concentrations is one <strong>of</strong> the factors<br />

attributed to the magmatic processes related with the mantle<br />

plumes (Condie, 1997a,b; Kerrich et al. 1999a, b) due to<br />

their immobile nature. The spread <strong>of</strong> Ni <strong>in</strong> the same range<br />

<strong>of</strong> MgO is demonstrated <strong>in</strong> MgO vs. Ni variation diagrams<br />

(Fig.7D). Enrichment <strong>of</strong> Ni and Cr may have resulted <strong>in</strong><br />

liquidus phases dur<strong>in</strong>g magmatic evolution.<br />

Zr concentration is an important <strong>in</strong>dicator <strong>of</strong> magmatic<br />

processes, which is fairly correlatable with immobile<br />

elements such as Al 2<br />

O 3,<br />

TiO 2<br />

, Ni and Cr. Irrespective <strong>of</strong> their<br />

MgO content, Zr <strong>in</strong> Semra ultramafic rema<strong>in</strong>s considerably<br />

high (31.5 – 37.2 ppm, Table 2, Fig.7C) relative to typical<br />

Archaean Al-depleted and Al-undepleted komatiitic<br />

ultramafic schist <strong>of</strong> Sandur Greenstone belt (Naqvi et al.<br />

2002) and also <strong>in</strong> comparison to Munro komatiite and<br />

Western Australia komatiite (Nesbitt et al. 1979). The Ti/Zr<br />

(average 6.79, rang<strong>in</strong>g 5.42 to 8.7, Table 2) and Ti/Y<br />

(average 20.98, rang<strong>in</strong>g 13.7 to 26.98, with Table 2) <strong>of</strong> Semra<br />

ultramafics are abnormally low to very low <strong>in</strong> comparisons<br />

to Chondrite ratios (Ti/Zr=100-110 and Ti/Y~ 256, Wänke<br />

et al. 1974). The “primitive” liquid generated by extensive<br />

melt<strong>in</strong>g <strong>of</strong> the mantle is likely to have a Ti/Zr ratio close to<br />

100-110. The Ti/Zr ratio is a valuable <strong>in</strong>dicator rang<strong>in</strong>g from<br />

122 to 97 for the Sp<strong>in</strong>ifex Texture Peridotitic Komatiite<br />

(STPK). In this respect, the Semra ultramafic shows a<br />

pronounced deviation and such high Zr concentration and<br />

abnormally low Ti/Zr is possibly attributable Zr-enriched<br />

mantle source with very little Ti content. Low concentration<br />

<strong>of</strong> Ba and Sr suggest that these rocks were not affected by<br />

crustal contam<strong>in</strong>ation The variation <strong>of</strong> Nb with respect to<br />

MgO (Fig.7E) <strong>in</strong> the Semra ultramafic is also comparable<br />

to typical Archaean Al-undepleted komatiitic ultramafic<br />

schist <strong>of</strong> Sandur Greenstone belt (Naqvi et al., 2002). These<br />

ultramafic rocks are depleted <strong>in</strong> Cs, Rb, Ba, Sr, Nb, Hf and<br />

Y. Depleted <strong>in</strong>compatible trace elements po<strong>in</strong>t towards Alundepleted<br />

nature for the komatiites <strong>of</strong> the study area (Nna<br />

Mvondo and Frias, 2005).<br />

Komatiites <strong>of</strong> the present area are characterised by a<br />

diagnostic convex upward REE pr<strong>of</strong>ile (Fig.7F) <strong>in</strong> chondrite<br />

normalized diagram (normalization factor after McDonough<br />

and Sun, 1995). The chondrite normalized REE pattern<br />

display LREE depletion compared to HREE, which is similar<br />

to most <strong>of</strong> the other Arachean komatiites (Mitra and Bose,<br />

2007). Depleted LREE signifies least crustal contam<strong>in</strong>ation<br />

(Gupta, 2007).The unfractionated HREE rang<strong>in</strong>g from 2.083<br />

to 2.463 exhibits flat HREE pattern. HREE is at 5.39 to<br />

6.37 times chondritic abundances. Total REEs rang<strong>in</strong>g from<br />

15.275 to 17.354 (Table 2), is 5.96 to 6.77 times the<br />

chondrite. LREE contents (7.085 to 8.681, Table 3) are<br />

seven to eight times more than chondrite. Zr/Sm (25.5) and<br />

Hf/Nd (0.21) ratios (Table 2) are comparable to primitive<br />

mantle (25 and 0.23 respectively, Sun and McDonough,<br />

1989). The chondrite normalized value <strong>of</strong> (La/Yb) n<br />

( 0.74<br />

to 1.07, Table 2)) is <strong>in</strong> conformity with other komatiites<br />

<strong>in</strong>clud<strong>in</strong>g Barberton. Lower values <strong>of</strong> <strong>in</strong>terelemental ratios<br />

like V/Zr (Avg. 4.88), Ti/Y (Avg. 20.98) and Zr/Nb (Avg.<br />

30.02) and higher Zr/Y (Avg. 3.09) <strong>in</strong> comparison to<br />

chondrite (Table 2), rules out the possibility <strong>of</strong> greater degree<br />

<strong>of</strong> partial melt<strong>in</strong>g (Smith and Erlank, 1982).There is a<br />

positive correlation <strong>of</strong> MgO with (Gd/Yb)n (1.75±0.21)<br />

rang<strong>in</strong>g from 1.54 to 1.96 (Table 2). Such <strong>in</strong>crease <strong>in</strong><br />

(Gd/Yb) n<br />

(>1) is similar to Palaeoproterozoic Jeesiörova<br />

komatiites <strong>of</strong> Kittilä greenstone belt (Gangopadhyay<br />

et al. 2006) and also to Archaean Sandur greenstone belt<br />

(Naqvi et al. 2002).<br />

CONCLUSION<br />

Semra Komatiite is spatially located <strong>in</strong> proximity to Son-<br />

Narmada South Fault (SNSF) at north and Balarampur-<br />

Tattapani Fault (BTF) to the south (Fig.1; cf. Fig.2 <strong>of</strong><br />

Acharyya and Roy, 2000; Mukherjee, 1998). Regionally the<br />

eastern cont<strong>in</strong>uation <strong>of</strong> SNSF is locally referred as Nagar<br />

Untari (68P/7) - Chhatarpur (72D/3) Shear zone, which is<br />

exactly 38 Kms north <strong>of</strong> the study area. Furthermore, the<br />

Garhwa-Daltonganj Gondwana bas<strong>in</strong> (GDGB) and Auranga-<br />

Koel Gondwana bas<strong>in</strong> (AKGB) (Fig.1) are located<br />

immediately adjo<strong>in</strong><strong>in</strong>g north and south <strong>of</strong> Semra respectively<br />

and these are characterised by number <strong>of</strong> bas<strong>in</strong> marg<strong>in</strong> faults<br />

and transverse faults. The easterly strikes <strong>of</strong> the bas<strong>in</strong><br />

boundary fault (Fig.1) co<strong>in</strong>cide with the general strike <strong>of</strong><br />

the Precambrian basement rock. Some <strong>of</strong> these bas<strong>in</strong><br />

boundary faults cont<strong>in</strong>ue for more than 80 km across the<br />

<strong>in</strong>terven<strong>in</strong>g Precambrian basement (Chatterjee and Ghosh,<br />

1970), signify<strong>in</strong>g that these major faults are pre-Gondwana<br />

precursor faults (Dutta and Mitra, 1984; quoted by<br />

Sarkar, 1988, p.132). Precambrian ancestry <strong>of</strong> these faults<br />

may have provided broad tectonised basement framework<br />

(Mahadevan, 2002, p.374).The pattern <strong>of</strong> the <strong>in</strong>trabas<strong>in</strong>al<br />

faults and bas<strong>in</strong>-bound<strong>in</strong>g faults represent both<br />

extensional and strike-slip regimes <strong>in</strong> the Precambrian<br />

basement lead<strong>in</strong>g to the development <strong>of</strong> Gondwana bas<strong>in</strong>s<br />

along the E-W direction (Mukherjee and Ghose, 1999;<br />

Chakraborty et al. 2003, Srivasatava et al. 2009). The role<br />

<strong>of</strong> extensional tectonics <strong>in</strong> the development <strong>of</strong> Gondwana<br />

bas<strong>in</strong>s formation is <strong>of</strong>ten attributed to epiorogenic procesess<br />

and to deep crust-mantle <strong>in</strong>teractions (Chatterjee and<br />

Ghose, 1970; Niyogi, 1987). Lamprophyric/lamproite with<strong>in</strong><br />

the Gondwana bas<strong>in</strong>s are essentially fault controlled<br />

(Mukherjee and Ghose, 1999) which are the manifestation<br />

JOUR.GEOL.SOC.INDIA, VOL.76,DEC.2010


602 D. K. BHATTACHARYA AND OTHERS<br />

<strong>of</strong> plume generated magmatism. This together with<br />

<strong>in</strong>tracratonic rift related orig<strong>in</strong> <strong>of</strong> Son-Narmada Graben<br />

witness<strong>in</strong>g mantle upwell<strong>in</strong>g (Das and Patel, 1984; Shankar,<br />

1991) mark major extensional tectonic regime. The<br />

widespread mafic-ultramafic magmatism <strong>in</strong> the CGC mostly<br />

occurs <strong>in</strong> proximity to number <strong>of</strong> major <strong>in</strong>tra-cont<strong>in</strong>ental<br />

rift/shear zones, suggest<strong>in</strong>g their emplacement under<br />

extensional tectonism witnessed by this part <strong>of</strong> CGC<br />

(Mukherjee and Ghose, 1999). The spatial disposition <strong>of</strong><br />

Semra ultramafics with reference to regional tectonic<br />

sett<strong>in</strong>g and the dist<strong>in</strong>ctive cumulus nature suggest their<br />

emplacement <strong>in</strong> an extensional phase, thereby play<strong>in</strong>g<br />

an important role <strong>in</strong> crustal growth and evolution <strong>of</strong><br />

CGC.<br />

Semra Komatiite is the only <strong>of</strong> its k<strong>in</strong>d <strong>in</strong> CGC, though<br />

there are a few known occurrences <strong>of</strong> komatiite <strong>in</strong><br />

S<strong>in</strong>ghbhum Group <strong>of</strong> rocks at south <strong>of</strong> CGC (Das et al. 2001;<br />

Roy et al. 2002; Mitra and Bose, 2007). The elongated<br />

lensoid bodies <strong>of</strong> peridotitic Komatiite <strong>of</strong> Semra occur with<strong>in</strong><br />

tremolite act<strong>in</strong>olite schist <strong>of</strong> ultramafic parentage and are<br />

composed <strong>of</strong> oliv<strong>in</strong>e, cl<strong>in</strong>opyroxene, orthopyroxene with<br />

magnetite ± sp<strong>in</strong>el ± serpent<strong>in</strong>e ± phlogopite ± sphene.<br />

M<strong>in</strong>eralogically Semra ultramafic is lehrzolite <strong>in</strong><br />

composition and the paragenetic sequence <strong>of</strong> crystallization<br />

<strong>of</strong> Semra ultramafic is oliv<strong>in</strong>e-pyroxene-sp<strong>in</strong>el-magnetite.<br />

Prom<strong>in</strong>ent serpent<strong>in</strong>isation along reticulated cracks <strong>of</strong><br />

skeletal primary oliv<strong>in</strong>e with<strong>in</strong> the granular mass <strong>of</strong> pyroxene<br />

is an ubiquitous feature. Criss-cross fragmented oliv<strong>in</strong>e<br />

shelves (Fig.2A) on a polished rock slab (under the<br />

microscope) and the microphotograph show<strong>in</strong>g <strong>in</strong>tersection<br />

<strong>of</strong> two skeletal acicular oliv<strong>in</strong>e gra<strong>in</strong>s (Fig.2B) def<strong>in</strong><strong>in</strong>g the<br />

microsp<strong>in</strong>ifex <strong>text</strong>ure is recognized as relict feature. This<br />

sp<strong>in</strong>ifex <strong>text</strong>ure is be<strong>in</strong>g <strong>in</strong>terpreted as <strong>in</strong>dicative <strong>of</strong> <strong>in</strong> situ<br />

rapid cool<strong>in</strong>g <strong>of</strong> a crystal-free ultramafic liquid. Locally<br />

accumulation <strong>of</strong> cumulates has given rise to glomeroporphyritic<br />

<strong>text</strong>ure. The characteristic petrographic<br />

features, like cumuluse <strong>text</strong>ure and lack <strong>of</strong> visible<br />

deformation suggest orig<strong>in</strong>al magmatic crystallization <strong>of</strong><br />

these ultramafic rocks.<br />

Chemically, the Semra ultramafics are characterised by<br />

dist<strong>in</strong>ctly high MgO, Ni, Cr and poor <strong>in</strong> alkali, TiO 2<br />

, Ba,<br />

Cs, Rb, Nb, Hf and Y contents. Based on MgO content, the<br />

rock is peridotitic komatiite as per the three fold<br />

classification <strong>of</strong> Arndt et al. (1977). High normative oliv<strong>in</strong>e<br />

(42.56 to 75.91, Table 2) <strong>in</strong>dicate that these rocks have<br />

experienced crystal fractionation which is evident from the<br />

presence <strong>of</strong> oliv<strong>in</strong>e cumulates at places (Fig.3B). The<br />

relatively high Mg# (76.43 to 85.65), Cr and Ni (Table 2),<br />

also suggest that the Semra ultramafics are <strong>of</strong> cumulate<br />

orig<strong>in</strong>. Hence the high concentration <strong>of</strong> MgO and their<br />

variation <strong>of</strong> about 5 wt% <strong>in</strong> a restricted area may be attributed<br />

to different degree <strong>of</strong> oliv<strong>in</strong>e cumulate fractionation. Low<br />

abundance <strong>of</strong> <strong>in</strong>compatible elements, depleted LREE<br />

[(La/Yb) n<br />

= 0.74 – 1.07] and enriched HREE with flat pr<strong>of</strong>ile<br />

represent chondrite like compositional characteristics. All<br />

these together with relict, but dist<strong>in</strong>ct sp<strong>in</strong>ifex <strong>text</strong>ure<br />

confirm the komatiitic character <strong>of</strong> Semra ultramafic. The<br />

Semra ultramafic do plots exclusively <strong>in</strong> komatiite field <strong>of</strong><br />

various discrim<strong>in</strong>ate diagrams us<strong>in</strong>g various geochemical<br />

parameters (Fig: 4a, 4b, 5a, 5b and 5c). Immobile elements<br />

plot on oliv<strong>in</strong>e control l<strong>in</strong>es <strong>in</strong> variation diagrams (Arndt,<br />

1994) <strong>in</strong>dicate their komatiitic aff<strong>in</strong>ities. Thus Semra<br />

ultramafic satisfies all the IUGS chemical and <strong>text</strong>ural<br />

criteria to qualify as Komatiites. The CaO/TiO 2<br />

ratio rang<strong>in</strong>g<br />

from 15.98 to 26.93 wt% (Av. 20.32, Table 3) <strong>of</strong> these rocks<br />

is well comparable with the chondrite value. All the<br />

<strong>in</strong>vestigated samples fall close to the oliv<strong>in</strong>e fractionation<br />

l<strong>in</strong>e as def<strong>in</strong>ed <strong>in</strong> Al 2<br />

O 3<br />

– MgO plot (Fig.i) <strong>in</strong>dicat<strong>in</strong>g their<br />

komatiitic aff<strong>in</strong>ities. The extremely low K 2<br />

O content (0.01<br />

to 0.17 Wt % with one exotic value <strong>of</strong> 0.52 wt%) <strong>of</strong> these<br />

ultramafics appear to be a primary feature. These ultramafics<br />

has dist<strong>in</strong>ctly low SiO 2<br />

content <strong>in</strong> comparison to many well<br />

known komatiites <strong>of</strong> the world and may represent plume<br />

related magmatism for its generation (Parman, 2001). Low<br />

SiO 2<br />

content <strong>of</strong> the sample match with the plume scenario<br />

as SiO 2<br />

content <strong>of</strong> the magma generally decrease as the<br />

pressure <strong>of</strong> melt<strong>in</strong>g <strong>in</strong>creases (Nna-Mvondo and Frias,<br />

2005). The high MgO and low TiO 2<br />

and SiO 2<br />

contents <strong>in</strong><br />

the Semra ultramafics are regarded as the result <strong>of</strong> primary<br />

partial melt<strong>in</strong>g <strong>of</strong> the mantle (Nesbitt and Sun, 1976).<br />

The Al 2<br />

O 3<br />

/TiO 2<br />

ratio <strong>of</strong> Semra ultramafics (Av.<br />

20.04 wt%).) show similarity with “Munro type” komatiites<br />

characterised by Al 2<br />

O 3<br />

/TiO 2<br />

ratio around 20, which is<br />

consistent with most other komatiites hav<strong>in</strong>g the ratio<br />

close to chondrite (about 20) (Nesbitt et al. 1979). The<br />

CaO/Al 2<br />

O 3<br />

ratio variy<strong>in</strong>g from 0.71 to 1.35 wt% (Table 2,<br />

Av.1.03 wt%), is well comparable with Munro type<br />

komatiites (~1.1 to 1.6), average Komatiite (2.7 Ga) <strong>of</strong><br />

Newton Township, Canada (Cattle and Taylor, 1990) and<br />

average High-alum<strong>in</strong>a Geluk type komatiite (Gupta et al.<br />

1980). In terms <strong>of</strong> CaO/Al 2<br />

O 3<br />

ratio, the Semra ultramafic<br />

shows similarity only with Kunchia ultrabasic <strong>of</strong><br />

S<strong>in</strong>ghbhum district (Das et al., 2001).<br />

Enrichment <strong>of</strong> Ni and Cr may have resulted <strong>in</strong> liquidus<br />

phases dur<strong>in</strong>g magmatic evolution. The Mg # (>74) <strong>of</strong> the<br />

Semra ultramafics are comparable to primitive upper mantle<br />

Mg# (89.8) and high enough for rocks derived from ultramagnesian<br />

liquid <strong>of</strong> the mantle derived source. Considerably<br />

high Zr concentration <strong>in</strong> Semra ultramafic is attributed to<br />

Zr-enriched mantle source and not due to crustal<br />

JOUR.GEOL.SOC.INDIA, VOL.76,DEC.2010


KOMATIITE WITHIN CHHOTANAGPUR GNEISSIC COMPLEX AT SEMRA, JHARKHAND 603<br />

contam<strong>in</strong>ation. Depleted <strong>in</strong>compatible trace elements po<strong>in</strong>t<br />

towards Al-undepleted nature for the komatiites <strong>of</strong> the study<br />

area (Nna-Mvondo and Mart<strong>in</strong>ez-Frias, 2005).<br />

Different geochemical types <strong>of</strong> komatiites can be<br />

dist<strong>in</strong>guished us<strong>in</strong>g Al 2<br />

O 3<br />

/TiO 2<br />

and rare earth elements (Jahn<br />

et al. 1982; Nesbitt et al. 1982; Sun and Nesbitt, 1978).<br />

Nesbitt and Sun (1976), Sun and Nesbitt (1978) and Nesbitt<br />

et al. (1979) classified the komatiites <strong>in</strong>to two groups: Aldepleted<br />

(Barberton type) komatiites with relatively low<br />

Al 2<br />

O 3<br />

/TiO 2<br />

ratio and depleted HREE and Al-undepleted<br />

(Munro type) komatiites with near chondritic Al 2<br />

O 3<br />

/TiO 2<br />

ratio, Gd/Yb ratio and flat HREE. Jahn et al. (1982)<br />

recognised a third types a complement <strong>of</strong> the Al-depleted<br />

komatiites with high Al 2<br />

O 3<br />

/TiO 2<br />

ratio and relatively enriched<br />

HREE. With reference to these criteria, the Semra komatiite<br />

shows their similarities with Archaean Alum<strong>in</strong>a-undepleted<br />

Komatiite (AUDK), as it is characterised by Al 2<br />

O 3<br />

content<br />

(6.68 to 8.58 wt% with Av. 7.79 wt% Table 1), near Al 2<br />

O 3<br />

/<br />

TiO 2<br />

(Semra=Avg. 20.60, accepted chondritic value =20.4<br />

Schmus and Hayes, 1974) and flat unfractionated HREEs<br />

pattern. The diagnostic convex upward REE pr<strong>of</strong>ile exhibits<br />

LREE depletion compared to HREE, which is similar to<br />

most <strong>of</strong> the other Archaean komatiites (Mitra and Bose,<br />

2007). Depleted LREE signifies least crustal contam<strong>in</strong>ation<br />

(Gupta, 2007). HREE is at 5.39 to 6.37 times more than<br />

chondritic abundances. Such enrichment <strong>in</strong> HREE and<br />

<strong>in</strong>crease <strong>in</strong> (Gd/Yb)n (1.54 to 1.96, Table 2) represents<br />

garnet signature (Arndt, 1994; Naqvi et al., 2002). LREE<br />

contents are seven to eight times greater than chondrite. The<br />

Ti/Zr ratio (Avg.6.825) is very low <strong>in</strong> comparison to<br />

chondrite (114.99), which can be attributed to Zr-enriched<br />

mantle source. Semra komatiite shows similarities with<br />

“Munro type” Komatiites (Arndt et al., 1977; Nesbit et al.<br />

1979; Fan and Kerrich, 1997) and also with late-Archean<br />

(~2.7 Ga) Al-undepleted komatiites <strong>of</strong> Western Abitibi<br />

greenstone belt (Fan and Kerrich, op. cit.) <strong>in</strong> terms <strong>of</strong> Al 2<br />

O 3<br />

/<br />

TiO 2<br />

, Zr/Y, La/Sm n,<br />

Gd/Yb n<br />

(Table 2) and total REE<br />

(Table 3) may <strong>in</strong>dicate that Semra ultramafic represent an<br />

Archaean component <strong>in</strong> CGC. The Semra ultramafics also<br />

show similarity with Archaean Sandur schist belt <strong>of</strong><br />

Karnataka (Naqvi et al. 2002).<br />

The petrographic and geochemical f<strong>in</strong>gerpr<strong>in</strong>ts <strong>of</strong> Semra<br />

ultramafic together with its regional tectonic sett<strong>in</strong>g po<strong>in</strong>t<br />

towards komatiitic characters which was derived by eruption<br />

<strong>of</strong> essentially unmodified primary magma (Nisbet and<br />

Ch<strong>in</strong>ner, 1981) from mantle source under extensional<br />

tectonic setup. Deep fractur<strong>in</strong>g and rift<strong>in</strong>g (Gondwana) <strong>of</strong><br />

the protocont<strong>in</strong>ental crust with local upwell<strong>in</strong>g <strong>of</strong> upper<br />

mantle (along specific tectonic doma<strong>in</strong>) due to upris<strong>in</strong>g<br />

mantle plume giv<strong>in</strong>g rise to direct effusion <strong>of</strong> mantle material<br />

<strong>of</strong> komatiitic aff<strong>in</strong>ity. Komatiites are generally found <strong>in</strong><br />

Archaean greenstone belt but are rare <strong>in</strong> Proterozoic<br />

sequences and Cretaceous (Arndt and Lesher, 1992). The<br />

Semra ultramafics plots near the estimated source<br />

composition for Early Archaean to Late Archaean Komatiites<br />

(cf.Fig.6 <strong>of</strong> Walter, 1998) <strong>in</strong> the variation diagram between<br />

Al 2<br />

O 3<br />

/TiO 2<br />

ratio vs CaO/Al 2<br />

O 3<br />

ratio (Fig. 7A). In the light<br />

<strong>of</strong> this observation, the occurrence <strong>of</strong> komatiite with<strong>in</strong> CGC<br />

at the northwestern part <strong>of</strong> Eastern <strong>India</strong>n Shield is <strong>of</strong><br />

paramount significance, as it suggests a possibility <strong>of</strong><br />

the presence <strong>of</strong> Archaean component <strong>in</strong> CGC. So far the<br />

presence <strong>of</strong> late Archaean rock <strong>in</strong> CGC had rema<strong>in</strong>ed to be<br />

conjectural.<br />

Acknowledgement: The authors are thankful to Pr<strong>of</strong>. R.K.<br />

Srivastava, BHU, Varanasi and Pr<strong>of</strong>. S. Das, IIT Kharagpur<br />

for their critical comments and suggestions on the <strong>in</strong>itial<br />

manuscript. Constructive comments and thoughtful<br />

suggestions <strong>of</strong> the anonymous reviewers <strong>of</strong> the journal are<br />

<strong>of</strong> immense help <strong>in</strong> improv<strong>in</strong>g the earlier version <strong>of</strong> the<br />

manuscript. F<strong>in</strong>ancial assistance rendered by University<br />

Grants Commission, New Delhi to DKB for the sponsored<br />

project [FNo.34-50/2008(SR)] is highly acknowledged. The<br />

assistance <strong>of</strong> Dr. D. Mishra dur<strong>in</strong>g the field work and that<br />

<strong>of</strong> Miss Jugnu Prasad <strong>in</strong> draft<strong>in</strong>g <strong>of</strong> chemical diagrams are<br />

thankfully acknowledged.<br />

ACHARYYA, S.K., DASGUPTA, A. and CHAKRAVORTY, K. (1998)<br />

<strong>Geological</strong> map <strong>of</strong> <strong>India</strong>, Seventh Edition, Geol. Surv. <strong>India</strong>,<br />

Hyderabad.<br />

ACHARYYA, S.K. and ROY, A. (2000) Tectonothermal history <strong>of</strong> the<br />

Central <strong>India</strong>n Tectonic Zone and reactivation <strong>of</strong> major faults/<br />

shear zones. Jour. Geol. Soc. <strong>India</strong>, v.55(3), pp.239-256.<br />

ACHARYYA, S.K. (2003) The nature <strong>of</strong> Mesoproterozoic Central<br />

<strong>India</strong>n Tectonic Zone with exhumed and reworked older<br />

granulites. Gondwana Res., v.6(2), pp.197-214.<br />

JOUR.GEOL.SOC.INDIA, VOL.76,DEC.2010<br />

References<br />

ARNDT, N.T. (1994) Archean komatiites. In: K. C. Condie (Ed.),<br />

Archean Crustal Evolution, Amsterdam Elsevier, pp.11-<br />

44.<br />

ARNDT, N.T., NALDRETT, A.J. and PYKE, D.R. (1977) Komatiite<br />

and iron rich tholeiittic lavas <strong>of</strong> Munro Township, northwest<br />

Ontario. Jour. Petrol., v.18, pp.319-369.<br />

ARNDT, N.T. and NISBET, E.G. (1982) What is a komatiite? In: N.T.<br />

Arndt and E.G. Nisbet (Eds.), Komatiites. London: George<br />

Allen and Unw<strong>in</strong>, pp.19-27.


604 D. K. BHATTACHARYA AND OTHERS<br />

ARNDT, N.T. and NESBITT, E.G. (1984) Magma mix<strong>in</strong>g <strong>in</strong> Komatiitic<br />

lavas from Munro Township Ontario. In: A Kröner, G. Hanson<br />

and A.M. Goodw<strong>in</strong> (Eds), Archaean Geochemistry, Spr<strong>in</strong>ger-<br />

Verlag, pp.99-114.<br />

ARNDT, N.T. and LESHER, C.M. (1992) Fractionation <strong>of</strong> REE by<br />

oliv<strong>in</strong>e and the orig<strong>in</strong> <strong>of</strong> Kambalda komatiites, Western<br />

Australia. Geochim. .Cosmochim. Acta, v.56, pp.4191-4204.<br />

ARNDT, N.T., KERR, A.C. and TARNEY, J. (1997) Dynamic melt<strong>in</strong>g<br />

<strong>in</strong> plume heads: the formation <strong>of</strong> Gorgona komatiites and<br />

basalts. Earth Planet. Sci. Lett., v.146, pp.289-301.<br />

ARNDT, N.T., LESHER, C.M. and BARNES, S.J. (2008) Komatiite.<br />

Cambridge Univ. Press, 467p.<br />

ARNDT, J.G., ARNDT, N.T. and NALDRETT, A. J. (1977 ) Genesis <strong>of</strong><br />

Archean Komatiites from Munro Township, northwest Ontario:<br />

trace-element evidence. Geol., v.5, pp.590-594.<br />

BHATTACHARYYA, B. P. (1975) Structural evolution <strong>in</strong> the central<br />

part <strong>of</strong> Santhal Parganas district, Bihar. Bull. Geol. M<strong>in</strong>er.<br />

Met. Soc. <strong>India</strong>, v.48(1), pp.41-47.<br />

BHATTACHARYA, U., GHOSE, D.K., SEN, P. and CHAKRABARTI, R.<br />

(1996) Sp<strong>in</strong>ifex <strong>text</strong>ured komatiite from Archaean greenstone<br />

sequence <strong>of</strong> S<strong>in</strong>ghbhum district, eastern <strong>India</strong>. Jour. Geol. Soc.<br />

<strong>India</strong>, v.48, pp.457-461.<br />

BROOKS, C.K. and HART, S.R. (1974) On the significance <strong>of</strong><br />

komatiite. Geology, v.2, pp.107-110.<br />

CATTELL, A.C. and ARNDT, N.T. (1987) Low- and high-alum<strong>in</strong>a<br />

komatiites from a Late Archean sequence, Newton Township,<br />

Ontario. Contr. M<strong>in</strong>. Petro, v.97, pp.218-227.<br />

CATTELL, A.C. and TAYLOR, R.N. (1990) Archaean basic<br />

magmatism. In: R.P. Hall and D.J. Hughes (Eds.), Early<br />

Precambrian basic magmatism. Chapman and Hall, Glasgow:<br />

Blackie, pp.11-39.<br />

CHATTERJEE, G.C. and GHOSH, P.K. (1970) Tectonic framework <strong>of</strong><br />

Pen<strong>in</strong>sular Gondwanas <strong>of</strong> <strong>India</strong>. Rec. Geol. Surv. <strong>India</strong>,<br />

v.98(2), pp.1-25.<br />

CHAKRABORTY, C., MANDAL, N. and GHOSE, S.K. (2003) K<strong>in</strong>ematics<br />

<strong>of</strong> the Gondwana bas<strong>in</strong>s <strong>of</strong> pen<strong>in</strong>sular <strong>India</strong>. Tectonophysics,<br />

v.377, p.299-324<br />

CONDIE, K.C. (1997a) Contrast<strong>in</strong>g sources for upper and lower<br />

cont<strong>in</strong>ental crust: The greenstone connection. Jour. Geol.,<br />

v.105, pp.729-736.<br />

CONDIE, K.C. (1997b) Plate tectonics and crustal evolution (4 th<br />

Ed), Oxford, Butterworth-He<strong>in</strong>neman, 282p.<br />

DAS GUPTA, S., BHATTACHARYA, D.K. and SAHA, A.K. (1994)<br />

Magnetite deposits <strong>of</strong> Semra-Salatua area, Palamau district,<br />

Bihar, <strong>India</strong>: Its disposition and genesis. <strong>India</strong>n M<strong>in</strong>erals,<br />

v.48(4), pp.215-223.<br />

DAS, S., BOSE, M. and GHOSH, A.K. (2001) Geochemical evaluation<br />

<strong>of</strong> the ultramafic-basic bimodal volcanism <strong>in</strong> Kunchia sector<br />

<strong>of</strong> the Proterozoic Dalma volcanic belt, Eastern <strong>India</strong> –<br />

Prospect <strong>of</strong> a Komatitic suite. <strong>India</strong>n Jour. Geol., v.73(4),<br />

pp.227-240.<br />

DAS, B. and PATEL, N.P. (1984) Nature <strong>of</strong> the Narmada-Son<br />

l<strong>in</strong>eament. Jour. Geol. Soc. <strong>India</strong>, v.25, pp.267-276.<br />

DONALDSON, C.H. (1982) Sp<strong>in</strong>ifex <strong>text</strong>ured komatiites : A review<br />

<strong>of</strong> <strong>text</strong>ures, composition and layer<strong>in</strong>g. In: N.T. Arndt and E.G.<br />

Nisbet (Eds.), Komatiites. George Allen and Unw<strong>in</strong>, London,<br />

pp.214-243.<br />

DUTTA, N.R. and MITRA, N.D. (1984) Gondwana geology <strong>of</strong> <strong>India</strong>n<br />

plate – its history <strong>of</strong> fragmentation and dispersion. Geol. Surv.<br />

Japan, Rept. No.263, pp.1-25.<br />

ECHEVERRIA, L.M. (1980)Tertiary or Mesozoic komatiites from<br />

Gorgona Island, Colombia; field relations and geochemistry.<br />

Contrib. M<strong>in</strong>eral. Petrol., v.73, p.253-266.<br />

FAN, J. and KERRICH, R. (1997) Geochemical characteristics <strong>of</strong><br />

alum<strong>in</strong>um depleted and undepleted komatiites and HREEenriched<br />

low-Ti tholeiites, western Abitibi greenstone belt: A<br />

heterogeneous mantle plume-convergent marg<strong>in</strong> environment.<br />

Geochim. Cosmochim. Acta, v.61(22), pp.4723-4744.<br />

GANGOPADHYAY, A., WALKER, R.J., HANSKI, E. and SOLHEID, P.A.<br />

(2006) Orig<strong>in</strong> <strong>of</strong> Paleoproterozoic komatiites at Jeesiörova,<br />

Kittilä greenstone complex, F<strong>in</strong>nish Lapland. Jour. Petrol.,<br />

v.47(4), pp.773-789.<br />

GHOSE, N.C. (1970) On the occurrence <strong>of</strong> peridotite dyke from<br />

Richughuta, Palamau district, and its bear<strong>in</strong>g on the<br />

composition <strong>of</strong> upper mantle. Second Upper Mantle Symp.,<br />

National Geophys. Res. Inst., Hyderabad, pp.349-359.<br />

GHOSE, N.C. (1983) Geology, tectonics and evolution <strong>of</strong> the<br />

Chhotanagpur granite gneiss complex, Eastern <strong>India</strong>. In: S.<br />

S<strong>in</strong>ha-Roy (Ed.), Structure and tectonics <strong>of</strong> the Precambrian<br />

rocks <strong>of</strong> <strong>India</strong>. Recent Res. Geol., H<strong>in</strong>dustan Publ. Corp.,<br />

Delhi, v.10, pp.211-257.<br />

GHOSE, N.C. (1992) Chhotanagpur gneiss—granulite complex,<br />

Eastern <strong>India</strong>. Present status and future prospect. <strong>India</strong>n. Jour<br />

Geol., v.64, pp100-121.<br />

GHOSE, N.C., CHAKRABORTY, S.K. and SRIVASTAVA, S.C. (1983)<br />

M<strong>in</strong>eralogy and chemistry <strong>of</strong> the metabasic rocks around<br />

McCluskieganj, District Hazribagh, Bihar. Rec. Geol. Surv.<br />

<strong>India</strong>, v.114(2), pp.25-42.<br />

GHOSE, N.C. and SRIVASTAVA, S.C. (2001) Chemical characterisation<br />

and paragenesis <strong>of</strong> biotite from the Proterozoic Chotanagpur<br />

Gneissic. Complex, Eastern <strong>India</strong>n Shield. In: S.P. S<strong>in</strong>gh (Ed.),<br />

Precambrian crustal evolution and m<strong>in</strong>eralization <strong>in</strong> <strong>India</strong>.<br />

PCEM-2001 sem<strong>in</strong>ar volume, pp. 199-218.<br />

GHOSE, N.C. and MUKHERJEE, D. (2000) Chhotanagpur gneiss<br />

granulite complex, Eastern <strong>India</strong> – A Kaleidoscope <strong>of</strong> global<br />

events. In: Geology and m<strong>in</strong>eral resources <strong>of</strong> Bihar and<br />

Jharkhand. IGE Monograph, v.2, Patna, pp.33-58.<br />

GHOSE, N.C., MUKHERJEE, D. and CHATTERJEE, N. (2005) Plume<br />

generated Mesoproterozoic Mafic-ultramafic magmatism <strong>in</strong><br />

the Chotanagpur Mobile Belt <strong>of</strong> Eastern <strong>India</strong>n Shield Marg<strong>in</strong>.<br />

Jour. Geol. Soc. <strong>India</strong>n, v.66, pp.725-740.<br />

GHOSE N.C. and CHATTERJEE, N. (2008) Petrology, Tectonic sett<strong>in</strong>g<br />

and Source <strong>of</strong> Dykes and Related magmatic bodies <strong>in</strong> the<br />

Chotanagpur Gniessic Complex, Eastern <strong>India</strong>. In: Rajesh K.<br />

Srivastava, Ch. Sivaji and N. V. Chalapathi Rao (Eds.), <strong>India</strong>n<br />

Dykes: Geochemistry, Geophysics and Geochronology. Narosa<br />

Publ. House Pvt. Ltd., New Delhi, <strong>India</strong>, pp.471-493.<br />

GLIKSON, A.Y. (1983) Geochemistry <strong>of</strong> Archaean tholeiitic basalt<br />

and high-Mg to peridotitic komatiite suites, with petrogenetic<br />

implications. Mem. Geol. Soc. <strong>India</strong>, no.4, pp.73-95.<br />

JOUR.GEOL.SOC.INDIA, VOL.76,DEC.2010


KOMATIITE WITHIN CHHOTANAGPUR GNEISSIC COMPLEX AT SEMRA, JHARKHAND 605<br />

GUPTA, A., BASU, A. and GHOSH, P.K. (1980) The Proterozoic<br />

ultramafic lavas and tuffs <strong>of</strong> Dalma greenstone belt,<br />

S<strong>in</strong>ghbhum, Bihar, eastern <strong>India</strong>. Can. Jour. Earth Sci., v.17,<br />

pp.210-231.<br />

GUPTA, A.K. (2007) Petrology and genesis <strong>of</strong> igneous rocks, Narosa<br />

Publish<strong>in</strong>g House, Delhi, 479p.<br />

HANSKI, E. and SMOLKIN, V.F. (1995) Pechenga ferropicriytes and<br />

other early Proterozoic picrites <strong>in</strong> the eastern part <strong>of</strong> Baltic<br />

shield. Precambrian Res., v.45, pp.63-82.<br />

JAHN, B. M., GRUAU, G. and GLICKSON, A.Y. (1982) Komatiites <strong>of</strong><br />

the Onverwacht Group, South Africa: REE chemistry, Sm-Nd<br />

age and mantle evolution. Contrib. M<strong>in</strong>eral. Petrol., v.80,<br />

pp.25-40.<br />

JENSEN, L.S. (1976) A new cation plot for classify<strong>in</strong>g sub-alkalic<br />

volcanic rocks. Ontario Div. M<strong>in</strong>es, Misc. Paper no.66, 22p.<br />

KAR, A. and SARKAR, N.K. (1989) Petrology <strong>of</strong> calc-alkal<strong>in</strong>e<br />

igneous suite <strong>of</strong> Leslieganj-Khamdih area, Palamau district,<br />

Bihar. <strong>India</strong>n Jour. Geol., v.61(2), pp.93-109.<br />

KERRICH, R., POLAT, A. WYMAN, D. and HOLLINGS, P. (1999a) Trace<br />

element systematic <strong>of</strong> Mg- to Fe-tholeiitic basalt suites <strong>of</strong> the<br />

Superior Prov<strong>in</strong>ce: implications for Archean mantle reservoirs<br />

and greenstone belt genesis. Lithos, v.46, pp.163-187.<br />

KERRICH, R., WYMAN, D., HOLLINGS, P. and POLAT, A. (1999b)<br />

Variability <strong>of</strong> Nb/U and Th/La <strong>in</strong> 3.0 to 2.7 Ga Superior<br />

Prov<strong>in</strong>ce ocean plateau basalts : implications for the tim<strong>in</strong>g <strong>of</strong><br />

cont<strong>in</strong>ental growth and lithospheric recycl<strong>in</strong>g. Earth Planet.<br />

Sci. Lett., v.168, pp.101-115.<br />

KERR, A.C. and ARNDT, N.T. (2001) A note on the IUGS<br />

reclassification <strong>of</strong> the high-Mg and picritic volcanic rocks.<br />

Jour. Petrol., v.42 (11), pp.2169-2171.<br />

KERR, A.C., MARRINER, G.F., ARNDT, N.T., TARNEY, J. NIVIA, A.,<br />

SAUNDERS, A.D. and DUNCAN, R.A. (1996) The petrogenesis<br />

<strong>of</strong> Gorgona komatiites, picrites and basalts: new field,<br />

petrographic and geochemical constra<strong>in</strong>ts. Lithos, v.37,<br />

pp.245-260.<br />

KULIKOV GOOGLE’S GEOCHEMICAL PLOTS KOMATIITE www.ukria<br />

god.kiev.ua/.../<br />

LAHIRI, G. and DAS, S. (1984) Petrology <strong>of</strong> the area east <strong>of</strong><br />

Daltonganj, Palamau district, Bihar. Jour. Geol. Soc. <strong>India</strong>,<br />

v.25(8), pp.490-504.<br />

LE BAS, M.J. (2000) IUGS reclassification <strong>of</strong> the high-Mg and<br />

picrite Volcanic rocks. Journal <strong>of</strong> Petrology, v.41, pp.1467-<br />

1470.<br />

LE BAS, M.J. and STRECKEISEN, A. I. (1991) The IUGS systematic<br />

<strong>of</strong> igneous rocks. Jour. Geol. Soc. London, v.148, pp.825-<br />

833.<br />

LE MAITRE, P., DUDEK, A. and OTHERS. (1989) A classification <strong>of</strong><br />

igneous rocks and glossary <strong>of</strong> terms. Blackwell Scient Publ.,<br />

Oxford.<br />

MAHADEVAN, T.M. (1992) <strong>Geological</strong> evolution <strong>of</strong> the<br />

Chhotanagpur gneissic complex <strong>in</strong> parts <strong>of</strong> Purulia district.<br />

<strong>India</strong>n Jour. Geol., v.64(1), pp.1-22.<br />

MAHADEVAN, T.M. (2002) Geology <strong>of</strong> Bihar and Jharkhand.<br />

<strong>Geological</strong> <strong>Society</strong> <strong>of</strong> <strong>India</strong>, Textbook Series no.14, 563p<br />

MANDAL, A., GOSWAMI, B., MUKHERJEE, S., DAS, S., BHATTACHARYYA,<br />

I. and BHATTACHARYYA, C. (2007) Mantle metasomatism <strong>of</strong><br />

ultramafic <strong>in</strong>trusives <strong>in</strong> Chhotanagpur Granite Gneiss<br />

Complex, Puruliya District, West Bengal, Eastern <strong>India</strong>:<br />

Evidence from trace element and REE geochemistry. In: J.<br />

Ray and C. Bhattacharyya (Eds.), Igneous Petrology: 21 st<br />

Century Perspective. pp.122-142.<br />

MANDAL, A. and RAY, A. (2009) Petrology <strong>of</strong> Mafic-Ultramafic<br />

Rocks Along North Puruliya Shear Zone, West Bengal. Jour.<br />

Geol. Soc. <strong>India</strong>, v.74, pp.108-118;<br />

MAZUMDAR, S.K. (1988) Crustal evolution <strong>of</strong> the Chhotanagpur<br />

gneissic complex and the mica belt <strong>of</strong> Bihar. In: D.<br />

Mukhopadhyay (Ed.), Precambrian <strong>of</strong> the Eastern <strong>India</strong>n<br />

Shield. Geol. Surv. <strong>India</strong> Mem., v.8, pp.49-83.<br />

MCDONOUGH, W.F. and SUN, S.S (1995) The composition <strong>of</strong> the<br />

Earth. Chemical Geol., v.120, pp.223-253.<br />

MISHRA, D., BHATTACHARYA, D.K. and BARLA, V.C. (2004)<br />

Occurrences <strong>of</strong> Peridotiitic komatiites <strong>in</strong> the Chhotanagpur<br />

Gneisses around Semra, South <strong>of</strong> Daltonganj, Palamau district,<br />

Jharkhand. <strong>India</strong>n M<strong>in</strong>eralogist, v.38(2), pp.12-19.<br />

MITRA, M. and BOSE, M.K. (2007) Chang<strong>in</strong>g style <strong>of</strong> magma<br />

genesis and evolution <strong>of</strong> komatiitic ultrabasics <strong>in</strong> Dalma<br />

volcanic belt <strong>of</strong> Proterozoic S<strong>in</strong>ghbhum Bas<strong>in</strong> - A geochemical<br />

approach. In: J. Ray and C. Bhattacharyya (Eds.), Igneous<br />

Petrology: 21 st century perspective, pp.73-90.<br />

MOHAN, K., SRIVASTAVA, V. and SINGH, C.K. (2007) Pattern and<br />

genesis <strong>of</strong> l<strong>in</strong>eaments <strong>in</strong> and across Son-Narmada l<strong>in</strong>eament<br />

zone <strong>in</strong> a part <strong>of</strong> central <strong>India</strong> around Renukoot, district<br />

Sonbhadra, U.P. Jour. <strong>India</strong>n Soc. Remote Sens<strong>in</strong>g v.35/2,<br />

pp.193-200.<br />

MUKHERJEE, J. (1998) Palaeogeography <strong>of</strong> the Talchir sedimentation<br />

<strong>in</strong> Daltonganj, North Koel bas<strong>in</strong>, Palamu District, Bihar. Abs.<br />

Nat. Sem. Geosc. Adv. Bihar, pp.34.<br />

MUKHERJEE, D. and GHOSE, N.C. (1992) Precambrian anorthosites<br />

with<strong>in</strong> the Chhotanagpur gneissic complex <strong>in</strong> Eastern <strong>India</strong>n<br />

Shield. <strong>India</strong>n Jour. Geol., v.64, pp.143-150.<br />

MUKHERJEE, D. and GHOSE, N.C. 1999. Damodar graben: a centre<br />

<strong>of</strong> contrast<strong>in</strong>g magmatism <strong>in</strong> the eastern <strong>India</strong> Shield marg<strong>in</strong>.<br />

In: A.K. S<strong>in</strong>ha (Ed.), Basement Tectonics, v.13. Kluwer,<br />

Netherlands, pp.179-202.<br />

NAQVI, S.M., MANIKYAMBA, C., RAO, T.G., SUBBA RAO,D.V., RAM<br />

MOHAN, M. and SRINIVASA SARMA, D. (2002) Geochemical<br />

and isotopic constra<strong>in</strong>ts <strong>of</strong> Neoarchaean Fossil Plume for<br />

Evolution <strong>of</strong> volcanic rocks <strong>of</strong> Sandur Greenstone Belt, <strong>India</strong>.<br />

Jour. Geol. Soc. <strong>India</strong>, v.60, pp.27-56.<br />

NESBITT, R.W. (1971) Skeletal crystal forms <strong>in</strong> the ultramafic rocks<br />

<strong>of</strong> the Yalgarn Block, Western Australia: evidence for an<br />

Archean ultramafic liquid. Geol. Soc. Aus. Spl. Publ. 3, 331-<br />

347.<br />

NESBITT, R.W., JAHN, B.M. and PURVIS, A.C. (1982) Komatiites:<br />

an early Precambrian phenomenon. Jour. Volcan. Geotherm.<br />

Res., v.14, pp.31-45.<br />

NESBITT, R.W. and SUN, S.S. (1976) Geochemistry <strong>of</strong> Archaean<br />

sp<strong>in</strong>ifex-<strong>text</strong>ured peridotites and magnesian and low<br />

magnesian tholeiites. Earth Planet. Sci. Lett., v.31, pp.433-<br />

453.<br />

JOUR.GEOL.SOC.INDIA, VOL.76,DEC.2010


606 D. K. BHATTACHARYA AND OTHERS<br />

NESBITT, R.W., SUN, S. and PURVIS, A.C. (1979) Komatiites: Geochemistry<br />

and Genesis, Canadian M<strong>in</strong>eral., v.17, pp.165-186.<br />

NISBET, E.G. and CHINNER, G.A. (1981) Controls on the eruption <strong>of</strong><br />

mafic and ultramafic lavas: Ruth Well Cu-Ni prospect, western<br />

Pilbera. Econ. Geol., v.76, pp.1729-1735.<br />

NISBET, E.G. (1982) The tectonic sett<strong>in</strong>g and petrogenesis <strong>of</strong><br />

komatiites. In: N.T. Arndt and E.G. Nisbet (Eds), Komatiites.<br />

George Allen and Unw<strong>in</strong> (London), pp.501-520.<br />

NISBET, E.G., ARNDT, N.T., BICKLE, M.J., et al. (1987) Uniquely<br />

fresh 2.7 Ga komatiites from Bel<strong>in</strong>gwe greenstone belt,<br />

Zimbabwe. Geology, v.15, pp.1147-1150.<br />

NIYOGI, B.N. (1987) Evolutionary scenario <strong>of</strong> Lower Gondwana<br />

Coal bas<strong>in</strong>s <strong>of</strong> Pen<strong>in</strong>sular <strong>India</strong>. In: R.M. S<strong>in</strong>gh (Ed.), Proc.<br />

Nat. Sem<strong>in</strong>ar on Coal Resources <strong>of</strong> <strong>India</strong>. Dept. <strong>of</strong> Geology,<br />

BHU, pp.14-29.<br />

NNA-MVONDO, D. and MARTINEZ-FRIAS, J. (2005) EOS Trans, AGU,<br />

v.86(52), Fall Meet. Suppl Abstract B31B-0988.<br />

PARMAN, S.W., GROVE, T.L. and DANN, J.C. (2001) The production<br />

<strong>of</strong> Barberton komatiites <strong>in</strong> an Archean subduction zone.<br />

Geophys. Res. Lett., v.28, pp.2513-2516.<br />

PASCOE, E.H. (1959) A manual <strong>of</strong> the geology <strong>of</strong> <strong>India</strong> and Burma,<br />

v.2, Govt. <strong>of</strong> <strong>India</strong> Press, Calcutta, pp.485-1338.<br />

PYKE, D.R., NALDRETT, A.J. and ECKSTRAND, O.R. (1973) Archaean<br />

ultramafic flow <strong>in</strong> Munro Township, Ontario. Geol. Soc. Amer.<br />

Bull., v.84, pp.955-973.<br />

RAY, J.S. (1984) On the komatiite <strong>of</strong> Palasbani, S<strong>in</strong>ghbhum, Bihar.<br />

Curr.Sci., v.53 (15), pp.806-807.<br />

ROY, A., SARKAR, A., JEYAKUMAR, S., AGGRAWAL, S.K. and EBIHARA,<br />

M. (2002) Mid-Proterozoic plume-related thermal event <strong>in</strong><br />

Eastern <strong>India</strong>n Craton: Evidence from trace elements, REE<br />

geochemistry and Sr-Nd isotope systematic <strong>of</strong> basic-ultrabasic<br />

<strong>in</strong>trusives from Dalma volcanic belt. Gondwana Res., v.5(1),<br />

pp.133-146.<br />

ROY, A. and PRASAD, M.H. (2003) Tectonothermal events <strong>in</strong> Central<br />

<strong>India</strong>n Tectonic Zone (CITZ) and its implications <strong>in</strong> Rod<strong>in</strong>ian<br />

crustal assembly. Jour. Asian Earth Sci., v.22, pp.115-129.<br />

SAHU, N.K. and MUKHERJEE, M.M. (2001) Sp<strong>in</strong>ifex <strong>text</strong>ured<br />

komatiite from Badampahar-Gorumahisani schist belt,<br />

Mayurbhanj District, Orissa. Jour. Geol. Soc. <strong>India</strong>, v.57,<br />

pp.529-534.<br />

SARKAR, A.N. (1988) Tectonic evolution <strong>of</strong> the Chhotanagpur<br />

plateau and the Gondwana bas<strong>in</strong>s <strong>in</strong> Eastern <strong>India</strong>: An<br />

<strong>in</strong>terpretation based on Supra-subduction geological processes.<br />

In: D. Mukhopadhyay (Ed.), Precambrian <strong>of</strong> the Eastern <strong>India</strong>n<br />

Shield. Mem. Geol. Soc. <strong>India</strong>, no.8, pp.127-146.<br />

SCHMUS, W.R.V. and HAYES, J.M. (1974) Chemical and<br />

petrographic correlations among carbonaceous chondrites.<br />

Geochim. Cosmochim. Acta, v.38, 47p.<br />

SHANKAR, R. (1991) Thermal and crustal structure <strong>of</strong> SONATA: a<br />

zone <strong>of</strong> mid-cont<strong>in</strong>ental rift<strong>in</strong>g <strong>in</strong> <strong>India</strong>n Shield. Jour. Geol.<br />

Soc. <strong>India</strong>, v.37, pp.211-220.<br />

SINHA, A.K. and BHATTACHARYA, D.K. (1995). Geochemistry <strong>of</strong> the<br />

magnetite deposits around Sua, Palamau district, Bihar. Jour.<br />

Geol. Soc. <strong>India</strong>, v.46, pp.313-316.<br />

SMITH, H.S. and ERLANK, A.J. (1982) Geochemistry and<br />

petrogenesis <strong>of</strong> komatiites from the Barberton greenstone belt,<br />

South Africa. In: N.T. Arndt and E.G. Nisbet (Eds.), Komatiites,<br />

George Allen & Unw<strong>in</strong>, London, pp.347-398.<br />

SRIVASTAVA, R.K., CHALAPATHI RAO, N.V. and SINHA, A.K. (2009)<br />

Cretaceous potassic <strong>in</strong>trusives with aff<strong>in</strong>ities to aillikites from<br />

Jharia area: Magmatic expression <strong>of</strong> metasomatically ve<strong>in</strong>ed<br />

and th<strong>in</strong>ned lithospheric mantle beneath S<strong>in</strong>ghbhum Craton,<br />

Eastern <strong>India</strong>. Lithos, v.1125, pp.407-418.<br />

SRIVASTAVA, S. C., GHOSE N.C., PRASAD, A. and CHAKRABORTY, S.K.<br />

(1984) The composition and orig<strong>in</strong> <strong>of</strong> amphibolites <strong>of</strong> south<br />

Daltonganj, District Palamau, Bihar. Geol. Surv. <strong>India</strong> Spec.<br />

Publ., no.12, pp.401-411.<br />

SUN, S.S. and NESBITT, R.W. 1978) Petrogenesis <strong>of</strong> Archean<br />

ultrabasic and basic volcanic: evidence from rare earth<br />

elements. Contrib. M<strong>in</strong>eral. Petrol., v.65, pp.301-325.<br />

SUN, S.S. and MCDONOUGH, W.F. (1989) Chemical and isotopic<br />

systematic <strong>of</strong> ocean basalts: implications for mantle<br />

composition and processes. In: A.D. Saunders, M.J. Norry<br />

(Eds.), Magmatism <strong>in</strong> the ocean basis. Geol.Soc. London Spec.<br />

Publ., v.42, pp.313-345.<br />

WALTER, M.J. (1998) Melt<strong>in</strong>g <strong>of</strong> Garnet Peridotite and the Orig<strong>in</strong><br />

<strong>of</strong> Komatiite and Depleted Lithosphere. Jour. Petrol., v.39,<br />

pp.29-60.<br />

WÄNKE, H., BADDENHAUSEN, H., PALME, H. and SPETTEL, B. (1974)<br />

On the geochemistry <strong>of</strong> the Allende <strong>in</strong>clusions and their<br />

orig<strong>in</strong> as high-temperature condensates. Earth Planet. Sci. Lett.,<br />

v.23.<br />

VERMA, S.P., TORRES-ALVARADO, I.S. andSotelo-Rodriguez, Z.T.<br />

(2002) SINCLASS: Standard Igneous Norm and Volcanic<br />

Rock Classification System. Computer. Geosci, v.28, pp.711-<br />

715.<br />

VILJOEN, M.J. and VILJOEN, R.P. (1969) Evidence for the<br />

composition <strong>of</strong> the primitive mantle and its products <strong>of</strong> partial<br />

melt<strong>in</strong>g from the study <strong>of</strong> the rocks <strong>of</strong> the Barberton<br />

Mounta<strong>in</strong>land. Geol. Soc. South Africa, Spec. Publ., v.2,<br />

pp.275-296.<br />

ZHOU, J. and LI, X. (2006) Geoplot: An excel VBA program for<br />

geochemical data plott<strong>in</strong>g. Computer. Geosci., v.32(4), pp.554-<br />

560.<br />

(Received: 18 November 2009; Revised form accepted: 2 June 2010)<br />

JOUR.GEOL.SOC.INDIA, VOL.76,DEC.2010

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!