11.11.2013 Views

Full text in PDF - Geological Society of India

Full text in PDF - Geological Society of India

Full text in PDF - Geological Society of India

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

JOURNAL GEOLOGICAL SOCIETY OF INDIA<br />

Vol.76, October 2010, pp.403-413<br />

Enigmatic Association <strong>of</strong> the Carbonatite and Alkali-pyroxenite<br />

along the Northern Shear Zone, Purulia, West Bengal:<br />

A Saga <strong>of</strong> Primary Magmatic Carbonatite<br />

ANIKET CHAKRABARTY* and AMIT KUMAR SEN<br />

Department <strong>of</strong> Earth Sciences, IIT Roorkee, Roorkee - 247 667<br />

*Now at: Department <strong>of</strong> Geology, Durgapur Government College, Durgapur – 713 214<br />

Email: senakfes@iitr.ernet.<strong>in</strong><br />

Abstract: The Purulia carbonatite, ‘carbonatite’-‘alkali-pyroxenite’-‘apatite-magnetite rock’ association, is located at<br />

Beldih area <strong>of</strong> Purulia district, West Bengal and falls with<strong>in</strong> the 100 km long Northern Shear Zone (NSZ). Published<br />

literature suggests that the Purulia carbonatite was formed by the process <strong>of</strong> liquid immiscibility from under-saturated<br />

silicate parent magma. However, no silica under-saturated rocks like ijolite, nephel<strong>in</strong>e-syenite etc. is known from the<br />

area. The trace element geochemistry (Ba/La, Nb/Th, Nb/Pb and Y/Ce ratios <strong>in</strong> the present study) also does not support<br />

this view. Present study <strong>in</strong>dicates that the Purulia carbonatite is enriched <strong>in</strong> ΣREE and <strong>in</strong>compatible elements but the<br />

carbonatite is also poorer <strong>in</strong> Nb, Th and Pb compared to the world average <strong>of</strong> calicocarbonatites. The lower value <strong>of</strong> Nb<br />

is characteristics <strong>of</strong> carbo(hydro)thermal carbonatite where carbonatite is associated with alkali-pyroxenite and suggests<br />

probable orig<strong>in</strong> <strong>of</strong> the carbonatite as carbothermal residua evolved from an unknown parentage. However, the field,<br />

petrographic and geochemical data <strong>in</strong>dicate the genesis <strong>of</strong> this carbonatite from a primary carbonatitic magma <strong>of</strong> mantle<br />

decent. The 87 Sr/ 86 Sr ratio <strong>of</strong> the carbonatite and apatite separated from the carbonatite (~0.703) implies primary magmatic<br />

derivation <strong>of</strong> the Purulia carbonatite. Close similarity <strong>of</strong> the apatite <strong>of</strong> the apatite-magnetite rock with the mantle apatite<br />

(<strong>of</strong> type Apatite B) <strong>in</strong>dicates that they are also <strong>of</strong> primary magmatic orig<strong>in</strong>. The present work portrays a unique example<br />

where primary magmatic carbonatite is associated with the alkali-pyroxenite.<br />

Keywords: Carbonatite, Pyroxenite, Carbothermal residua, Mantle apatites, Liquid immiscibility, Northern Shear Zone.<br />

INTRODUCTION<br />

The genesis <strong>of</strong> carbonatite, a rare alkal<strong>in</strong>e igneous rock,<br />

is still a matter <strong>of</strong> debate as there is no s<strong>in</strong>gle mechanism<br />

which can unequivocally expla<strong>in</strong> the formation <strong>of</strong> the<br />

carbonatitic melt. It can be formed both by the magmatic as<br />

well as hydrothermal process(es) (Mitchell, 2005). The<br />

existence <strong>of</strong> carbonatitic magma was established <strong>in</strong> the<br />

1960s, but s<strong>in</strong>ce then it is debated whether carbonatite is a<br />

primary or a derivative magma. In other words, it is<br />

developed directly by partial melt<strong>in</strong>g <strong>of</strong> mantle peridotite<br />

or from silicate magma by fractional crystallization or liquid<br />

immiscibility process (Gitt<strong>in</strong>s, 1988, Le Bas, 1977). The<br />

derivative carbonatite magma is likely to be generated with<strong>in</strong><br />

the crust and hence relatively at lower pressure compared<br />

to a mantle derived magma. Much <strong>of</strong> these controversies<br />

are summarized by LeBas (1987), Twyman and Gitt<strong>in</strong>s<br />

(1987). Melt<strong>in</strong>g studies reveals there are three possibilities<br />

by which carbonatite can be formed, (1) direct partial<br />

melt<strong>in</strong>g <strong>of</strong> a metasomatized mantle (Wyllie and Hung, 1975;<br />

Wallace and Green, 1988; Wyllie and Lee, 1998);<br />

(2) immiscible separation at low or high pressure from<br />

carbonated silicate melts e.g. carbonated nephel<strong>in</strong>ite (Koster<br />

van Groos and Wyllie, 1963; Le Bas, 1977; Kjarsgaard et<br />

al. 1995; Brooker, 1998) and (3) crystal fractionation <strong>of</strong> a<br />

carbonated alkali silicate melt (K<strong>in</strong>g; 1949; Veksler et al.<br />

1998). In recent years the genesis <strong>of</strong> the carbonatites<br />

achieved a new dimension with the advent <strong>of</strong> the concept <strong>of</strong><br />

carbo(hydro)thermal carbonatites. Mitchell (2005) proposed<br />

a m<strong>in</strong>eralogical-genetic approach <strong>in</strong> classify<strong>in</strong>g the<br />

carbonatites <strong>in</strong> terms <strong>of</strong> the ‘petrological clan’. Two major<br />

groups <strong>of</strong> carbonatite can be classified on the basis <strong>of</strong><br />

their petrological clan; these are (1) calcite or dolomite<br />

carbonatite (or both), these are primary carbonatites and<br />

genetically related to nephel<strong>in</strong>ite, melilitite, kimberlite and<br />

other mantle-derived magmas (2) carbothermal residua<br />

derived from a wide variety <strong>of</strong> magmas. Carbothermal refers<br />

0016-7622/2010-76-4-403/$ 1.00 © GEOL. SOC. INDIA


404 ANIKET CHAKRABARTY AND AMIT KUMAR SEN<br />

to the low-temperature fluids derived from a fractionated<br />

magma dom<strong>in</strong>ated by CO 2<br />

also conta<strong>in</strong><strong>in</strong>g fluor<strong>in</strong>e and H 2<br />

O<br />

<strong>in</strong> variable proportions.<br />

Occurrence <strong>of</strong> small bodies <strong>of</strong> carbonatite and alkal<strong>in</strong>e<br />

rocks like nephel<strong>in</strong>e-syenite is known s<strong>in</strong>ce last two decades<br />

along 100 Km long Northern Shear Zone (NSZ) traced from<br />

Khatra <strong>in</strong> Bankura, West Bengal to Tamar <strong>in</strong> Jharkhand<br />

through Beldih, Med<strong>in</strong>itanr, Kutni, Chirugora, Sush<strong>in</strong>a, and<br />

Tamakhun (Fig. 1) (Kumar et al. 1985; Basu, 1993, 2003;<br />

Chakrabarty et al. 2009).These rocks are <strong>in</strong>truded with<strong>in</strong><br />

the Chandil formation <strong>of</strong> 1.5-1.6 Ga age and lies <strong>in</strong> the close<br />

proximity <strong>of</strong> the Chotanagpur Granite Gneissic Complex<br />

(CGGC). The alkal<strong>in</strong>e rocks exposed <strong>in</strong> different areas along<br />

the NSZ are Beldih (carbonatite, alkali-pyroxenite, and<br />

apatite-magnetite), Kutni (carbonatite, apatite), and Sush<strong>in</strong>a<br />

(nephel<strong>in</strong>e syenite gneiss) (S<strong>in</strong>gh et al. 1977; Ghosh Roy<br />

and Sengupta, 1988; Basu, 1988, 1989, and 1990). The<br />

exposure <strong>of</strong> the carbonatite is found only at Beldih (Purulia<br />

district, W.B.), the present area <strong>of</strong> <strong>in</strong>vestigation and<br />

henceforth will be termed as ‘Purulia carbonatite’. The<br />

<strong>Geological</strong> Survey <strong>of</strong> <strong>India</strong> had also reported other<br />

occurrences <strong>of</strong> carbonatite from Mednitanr and Kutni<br />

areas based on drill-core samples (Basu, 1993). This shear<br />

zone is also known for host<strong>in</strong>g different m<strong>in</strong>eralization like<br />

Nb, apatite-magnetite, REE. The usual silicate rock<br />

association <strong>of</strong> magmatic carbonatite such as nephel<strong>in</strong>ite,<br />

melilitolite, ijolites, urtites, kimberlites is absent <strong>in</strong> Beldih.<br />

Instead, the carbonatite is associated with the alkalipyroxenite<br />

and a large apatite-magnetite ore body; a case<br />

similar to the famous Khib<strong>in</strong>a Complex <strong>of</strong> Russia (Zaitsev<br />

et al. 1998). Such similarity <strong>in</strong>vokes a possible genesis <strong>of</strong><br />

Beldih carbonatite as carbothermal residua <strong>of</strong> unknown<br />

parentage (Woolley and Kjarsgaard, 2008). In view <strong>of</strong> such<br />

possibilities, the genesis <strong>of</strong> the Purulia carbonatite and their<br />

possible genetic (?) l<strong>in</strong>eage with the other silicate rocks<br />

present along the NSZ is important and leads to the present<br />

<strong>in</strong>vestigation. The <strong>in</strong>vestigation is based on detailed<br />

petrography and trace element geochemistry <strong>of</strong> the Purulia<br />

carbonatite. Three major rock types are found <strong>in</strong> this area<br />

and are carbonatite, alkali-pyroxenite and apatite-magnetite<br />

rock.<br />

Carbonatites<br />

PETROGRAPHY AND MINERALOGY<br />

The carbonatite is a light colored, medium-gra<strong>in</strong>ed rock<br />

composed essentially <strong>of</strong> subhedral to euhedral calcite<br />

(~ 90% by volume, see Table 1 for detail modal compositions)<br />

with appreciable amounts <strong>of</strong> apatite (Table 1),<br />

altogether exhibit<strong>in</strong>g mosaic <strong>text</strong>ure. The accessory m<strong>in</strong>eral<br />

Fig.1. (a) Regional geological map <strong>of</strong> the study area. (b) Generalized stratigraphic succession <strong>of</strong> the S<strong>in</strong>ghbhum region show<strong>in</strong>g the<br />

status <strong>of</strong> the Chandil Formation along with the rocks <strong>of</strong> S<strong>in</strong>ghbhum Group.<br />

JOUR.GEOL.SOC.INDIA, VOL.76,OCT.2010


ENIGMATIC ASSOCIATION OF CARBONATITE AND ALKALI-PYROXENITE, PURULIA, WEST BENGAL 405<br />

Table 1. Modal compositions <strong>of</strong> carbonatites (C), alkali-pyroxenite (Pxn) and apatite-magnetite (Apt-Mt) rocks (volume %).<br />

It must be noted that the calcite, apatite, biotite and albite are present as ve<strong>in</strong>s with<strong>in</strong> alkali-pyroxenite along<br />

the zones <strong>of</strong> metasomatic alteration caused by the nearby carbonatite <strong>in</strong>trusion<br />

Sample No 1 2 3 4 5 1 2 3 4 5 1 2<br />

Rock Type<br />

Carbonatite (C) Pyroxenite (Pxn) Apt-Mt<br />

M<strong>in</strong>erals<br />

Calcite 90 90 86 94 84 3 5 × 8 2<br />

Apatite 4 3 5 5 6 1 3 × 2 1 95 97<br />

Amphibole 3 5 3 1 5 6 8 8 10.5 7<br />

Biotite 1 1 3 × 2 3 2 1 3.5 2 × ×<br />

Cl<strong>in</strong>opyroxene × × × 84 78 87 70 85.5 × ×<br />

Magnetite 1 1 2 × 2 1 2 2 1 1 5 3<br />

Ilmenite 1 × 1 × 1 0.5 1 2 1 × × ×<br />

Niobo-rutile × × × × × 0.5 × × 1 × × ×<br />

Albite × × × × × 1 1 × 3 1.5 × ×<br />

phases <strong>in</strong>clude amphibole, biotite, phlogopite, and ilmenite<br />

(Table 1). Overall, the m<strong>in</strong>eral gra<strong>in</strong>s exhibit mosaic <strong>text</strong>ure<br />

(Fig. 2a, b). Higher concentration <strong>of</strong> amphibole, biotite, and<br />

phlogopite at places result<strong>in</strong>g formation <strong>of</strong> the cont<strong>in</strong>uous<br />

and/or discont<strong>in</strong>uous bands <strong>of</strong> dark green color. Two<br />

varieties <strong>of</strong> amphibole gra<strong>in</strong>s are noticed; one with dark<br />

green colour show<strong>in</strong>g dark brown pleochroism (magnesiokatophorite,<br />

Fig. 2b) and the other with light green colored<br />

amphibole show<strong>in</strong>g pale-green to light green pleochroism<br />

(richterite). A detailed work on the alkali-amphiboles by<br />

Chakrabarty et al. (2009) has suggested a shallow depth <strong>of</strong><br />

<strong>in</strong>trusion <strong>of</strong> this carbonatite and also advocated a sudden<br />

change <strong>in</strong> pressure dur<strong>in</strong>g its emplacement.<br />

Alkali-pyroxenite<br />

The alkali-pyroxenite is a dark colored medium gra<strong>in</strong>ed<br />

rock juxtaposed with the carbonatite. The subhedral<br />

cl<strong>in</strong>opyroxene gra<strong>in</strong>s are mak<strong>in</strong>g up about 85% <strong>of</strong> the rock<br />

by volume (Table 1) and give rise to hypidiomorphic <strong>text</strong>ure.<br />

The euhedral to subhedral calcite and apatite gra<strong>in</strong>s are at<br />

places giv<strong>in</strong>g rise to mosaic <strong>text</strong>ure similar to that <strong>of</strong><br />

associated carbonatite (Fig. 2c). Three dist<strong>in</strong>ct m<strong>in</strong>eralogical<br />

assemblages viz. primary magmatic, ve<strong>in</strong>-fill<strong>in</strong>g and post<br />

magmatic are observed <strong>in</strong> alkali-pyroxenite. Such<br />

m<strong>in</strong>eralogical assemblages <strong>in</strong>dicate micro scale metasomatic<br />

changes consangu<strong>in</strong>eous to the carbonatite <strong>in</strong>trusion. The<br />

primary magmatic m<strong>in</strong>eralogical assemblage is dom<strong>in</strong>ated<br />

by the diopsidic pyroxene (Fig. 2d) with significant aegir<strong>in</strong>e<br />

component (Ae 34.42-37.29<br />

-Hd 12.67-13.32<br />

-Di 52.91-49.39<br />

) and sodiccalcic<br />

amphibole <strong>of</strong> magnesiokatophorite type. The<br />

alteration <strong>of</strong> the primary m<strong>in</strong>eralogical assemblages by the<br />

late stage ve<strong>in</strong>-fill<strong>in</strong>g assemblages <strong>in</strong>dicates post magmatic<br />

alteration similar to the sodic fenitization dur<strong>in</strong>g carbonatite<br />

<strong>in</strong>trusion. The alteration assemblage is represented by the<br />

amphibolization (katophorite/taramite) and biotitization <strong>of</strong><br />

the magmatic or early pyroxene and that <strong>of</strong> the ve<strong>in</strong> fill<strong>in</strong>g<br />

assemblage by the calcite-apatite-albite-biotite-ilmenitemagnetite.<br />

The alkali-pyroxenite is characterized by the<br />

presence <strong>of</strong> late stage apatite-calcite ve<strong>in</strong> which give rise to<br />

carbo(hydro)thermal carbonatite (Chakrabarty, 2009).<br />

Apatite-magnetite<br />

In general, presences <strong>of</strong> number <strong>of</strong> apatite-magnetite<br />

lenses <strong>of</strong> variable dimensions have been reported along NSZ.<br />

These lenses are <strong>in</strong>truded mostly with<strong>in</strong> the country rock<br />

represented by mica schist, calc-silicate, metabasite,<br />

quartzite and biotite gneiss which are <strong>of</strong>ten sheared (Basu,<br />

1993). Clayey alterations around the apatite-magnetite lenses<br />

are very common.<br />

In Beldih, the strike length <strong>of</strong> apatite bear<strong>in</strong>g rock is<br />

about 300meters with a maximum width <strong>of</strong> about 60 m and<br />

shows taper<strong>in</strong>g towards east and west. The rock is light<br />

coloured and dom<strong>in</strong>antly composed <strong>of</strong> fluor-apatite (Table<br />

1, Fig. 2e). In general the apatite gra<strong>in</strong>s are surrounded by<br />

opaque <strong>of</strong> magnetite. However, at places remnant apatite<br />

gra<strong>in</strong>s under microscope are colorless and show<strong>in</strong>g parallel<br />

ext<strong>in</strong>ction with imperfect basal cleavage which appears to<br />

be cross fractured (Fig. 2f). The shape <strong>of</strong> the apatite crystals<br />

or pseudomorphs is highly variable from elliptical to<br />

hexagonal prismatic (Fig. 2e). At places marg<strong>in</strong>al overgrowth<br />

<strong>of</strong> the apatite gra<strong>in</strong>s are marked yellow colour under the<br />

microscope. This rock is extensively affected by alteration.<br />

In many places the meteoric water reacted and subsequently<br />

dissolved the apatite gra<strong>in</strong>s. Further, there are evidences <strong>of</strong><br />

re-precipitation <strong>of</strong> secondary apatite giv<strong>in</strong>g rise to coll<strong>of</strong>orm<br />

<strong>text</strong>ure (Fig.2f).<br />

ANALYTICAL TECHNIQUE<br />

Approximately fifty whole rock samples <strong>of</strong> different<br />

JOUR.GEOL.SOC.INDIA, VOL.76,OCT.2010


406 ANIKET CHAKRABARTY AND AMIT KUMAR SEN<br />

Fig.2. (a) Carbonatite show<strong>in</strong>g the mosaic <strong>text</strong>ure along with triple junctions at places. The bulk m<strong>in</strong>eralogy is dom<strong>in</strong>ated by the calcite<br />

and apatite. M<strong>in</strong>ute gra<strong>in</strong>s <strong>of</strong> magnetite are shown <strong>in</strong> the area marked by the circle. (b) Carbonatite with two varieties <strong>of</strong><br />

amphiboles along with magnetite. (c) and (d) Part <strong>of</strong> the alkali-pyroxenite <strong>in</strong>truded by the late stage apatite-calcite ve<strong>in</strong>. The<br />

apatite <strong>in</strong> the alkali-pyroxenite is anhedral compared to the associated carbonatite. The effect <strong>of</strong> metasomatic alteration is marked<br />

by the formation <strong>of</strong> albite, biotite and shown <strong>in</strong> the circular area. At places amphibole and biotite are <strong>in</strong>dist<strong>in</strong>guishable due to<br />

<strong>in</strong>tense metasomatic alteration. Most <strong>of</strong> the alteration is found to be associated with the calcite-apatite ve<strong>in</strong>s. (e) and (f) Apatitemagnetite<br />

rock show<strong>in</strong>g subhedral apatite gra<strong>in</strong>s. The apatite gra<strong>in</strong>s are variable <strong>in</strong> size. Magnetite gra<strong>in</strong>s are relatively small and<br />

distributed irregularly with<strong>in</strong> the rock. MK: Magnesiokatophorite; R: Richterite; Amph: Amphibole; Ab: Albite; Bt: Biotite; Px:<br />

Cl<strong>in</strong>opyroxene; Cal: Calcite; Apt: Apatite and Mt: Magnetite.<br />

JOUR.GEOL.SOC.INDIA, VOL.76,OCT.2010


ENIGMATIC ASSOCIATION OF CARBONATITE AND ALKALI-PYROXENITE, PURULIA, WEST BENGAL 407<br />

rock types were studied petrographically and twelve samples<br />

were selected for whole rock trace element analysis, five<br />

each <strong>of</strong> carbonatite, alkali-pyroxenite and two <strong>of</strong> apatitemagnetite.<br />

To constra<strong>in</strong> the trace elemental concentrations<br />

<strong>of</strong> the carbonatites, rout<strong>in</strong>e analyses <strong>of</strong> major elements (see<br />

Table 2) <strong>of</strong> the whole rock were carried out on Li-tetraborate<br />

pellets at IMP (Institute for M<strong>in</strong>eralogy and Petrology), ETH<br />

Zurich follow<strong>in</strong>g the procedure given by Nisbet et al. (1979)<br />

and Dietrich et al. (1984) us<strong>in</strong>g WD-XRF <strong>of</strong> Axios by<br />

PANalytical. The trace element analyses (see Table 3) were<br />

carried out by an <strong>in</strong>ductively coupled plasma emission mass<br />

spectrometry (ICP-MS, Perk<strong>in</strong> Elmer, Elan 6000e) us<strong>in</strong>g a<br />

VG Elemental Plasma Quad <strong>in</strong>strument at Wadia Institute<br />

<strong>of</strong> Himalayan Geology (WIHG), Dehradun, <strong>India</strong>. The<br />

details <strong>of</strong> the analytical procedure have been given by Rathi<br />

et al. (1996). The precision <strong>of</strong> the measurements is generally<br />

better than ±5% for concentrations =1 ppm.<br />

GEOCHEMISTRY<br />

Carbonatite<br />

Most <strong>of</strong> the major elements <strong>in</strong> terms <strong>of</strong> their oxides do<br />

not show any substantial variations except for one sample<br />

(No. 2, Table 2) where the SiO 2<br />

content goes up to 5%.<br />

Expectedly all the carbonatites are essentially enriched <strong>in</strong><br />

CaO and P 2<br />

O 5<br />

(Table 2). The major element geochemistry<br />

confirms they are calcico-carbonatites or sovites. Selected<br />

trace elements (Table 3) <strong>of</strong> the carbonatite when plotted <strong>in</strong><br />

a multi element spider variation diagram shows that they<br />

are enriched <strong>in</strong> all the <strong>in</strong>compatible elements with respect<br />

to the primitive mantle (Sun and McDonough, 1989)<br />

(Fig. 3a), except for Rb. The Purulia carbonatite is<br />

characterized by the lower concentration <strong>of</strong> Th, Nb and U,<br />

whereas the trend <strong>of</strong> other <strong>in</strong>compatible elements (Ba, U,<br />

REEs and Y) matches well with that <strong>of</strong> the world-average<br />

<strong>of</strong> the calico-carbonatite <strong>of</strong> Woolley and Kempe (1989).<br />

Such Nb depletion (~20-44 ppm.) is <strong>in</strong> general characteristics<br />

<strong>of</strong> carbo(hydro)thermal carbonatite (Mitchell, 2005). The<br />

Sr concentration <strong>of</strong> the carbonatite is much higher than the<br />

world-average <strong>of</strong> calico-carbonatite. Replacement <strong>of</strong> Ca by<br />

Sr, <strong>in</strong> Ca bear<strong>in</strong>g m<strong>in</strong>erals like calcite and apatite resulted<br />

higher proportion <strong>of</strong> Sr <strong>in</strong> carbonatite. Chondrite-normalized<br />

REE patterns <strong>of</strong> the carbonatites (Fig. 3b) shows that they<br />

are enriched <strong>in</strong> LREE compared to the HREE which <strong>in</strong><br />

general a characteristics <strong>of</strong> carbonatites. The average (La/<br />

Yb) (avg)<br />

(=53.74) and REE (ΣREE = 1633.57) concentration<br />

<strong>of</strong> carbonatites are fall<strong>in</strong>g well with<strong>in</strong> the range <strong>of</strong> calicocarbonatite<br />

(Woolley and Kempe, 1989).<br />

Alkali-pyroxenite<br />

The alkali-pyroxenite is also characterized by the relative<br />

enrichment <strong>of</strong> all <strong>in</strong>compatible elements. The major<br />

Table 2. Bulk rock major element compositions <strong>of</strong> the carbonatite (C)<br />

Sample No 1 2 3 4 5<br />

Rock type C C C C C<br />

SiO 2<br />

1.04 5.28 1.09 1.16 2.14<br />

TiO 2<br />

0.25 0.01 0.27 0.03 0.14<br />

Al 2<br />

O 3<br />

0.06 0.08 0.06 0.07 0.07<br />

Fe 2<br />

O 3<br />

2.63 1.19 2.60 1.39 1.95<br />

MnO 0.40 0.15 0.40 0.19 0.29<br />

MgO 1.64 0.53 1.61 0.73 1.13<br />

CaO 49.91 49.11 48.70 50.63 49.10<br />

Na 2<br />

O 0.25 0.12 0.26 0.19 0.21<br />

K 2<br />

O 0.01 0.01 0.02 0.01 0.01<br />

P 2<br />

O 5<br />

3.23 0.53 3.21 4.88 2.96<br />

NiO 0.01 0.00 0.01 0.00 0.01<br />

H 2<br />

O 0.00 0.00 0.00 0.00 0.00<br />

CO 2<br />

0.00 0.00 0.00 0.00 0.00<br />

LOI 37.81 42.21 38.07 36.90 41.28<br />

Total 97.23 99.23 96.30 96.17 99.28<br />

Fig.3. (a) Primitive mantle normalized spider plots <strong>of</strong> the studied<br />

rocks. Studied carbonatite is compared with the world<br />

average <strong>of</strong> calicocarbonatites. (b) Chondrite normalized<br />

REE plot <strong>of</strong> the studied rocks. The normaliz<strong>in</strong>g values are<br />

from Sun and McDonough (1989).<br />

JOUR.GEOL.SOC.INDIA, VOL.76,OCT.2010


408 ANIKET CHAKRABARTY AND AMIT KUMAR SEN<br />

Table 3. Whole rock trace elements analyses <strong>of</strong> representative carbonatites (C), alkali-pyroxenites (Pxn) and apatite-magnetite rocks (Apt-Mt)<br />

Sample No. 1 2 3 4 5 1 2 3 4 5 1 2<br />

Rock type C C C C C Pxn Pxn Pxn Pxn Pxn Apt-Mt Apt-Mt<br />

La 390.26 434.44 424.24 423.43 460.58 109.32 121.01 129.03 154.95 114.98 397.17 422.12<br />

Ce 666.20 730.01 735.35 725.19 833.28 248.15 270.46 302.50 347.46 256.13 891.85 953.88<br />

Nd 295.16 336.39 341.24 329.79 373.82 113.10 114.86 138.68 152.96 111.45 509.84 537.76<br />

Sm 41.71 45.26 48.09 46.21 48.29 18.62 19.62 23.25 24.67 18.87 82.24 86.64<br />

Eu 11.40 12.33 13.27 12.77 12.58 5.01 5.27 6.34 6.55 5.20 22.43 24.04<br />

Gd 30.59 33.03 35.25 33.87 34.69 12.63 13.42 15.73 16.82 12.79 54.31 57.60<br />

Tb 4.07 4.45 4.66 4.59 4.52 1.76 1.87 2.21 2.36 1.79 6.96 7.45<br />

Dy 17.48 18.43 19.53 19.28 19.06 7.75 8.15 9.32 10.09 7.71 25.27 26.64<br />

Ho 3.68 3.76 3.99 3.97 3.81 1.54 1.69 1.85 2.03 1.58 4.25 4.46<br />

Er 7.44 7.65 7.89 7.97 7.87 3.02 3.33 3.58 3.97 3.08 7.50 7.91<br />

Tm 0.93 0.93 0.94 0.99 0.93 0.35 0.40 0.40 0.46 0.36 0.65 0.67<br />

Yb 5.27 5.36 5.37 5.57 5.39 2.04 2.35 2.27 2.59 2.11 3.20 3.34<br />

Lu 0.65 0.66 0.66 0.68 0.68 0.26 0.30 0.28 0.31 0.26 0.34 0.36<br />

Sc 1.24 1.18 2.05 1.47 1.79 21.50 20.16 19.93 17.70 19.96 10.85 11.30<br />

Y 84.18 86.97 89.63 90.12 87.93 32.55 36.45 38.99 43.60 34.28 77.58 81.70<br />

Nb 21.13 28.03 43.78 19.60 44.49 209.65 325.16 314.81 336.85 261.34 95.74 146.24<br />

Th 2.63 2.89 5.08 4.47 5.51 2.89 3.03 4.42 3.34 2.32 4.11 5.19<br />

Sr 8609.33 8592.00 8401.46 8699.16 8807.14 1720.81 1936.99 1616.02 2181.60 1868.77 3353.00 3486.94<br />

Rb 0.85 1.16 0.54 1.31 2.22 52.54 42.96 77.27 77.12 70.46 0.23 0.30<br />

Ba 1483.54 1515.18 1428.83 1434.86 1488.88 850.63 771.00 1019.28 1025.95 1089.15 618.16 658.56<br />

V 11.24 9.46 12.94 15.23 14.47 345.54 311.35 329.97 320.01 326.31 14.62 15.46<br />

U 6.28 7.86 10.90 5.94 11.66 1.82 1.93 1.92 1.16 1.61 4.92 5.17<br />

Ga 19.63 19.96 19.25 19.29 22.12 27.87 24.46 29.85 29.00 30.62 8.64 9.28<br />

Pb 5.41 8.69 4.92 7.16 5.62 8.00 3.66 7.25 8.23 4.91 11.00 15.00<br />

Li 0.41 0.50 0.48 0.53 0.73 13.00 11.37 16.33 16.64 15.55 0.24 0.36<br />

ΣREE 1474.84 1632.70 1640.48 1614.31 1805.50 523.55 562.73 635.44 725.22 536.31 2006.01 2132.87<br />

La/Yb 74.05 81.05 79.00 76.02 85.45 53.59 51.49 56.84 59.83 54.49 124.12 126.38<br />

Ba/La 3.80 3.49 3.37 3.39 3.23 7.78 6.37 7.90 6.62 9.47 1.56 1.56<br />

Nb/Pb 3.91 3.23 8.90 2.74 7.92 26.21 88.84 43.42 40.93 53.23 8.70 9.75<br />

Nb/Th 8.03 9.70 8.62 4.38 8.07 72.54 107.31 71.22 100.85 112.65 23.29 28.18<br />

Y/Ce 0.13 0.12 0.12 0.12 0.11 0.13 0.13 0.13 0.13 0.13 0.09 0.09<br />

Th/U 0.42 0.37 0.47 0.75 0.47 1.59 1.57 2.30 2.88 1.44 0.84 1.00<br />

Y/Ho 22.88 23.13 22.46 22.70 23.08 21.14 21.57 21.08 21.48 21.70 18.25 18.32<br />

difference observed with that <strong>of</strong> the carbonatite is the<br />

higher concentration <strong>of</strong> Rb and Nb (Fig. 3a). The higher<br />

concentration <strong>of</strong> Rb <strong>in</strong> alkali-pyroxenite can be attributed<br />

to the presence <strong>of</strong> pyroxene and mica. On the other hand,<br />

Nb enrichment is ma<strong>in</strong>ly due to the presence <strong>of</strong> niobo-rutile<br />

<strong>in</strong> alkali pyroxene (Chakrabarty, 2009). The most noticeable<br />

feature <strong>of</strong> the alkali-pyroxenite is the higher concentration<br />

<strong>of</strong> Sr. This is ma<strong>in</strong>ly due to the presence <strong>of</strong> late stage<br />

carbo(hydro)thermal carbonatite ve<strong>in</strong>s <strong>of</strong> apatite-calcite<br />

dur<strong>in</strong>g metasomatic alteration <strong>of</strong> the primary magmatic<br />

alkali-pyroxenite. The chondrite normalized REE plot<br />

(Fig.3b) reveals that the trend is very similar with that <strong>of</strong><br />

the carbonatite. However, both the ΣREE (596.65) as well as<br />

(La/Yb) (avg)<br />

(37.53) are lower compared to the carbonatite.<br />

Apatite-magnetite<br />

M<strong>in</strong>or differences are noticed <strong>in</strong> the primitive mantle<br />

normalized spider variation diagram between the apatitemagnetite<br />

rock and carbonatite (Fig.3a). The chondrite<br />

normalized REE pattern (Fig.3b) reveals that the apatitemagnetite<br />

rock is characterized by the highest ΣREE (>2000)<br />

concentration compared to the carbonatite and alkalipyroxenite<br />

and particularly <strong>in</strong> MREE, a common trend for<br />

apatite associated with carbonatites (Brass<strong>in</strong>nes et al. 2005;<br />

Bühn et al. 2001). But the HREE concentration <strong>of</strong> this rock<br />

is lower compared to the carbonatite.<br />

DISCUSSION<br />

It has already been po<strong>in</strong>ted out <strong>in</strong> the ‘Introduction’ that<br />

genesis <strong>of</strong> carbonatite, <strong>in</strong> general, is an enigma and can be<br />

expla<strong>in</strong>ed by more than one mechanism. Two basic questions<br />

are to be answered <strong>in</strong> petrogenesis <strong>of</strong> Purulia carbonatite<br />

are (i) the process and/or processes responsible for the<br />

JOUR.GEOL.SOC.INDIA, VOL.76,OCT.2010


ENIGMATIC ASSOCIATION OF CARBONATITE AND ALKALI-PYROXENITE, PURULIA, WEST BENGAL 409<br />

formation <strong>of</strong> the rocks <strong>of</strong> the Beldih area i.e. carbonatites,<br />

alkali-pyroxenites and apatite-magnetite and (ii) the genetic<br />

l<strong>in</strong>eage among them. In addition, the Purulia carbonatite is<br />

<strong>in</strong>truded with<strong>in</strong> <strong>in</strong> a Precambrian terra<strong>in</strong> and the country<br />

rocks have suffered amphibolite to greenschist facies <strong>of</strong><br />

metamorphism. It is likely that the carbonatite might have<br />

undergone deformations post-dat<strong>in</strong>g its <strong>in</strong>trusion. In that<br />

case, the primary magmatic m<strong>in</strong>eralogy, <strong>text</strong>ure and<br />

geochemistry are likely to get perturbed. The different<br />

aspects <strong>of</strong> genesis <strong>of</strong> the Purulia carbonatite are discussed<br />

<strong>in</strong> details here under.<br />

Field and Petrographic Signatures<br />

The carbonatite here is characterized by the mosaic<br />

<strong>text</strong>ure with prom<strong>in</strong>ent triple junction (Fig.2a) and<br />

dom<strong>in</strong>antly consists <strong>of</strong> calcite and apatite, along with<br />

accessories like amphibole, biotite and magnetite. Such<br />

m<strong>in</strong>eralogical assemblage even under highest grade <strong>of</strong><br />

metamorphism does not greatly change the m<strong>in</strong>eralogical<br />

assemblages <strong>of</strong> carbonatite as exemplified by the<br />

carbonatites from East <strong>India</strong>, Bull’s Run carbonatite <strong>in</strong><br />

Natal, some Ontario examples and those <strong>of</strong> the Canadian<br />

Cordillera gneissic rocks (Natarajan et al., 1994; Viladkar<br />

and Subramaian, 1995; Scog<strong>in</strong>gs and Forster, 1989;<br />

Moecher et al. 1997; Pell and Höy, 1989). So, the presence<br />

<strong>of</strong> triple junction can be attributed to the rheological<br />

changes/readjustment particularly <strong>in</strong> response to post<br />

crystallization deformational activities. Presence <strong>of</strong> apatite,<br />

magnetite and accessory silicates are <strong>in</strong> well agreement<br />

with the genesis the Purulia carbonatite by magmatic<br />

process. Moreover, the presence <strong>of</strong> two different amphiboles<br />

<strong>in</strong> the Purulia carbonatite is <strong>in</strong>dicative <strong>of</strong> sudden pressure<br />

variation rather than the metamorphic amphiboles. In<br />

case <strong>of</strong> metacarbonatite one should expect presence <strong>of</strong><br />

tremolite, act<strong>in</strong>olite etc. but not the sodic-calcic amphiboles.<br />

The above evidences po<strong>in</strong>t towards the primary magmatic<br />

orig<strong>in</strong> <strong>of</strong> the Purulia carbonatite (Chakrabarty et al. 2009).<br />

The most conv<strong>in</strong>c<strong>in</strong>g evidence that the Purulia carbonatite<br />

is <strong>of</strong> magmatic orig<strong>in</strong> is the effect <strong>of</strong> alkali-metasomatism<br />

<strong>in</strong> the associated alkali-pyroxenite. The alkali-pyroxenite,<br />

present <strong>in</strong> association with the carbonatite, is dom<strong>in</strong>antly<br />

consists <strong>of</strong> diopsidic pyroxene along with accessory<br />

amphibole <strong>of</strong> primary magmatic orig<strong>in</strong>. Addition <strong>of</strong> albite,<br />

biotite, phlogopite and numerous calcite ve<strong>in</strong>s are the<br />

result <strong>of</strong> alkali metasomatism dur<strong>in</strong>g carbonatite <strong>in</strong>trusion.<br />

Alteration <strong>of</strong> alkali-pyroxene to alkali-amphibole is<br />

also caused by this process. These evidences support the<br />

<strong>in</strong>trusive (as a dyke) nature <strong>of</strong> the carbonatite and<br />

also relatively late stage formation after the alkalipyroxenite.<br />

Fig.4. (a) to (d) Comparison <strong>of</strong> the apatites <strong>of</strong> apatite magnetite rock with the hydrothermal apatites (Apatite A) and magmatic mantle<br />

apatites (Apatite B) <strong>of</strong> Reilly and Griff<strong>in</strong> (2000) with respect to selected trace elements. Most <strong>of</strong> the studied apatites are similar<br />

to the Apatite B represent<strong>in</strong>g magmatic apatites. However, the concentrations <strong>of</strong> the selected trace elements are mostly low<br />

compared to the Apatite B. (e) Covariation <strong>of</strong> U and Th <strong>of</strong> the studied apatites with that <strong>of</strong> the Apatite A and B respectively. The<br />

plot shows that the studied apatite is fall<strong>in</strong>g with<strong>in</strong> the doma<strong>in</strong> <strong>of</strong> Apatite A but the lower U concentration and thus lower U/Th<br />

ratio is comparable to the magmatic mantle apatites <strong>of</strong> type B.<br />

JOUR.GEOL.SOC.INDIA, VOL.76,OCT.2010


410 ANIKET CHAKRABARTY AND AMIT KUMAR SEN<br />

Chemical Signatures<br />

In general, the metacarbonatites are <strong>in</strong>dist<strong>in</strong>guishable<br />

with the marble ow<strong>in</strong>g to the similar response <strong>of</strong> limestone<br />

and carbonatite under metamorphic conditions at<br />

amphibolite or even higher grade. Presence <strong>of</strong> diagnostic<br />

m<strong>in</strong>erals such as pyrochlore <strong>in</strong> metacarbonatite can help its<br />

identification. But there are carbonatites which does not<br />

conta<strong>in</strong> pyrochlore (Le Bas, 2002). Purulia carbonatite is<br />

characterized by low value <strong>of</strong> Nb, Th and Pb compared to<br />

the world-average <strong>of</strong> calico-carbonatite (Woolley and<br />

Kempe, 1989). Absence <strong>of</strong> carrier m<strong>in</strong>eral phase like<br />

pyrochlore <strong>in</strong> the Purulia carbonatite substantiates this<br />

observation. There are many carbonatite <strong>of</strong> primary<br />

magmatic orig<strong>in</strong> hav<strong>in</strong>g Nb concentration below the<br />

detection limit or even absent e.g. Eden Lake carbonatite,<br />

Manitoba, Canada (Chakhmouradian et al. 2008); Turiy<br />

massif, Kola Pen<strong>in</strong>sula, Russia (Dunworth and Bell, 2001).<br />

The REE enrichment <strong>of</strong> all the studied rocks follows the<br />

sequence: apatite-magnetite>carbonatite>alkali-pyroxenite.<br />

It must be noted that the orig<strong>in</strong>al ΣREE <strong>of</strong> the alkalipyroxenite<br />

would have been much lower if the rock was<br />

not hydrothermally altered by carbonatite caus<strong>in</strong>g formation<br />

<strong>of</strong> numerous late stage apatite-calcite ve<strong>in</strong>s with<strong>in</strong> it.<br />

Enrichment <strong>of</strong> LREE over HREE is <strong>in</strong>dicated by high<br />

(La/Yb) CN<br />

ratios, which range from 50 to 58 <strong>in</strong> carbonatite<br />

and ~90 <strong>in</strong> apatite-magnetite rock. It has been already<br />

established that the apatites <strong>of</strong> the apatite-magnetite rocks<br />

are fluorapatites (Ghosh Roy and Sengupta, 1988; Basu,<br />

1990, 2003) which represent the magmatic mantle apatites<br />

(O’Reilly and Griff<strong>in</strong>, 2000). Slight MREE enrichment over<br />

the LREE and HREE along with (La/Yb) CN<br />

(~90) below<br />

100 is aga<strong>in</strong> very common for the early fluorapatites (Bühn<br />

et al. 2001). Moreover, the similarities between the apatitemagnetite<br />

rock with that <strong>of</strong> the magmatic mantle apatites <strong>of</strong><br />

Apatite B (Fig. 4) <strong>in</strong>dicate that these apatites are primary<br />

mantle derivatives rather than the hydrothermal apatites <strong>of</strong><br />

Apatite A (O’Reilly and Griff<strong>in</strong>, 2000).<br />

Immiscible Melt, Carbothermal Fluid or Discrete<br />

Carbonatitic Magma?<br />

The petrologists are divided <strong>in</strong>to two groups <strong>in</strong><br />

<strong>in</strong>terpret<strong>in</strong>g the orig<strong>in</strong> <strong>of</strong> the Sr-Ba rich and HFSE depleted<br />

carbonatites. Some workers (e.g. Cooper and Reid, 2000;<br />

Xu et al. 2003) believed that such carbonatites are bona<br />

fide member <strong>of</strong> the primary magma <strong>of</strong> mantle orig<strong>in</strong> while<br />

others ascribed the formation by metasomatic rework<strong>in</strong>g <strong>of</strong><br />

the wall rocks or direct fractional crystallization from Ca-<br />

Sr-Ba bear<strong>in</strong>g carbothermal fluids and hence termed them<br />

as carbothermal residua (Mitchell, 2005; Kjarsgaard and<br />

Fig.5. (a) and (b) Selected pairs <strong>of</strong> trace element ratios for<br />

carbonatite, alkali-pyroxenite and apatite-magnetite to f<strong>in</strong>d<br />

out the genetic l<strong>in</strong>k between these rocks. The plot reveals<br />

completely opposite trends for both the immiscible<br />

separation from a parent silicate melt as well as derivation<br />

<strong>of</strong> the carbonatite as carbothermal residua. The block arrow<br />

<strong>in</strong>dicates where the hypothetical immiscible carbonate<br />

magmas (a) and carbothermal fluids (b). (see discussion<br />

for further details)<br />

Woolley, 2008) rather than the bona fide carbonatites. To<br />

establish the process(es) <strong>in</strong>volved <strong>in</strong> the genesis <strong>of</strong> the<br />

carbonatite and their associates with the help <strong>of</strong> a set <strong>of</strong><br />

trace element pairs, particularly those are hav<strong>in</strong>g contrast<strong>in</strong>g<br />

partition<strong>in</strong>g behaviors is now well known (Chakhmouradian<br />

et al. 2008 and references there <strong>in</strong>). Published experimental<br />

data <strong>in</strong>dicate that the immiscible carbonate fraction should<br />

have higher Ba/La and Nb/Th ratios at a comparable<br />

Nb/Pb value relative to its conjugate silicate fractions<br />

(Chakhmouradian et al. 2008) where as a carbothermal fluid<br />

should have much higher Y/Ce and Nb/Th ratios<br />

(Chakhmouradian et al. 2008). In both the cases the Purulia<br />

carbonatite is show<strong>in</strong>g the reverse trend (Fig.5). The Ba/La<br />

and Nb/Th ratios <strong>of</strong> the Purulia carbonatite is much lower<br />

JOUR.GEOL.SOC.INDIA, VOL.76,OCT.2010


ENIGMATIC ASSOCIATION OF CARBONATITE AND ALKALI-PYROXENITE, PURULIA, WEST BENGAL 411<br />

compared to the associated alkali-pyroxenite (Fig.5a) thus<br />

the possibility <strong>of</strong> a primary silicate magma derivative and<br />

subsequently immiscible separation from the same can be<br />

ruled out. On the other hand the lower Y/Ce ratio relative to<br />

the alkali-pyroxenite is also uncharacteristic <strong>of</strong><br />

carbothermally derived carbonatites (Fig.5b). Thus the orig<strong>in</strong><br />

<strong>of</strong> the Purulia carbonatite from a primary carbonatitic magma<br />

seems to be a logical conclusion. It must be noted here that<br />

the alkali-pyroxenite is metasomatized and bulk <strong>of</strong> the REEs<br />

are <strong>in</strong>troduced dur<strong>in</strong>g carbonatite <strong>in</strong>duced alkalimetasomatism<br />

(Chakrabarty, 2009). However, experimental<br />

evidences suggest that a carbothermal fluid should have<br />

higher Ho and U relative to its parental melt ultimately giv<strong>in</strong>g<br />

rise to sub chondritic Y/Ho and Th/U ratio. This is true for<br />

the U concentrations <strong>of</strong> the studied carbonatite which is<br />

almost two times higher than the alkali-pyroxenite and the<br />

Y/Ho ratio <strong>of</strong> both the carbonatite and associated alkalipyroxenite<br />

is near identical. Moreover, it is well established<br />

that the Purulia carbonatite was formed at shallow depth<br />

under low P-T condition (Chakrabarty et al. 2009). Thus<br />

possibility <strong>of</strong> carbothermal derivation is certa<strong>in</strong>ly an open<br />

issue <strong>of</strong> arguments. However, the most conv<strong>in</strong>c<strong>in</strong>g evidence<br />

comes from the 87 Sr/ 86 Sr ratios <strong>of</strong> the carbonatite (0.70332<br />

to 0.70340) as well as the apatites separated from this<br />

carbonatite (0.70336 to 0.70339) which are ly<strong>in</strong>g well with<strong>in</strong><br />

the range <strong>of</strong> mantle values (Chakrabarty, 2009) <strong>in</strong>dicat<strong>in</strong>g<br />

the genesis <strong>of</strong> the Purulia carbonatite from a primary mantle<br />

derived carbonatitic magma.<br />

CONCLUSION<br />

The association <strong>of</strong> the carbonatite, alkali-pyroxenite and<br />

apatite-magnetite at Beldih, Purulia is a typical example <strong>of</strong><br />

alkal<strong>in</strong>e-carbonatitic activity along the Northern Shear Zone.<br />

Though such association, particularly the carbonatite and<br />

alkali-pyroxenite, <strong>in</strong> other parts <strong>of</strong> the globe advocate orig<strong>in</strong><br />

from carbothermal residua, our observation contradicts such<br />

conclusion. The plot <strong>of</strong> Ba/La, Nb/Th, Nb/Pb and Y/Ce ratios<br />

nullifies the genesis <strong>of</strong> the Purulia carbonatite by<br />

hydrothermal process and/or immiscible separation from<br />

primary silicate magma. Based on field, petrographic and<br />

geochemical data, our work successfully expla<strong>in</strong>s the genesis<br />

<strong>of</strong> this carbonatite from a primary carbonatitic magma. The<br />

87 Sr/ 86 Sr ratio <strong>of</strong> both the bulk rock as well as apatite also<br />

strengthens the primary magmatic signature <strong>of</strong> the Purulia<br />

carbonatite. Moreover, the apatite-magnetite rock associated<br />

with the carbonatites is essentially mantle derived magmatic<br />

fluorapatites. Such association, po<strong>in</strong>t towards a possible<br />

prevalence <strong>of</strong> extensional tectonic regime prior to the<br />

formation <strong>of</strong> the Northern Shear Zone. However, further<br />

<strong>in</strong>formation on the stable isotopic composition (C, O & H)<br />

and more detailed geochemistry <strong>of</strong> the apatite-magnetite rock<br />

will be useful <strong>in</strong> verify<strong>in</strong>g our <strong>in</strong>ference. In a larger con<strong>text</strong>,<br />

the present study may be useful <strong>in</strong> depict<strong>in</strong>g the geodynamic<br />

evolution <strong>in</strong> this part <strong>of</strong> the <strong>India</strong>n shield which is yet to be<br />

properly understood.<br />

Acknowledgements: AC acknowledges MHRD, CSIR<br />

(<strong>India</strong>) and ESKAS (Swiss Federal Commission scholarship,<br />

Switzerland) for provid<strong>in</strong>g scholarships for carry<strong>in</strong>g out the<br />

work as part <strong>of</strong> his Doctoral programme. Help rendered by<br />

Pr<strong>of</strong>. Christoph A. He<strong>in</strong>rich, Pr<strong>of</strong>. Albrecht von Quadt<br />

(ETHZ, Switzerland) and Dr. Pulok Mukherjee (WIHG,<br />

Dehradun) are thankfully acknowledged. The authors<br />

acknowledge the Director, Wadia Institute <strong>of</strong> Himalayan<br />

Geology, Dehradun for provid<strong>in</strong>g the ICP-MS facility. The<br />

fund<strong>in</strong>g provided by the CSIR, New Delhi for research project<br />

(no. 24(0286)/05/EMR-II) is gratefully acknowledged.<br />

Authors express s<strong>in</strong>cere thanks to the anonymous reviewer<br />

for constructive suggestions to improve the manuscript.<br />

References<br />

BASU, S.K. (1988) Investigation <strong>of</strong> Apatite and Other Associated<br />

M<strong>in</strong>erals <strong>in</strong> the Southern Shear Zone, Purulia District, West<br />

Bengal. Unpubl. Rep., Geol. Surv. <strong>India</strong><br />

BASU, S.K. (1989) Investigation <strong>of</strong> Apatite and Other Associated<br />

M<strong>in</strong>erals <strong>in</strong> the Southern Shear Zone, Purulia Distrct, West<br />

Bengal. Extentded Abst. Rec. Geol. Surv. <strong>India</strong>, v.122 (Pt. 2),<br />

pp.42.<br />

BASU, S.K. (1990) Alkal<strong>in</strong>e Carbonatite Complex <strong>in</strong> Precambrian<br />

<strong>of</strong> South Purulia Shear Zone: Its Characteristics and M<strong>in</strong>eral<br />

Potential. In: Abst. Vol., Sem<strong>in</strong>ar on Evolution <strong>of</strong> Precambrian<br />

Crust, pp.52.<br />

BASU, S.K. (1993) Alkal<strong>in</strong>e-Carbonatite Complex <strong>in</strong> Precambrian<br />

<strong>of</strong> South Purulia Shear Zone, Eastern <strong>India</strong>: Its characteristics<br />

and m<strong>in</strong>eral potentialities. <strong>India</strong>n M<strong>in</strong>erals, v.47, pp.179-194.<br />

BASU, S.K. (2003) Petrogenetic model for evolution <strong>of</strong> Alkal<strong>in</strong>e-<br />

Carbonatite Complex along Tamar-Porapahar Shear Zone <strong>in</strong><br />

North S<strong>in</strong>ghbhum Proterozoic Mobile Belt, Eastern <strong>India</strong> and<br />

its metallogenic aspects. Jour. Geol. Soc. <strong>India</strong>, v.62, pp.250-<br />

252.<br />

BRASSINNES, S., BALAGANSKAYA, E. and DEMAIFFE, D. (2005)<br />

Magmatic evolution <strong>of</strong> the differentiated ultramafic, alkal<strong>in</strong>e<br />

and carbonatite <strong>in</strong>trusion <strong>of</strong> Vuoriyarvi (Kola Pen<strong>in</strong>sula,<br />

Russia). A LA-ICP-MS study <strong>of</strong> apatite. Lithos, v.85, pp.76-<br />

92.<br />

JOUR.GEOL.SOC.INDIA, VOL.76,OCT.2010


412 ANIKET CHAKRABARTY AND AMIT KUMAR SEN<br />

BROOKER, R.A. (1998) The effect <strong>of</strong> CO 2<br />

saturation on immiscibility<br />

between silicate and carbonate liquids: an experimental study.<br />

Jour. Petrol., v.39, pp.1905-1915.<br />

BÜHN, B., WALL, F. and LE BAS, M. J. (2001) Rare-earth element<br />

systematics <strong>of</strong> carbonatitic fluorapatites, and their significance<br />

for carbonatite magma evolution. Contrib. M<strong>in</strong>eral. Petrol.,<br />

v.141, pp.572-591.<br />

CHAKHMOURADIAN, A.R., MUMIN, A.H., DEMENEY, A. and ELLIOTT,<br />

B. (2008) Postorogenic carbonatites at Eden Lake, Trans-<br />

Hudson Orogen (northern Manitoba, Canada): <strong>Geological</strong><br />

sett<strong>in</strong>g, m<strong>in</strong>eralogy and geochemistry. Lithos, v.103, pp.503-<br />

526.<br />

CHAKRABARTY, A. (2009) Petrogenesis <strong>of</strong> Carbonatite and<br />

Associated Alkal<strong>in</strong>e Rocks, Purulia, W.B., <strong>India</strong>. Unpublished<br />

Ph.D. Thesis, Department <strong>of</strong> Earth Sciences, IIT Roorkee,<br />

Roorkee.<br />

CHAKRABARTY, A., SEN, A.K. and GHOSH, T.K. (2009) Amphibole –<br />

a key <strong>in</strong>dicator m<strong>in</strong>eral for petrogenesis <strong>of</strong> carbonatite from<br />

Purulia, West Bengal, <strong>India</strong>. M<strong>in</strong>er. Petrol., v.95, pp.105-112.<br />

COOPER, A.F. and REID, D.L. (2000) The association <strong>of</strong> potassic<br />

trachytes and carbonatites at the Dicker Willem Complex,<br />

southwest Namibia: coexist<strong>in</strong>g, immiscible, but not cogenetic<br />

magmas. Contrib. M<strong>in</strong>er. Petrol., v.139, pp.570-583.<br />

DEITRICH, V.J., CARMAN, M.F., WYTTENBACH, A. and MCKEE, E.H.<br />

(1984) Geochemistry <strong>of</strong> basalts from Holes 519A, 520, 522B,<br />

and 524, Deep Sea Drill<strong>in</strong>g Project Leg 73 (South Atlantic).<br />

Institute Reports DSDP, 7, pp.579-601.<br />

DUNWORTH, E.A. and BELL, K. (2001) The Turiy massif, Kola<br />

Pen<strong>in</strong>sula, Russia: isotopic and geochemical evidence for<br />

multi-source evolution. Jour. Petrol., v.42, pp.377-405.<br />

GHOSH ROY, A.K. and SENGUPTA, P.R. (1988) Alkalic–carbonatitic<br />

magmatism and associated m<strong>in</strong>eralisation along Porapahar-<br />

Tamar l<strong>in</strong>eament <strong>in</strong> the Proterozoics <strong>of</strong> Purulia Dt., West<br />

Bengal, <strong>India</strong>. Abst. Intl. Conf. on Metallogeny Related to<br />

Tectonics <strong>of</strong> the Proterozoic Mobile Belts, I.G.C.P., v.247,<br />

pp.38.<br />

GITTINS, J. (1988) The orig<strong>in</strong> <strong>of</strong> carbonatites. Nature, v.335, pp.295-<br />

296.<br />

KING, B.C. (1949) The Napak area <strong>of</strong> Southern Karamoja, Uganda.<br />

<strong>Geological</strong> Survey <strong>of</strong> Uganda, Memoir V, pp.57.<br />

KJARSGAARD, B.A., HAMILTON, D.L. and PETERSON, T.D. (1995)<br />

Peralkal<strong>in</strong>e nephel<strong>in</strong>ite/carbonatite liquid immiscibility:<br />

comparison <strong>of</strong> phase composition <strong>in</strong> experiments and natural<br />

lavas from Oldo<strong>in</strong>yo Lengai. In: K. Bell and J. Keller (Eds.),<br />

Carbonatite Volcanism: Oldo<strong>in</strong>yo Lengai and the Petrogenesis<br />

<strong>of</strong> Natrocarbonatites. IAVCEI Proc.Volcanology, v.4, pp.163-<br />

190.<br />

KOSTER VAN GROOS, A.F. and WYLLIE, P.J. (1963) Experimental<br />

data bear<strong>in</strong>g on the role <strong>of</strong> liquid immiscibility <strong>in</strong> the genesis<br />

<strong>of</strong> carbonatites. Nature, v.199, pp.801-802.<br />

KUMAR, M.N., DAS, N. and DAS GUPTA, S. (1985) Gold<br />

m<strong>in</strong>eralisation along the northern shear zone, Purulia district,<br />

West Bengal- an up-to-date appraisal. Rec. Geol. Surv. <strong>India</strong>,<br />

v.113(3), pp.25-32.<br />

LE BAS, M.J. (1987) Nephel<strong>in</strong>ites and carbonatites. In: J.G. Fitton<br />

and B.G.J. Upton (Eds.), Alkal<strong>in</strong>e Igneous Rocks. Spec. Publ.<br />

Geol. Soc. London, v.30, pp.53-83.<br />

LE BAS, M.J. (1981) Carbonatite magmas. M<strong>in</strong>eral. Mag., v.44,<br />

pp.133-140.<br />

LE BAS, M.J., SUBBARAO, K.V. and WALSH, J.N. (2002) Metacarbonatite<br />

or marble? – the case <strong>of</strong> the carbonate, pyroxenite,<br />

calcite-apatite rock complex at Borra, Eastern Ghats, <strong>India</strong>.<br />

Jour. Asian Earth Sci., v.20, pp.127-140.<br />

MAZUMDER, R. (2005) Proterozoic sedimentation and volcanism<br />

<strong>in</strong> the S<strong>in</strong>ghbhum crustal prov<strong>in</strong>ce, <strong>India</strong> and their<br />

implications, Sediment. Geol., v.176, pp.167-193.<br />

MITCHELL, R.H. (2005) Carbonatites and Carbonatites and<br />

Carbonatites. Canadian M<strong>in</strong>eralogist, v.43, pp.2049-2068.<br />

MOECHER, D.P., ANDERSON, E.D., COOK, C.A. and MEZGER, K.<br />

(1997) The petrogenesis <strong>of</strong> metamorphosed carbonatites <strong>in</strong><br />

the grenville Prov<strong>in</strong>ce, Ontario. Canadian Jour. Earth Sc., v.34,<br />

pp.1185-1201.<br />

NATARAJAN, M., BHASKAR RAO, B., PARTHASARATHY, R., KUMAR, A.<br />

and GOPALAN, K. (1994) 2.0 Ga pyroxenite-carbonatite<br />

complex <strong>of</strong> Hogenakal, Tamil Nadu, South <strong>India</strong>. Precambrian<br />

Res., v.65, pp.167-181.<br />

NISBET, E.G., DEITRICH, V.J. and ESENWEIN, A. (1979) Rout<strong>in</strong>e trace<br />

element determ<strong>in</strong>ation <strong>in</strong> silicate m<strong>in</strong>erals and rocks by X-<br />

Ray Fluorescence. Fortschr. M<strong>in</strong>eral, v.57(2), pp.264-279.<br />

O’REILLY, S.Y. and GRIFFIN, W.L. (2000) Apatite <strong>in</strong> the mantle:<br />

implications for metasomatic processes and high heat<br />

production <strong>in</strong> Phanerozoic mantle. Lithos, v.53, pp.217-232.<br />

PELL, J. and HÖY, T. (1989) Carbonatites <strong>in</strong> a cont<strong>in</strong>ental marg<strong>in</strong><br />

environment – the Canadian Cordillera. In: K. Bell (Ed.),<br />

Carbonatites: Genesis and Evolution. Chapman and Hall,<br />

London, U.K. pp.200-220.<br />

RATHI, M.S., KHANNA, P.P., MUKHERJEE, P.K. and SAINI, N.K. (1996)<br />

Evaluation <strong>of</strong> REE determ<strong>in</strong>ation <strong>in</strong> geological samples by<br />

<strong>in</strong>ductively coupled plasma emission spectrometry. Jour. Geol.<br />

Soc. <strong>India</strong>, v.48, pp.325-330.<br />

SCOGINGS, A.J. and FORSTER, I.F. (1989) Gneissose carbonatites <strong>in</strong><br />

the Bull’s Run complex, Natal. South African Jour. Geol., v.92,<br />

pp.1-10.<br />

SINGH, G.H., SURI SASTRY, C., TIWARY, K.N., SHIRKE, V.G. and<br />

CHATTERJEE, B.D. (1977) Status <strong>of</strong> exploration for atomic<br />

m<strong>in</strong>erals <strong>in</strong> the Purulia district, West Bengal and future<br />

possibilities. Jour. M<strong>in</strong>. Met. Fuels, pp.61-66.<br />

SUN, S.S. and MCDONOUGH, W.F. (1989) Chemical and isotopic<br />

systematics <strong>of</strong> oceanic basalts: implications for mantle<br />

composition and processes. In: A.D. Saunders and M.J. Norry<br />

(Eds.), Magmatism <strong>in</strong> the Ocean Bas<strong>in</strong>s. Spec. Publ. Geol.<br />

Soc. London, v.42, pp.313-345.<br />

TWYMAN, J.D. and GITTINS, J. (1987) Alkalic carbonatite magmas:<br />

parental or derivative? In: J.G. Fitton and B.G.J. Upton (Eds.),<br />

Alkal<strong>in</strong>e Igneous Rocks. Spec. Publ. Geol. Soc. Lond., v. 30,<br />

pp. 85-94.<br />

VEKSLER, I.V., NIELSON, T.F.D. and SOKOLOV, S.V. (1998)<br />

M<strong>in</strong>eralogy <strong>of</strong> crystallized melt <strong>in</strong>clusions from Gard<strong>in</strong>er and<br />

Kovdor ultramafic alkal<strong>in</strong>e complexes: implications for<br />

carbonatite genesis. Jour. Petrol., v.39, pp.2015-2031.<br />

JOUR.GEOL.SOC.INDIA, VOL.76,OCT.2010


ENIGMATIC ASSOCIATION OF CARBONATITE AND ALKALI-PYROXENITE, PURULIA, WEST BENGAL 413<br />

VILADKAR, D.G. and SUBRAMANIAN, V. (1995) M<strong>in</strong>eralogy and<br />

geochemistry <strong>of</strong> the carbonatite <strong>of</strong> the Sevathur and Samalpatti<br />

Complexes, Tamil Nadu. Jour. Geol. Soc. <strong>India</strong>, v.45, pp.505-<br />

517.<br />

WALLACE, M.E. and GREEN, D.H. (1988) An experimental<br />

determ<strong>in</strong>ation <strong>of</strong> primary carbonatite magma composition.<br />

Nature, v.335, pp.343-346.<br />

WOOLLEY, A.R. and KEMPE, D.R.C. (1989) Carbonatites:<br />

nomenclature, average chemical compositions, and element<br />

distribution. In: K. Bell (Ed.), Carbonatites: Genesis and<br />

Evolution. Unw<strong>in</strong> Hyman, London, pp.1-14.<br />

WOOLLEY, A.R. and KJARSGAARD, B.A. (2008) Paragenetic types<br />

<strong>of</strong> carbonatite as <strong>in</strong>dicated by the diversity and relative<br />

abundances <strong>of</strong> associated silicate rocks: evidence from a global<br />

database. Can. M<strong>in</strong>., v.46, pp.741-752.<br />

WYLLIE, P.J. and HUANG, W.L. (1975) Peridotite, kimberlite and<br />

carbonatite expla<strong>in</strong>ed <strong>in</strong> the system CaO-MgO-SiO 2<br />

-CO 2<br />

.<br />

Geology, v.3, pp.621-624.<br />

WYLLIE, P.J. and LEE, W-J. (1998) Model system controls on<br />

conditions for formation <strong>of</strong> magnesiocarbonatite and<br />

calciocarbonatite magmas from the mantle. Jour. Petrol., v.39,<br />

pp.1885-1893.<br />

XU, CH., HUANG, ZH., LIU, C., QI, L., LI, W. and GUAN, T. (2003)<br />

Geochemistry <strong>of</strong> carbonatites <strong>in</strong> Maoniup<strong>in</strong>g REE deposit,<br />

Sichuan Prov<strong>in</strong>ce, Ch<strong>in</strong>a. Science <strong>in</strong> Ch<strong>in</strong>a (Series D), v.46,<br />

pp.246-256.<br />

ZAITSEV, A.N., WALL, F. and LE BAS, M.J. (1998) REE-Sr-Ba<br />

m<strong>in</strong>erals from the Khib<strong>in</strong>a carbonatites, Kola Pen<strong>in</strong>sula,<br />

Russia: their m<strong>in</strong>eralogy, paragenesis and evolution. M<strong>in</strong>.<br />

Mag., v.62(2), pp.225-250.<br />

(Received: 23 October 2009; Revised form accepted: 28 April 2010)<br />

JOUR.GEOL.SOC.INDIA, VOL.76,OCT.2010

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!