25.10.2012 Views

ToF-SIMS analysis of glass fiber cloths for PCB manufacturing - IBM

ToF-SIMS analysis of glass fiber cloths for PCB manufacturing - IBM

ToF-SIMS analysis of glass fiber cloths for PCB manufacturing - IBM

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>ToF</strong>-<strong>SIMS</strong> <strong>analysis</strong> <strong>of</strong> <strong>glass</strong> <strong>fiber</strong> <strong>cloths</strong><br />

<strong>for</strong> <strong>PCB</strong> <strong>manufacturing</strong><br />

<strong>PCB</strong> Symposium Raleigh 2011<br />

Dylan Boday 1 , Michael Haag 2 , Joe Kuczynski 3 , Markus Schmidt 2 , Michael Wahl 4 , Johannes Windeln 2<br />

1 <strong>IBM</strong> Systems & Technology Group, 9000 S Rita Rd, Tucson AZ 85744-0002, dboday@us.ibm.com<br />

2 <strong>IBM</strong> Deutschland MBS GmbH, Hechtsheimer Str. 2, D-55131 Mainz, mhaag@de.ibm.com<br />

3 <strong>IBM</strong> Systems & Technology Group, 3605 Hwy 52 N, Rochester MN 55901-1407, kuczynsk@us.ibm.com<br />

4 IFOS GmbH, Trippstadter Straße 120, D-67663 Kaiserslautern, wahl@ifos.uni-kl.de


content<br />

• <strong>PCB</strong> (Printed Circuit Board) structure<br />

• <strong>glass</strong> cloth conditioning<br />

• motivation <strong>for</strong> <strong>ToF</strong>-<strong>SIMS</strong> <strong>analysis</strong><br />

• analytical setup<br />

• <strong>ToF</strong>-<strong>SIMS</strong> results<br />

• summary and outlook<br />

<strong>PCB</strong> Symposium Raleigh 2011<br />

11/11/11 2


<strong>PCB</strong> structure<br />

prepregs<br />

cores<br />

copper lines<br />

prepregs: <strong>glass</strong> <strong>fiber</strong> cloth pre-impregnated with resin matrix<br />

<strong>PCB</strong> Symposium Raleigh 2011<br />

heat, pressure<br />

heat, pressure<br />

pictures source: www.lpkf.de<br />

cores: cured <strong>glass</strong> cloth/resin composite with structured copper layer(s)<br />

multi-functionality <strong>of</strong> composite (<strong>glass</strong> cloth, resin and optional filler)<br />

- mechanical properties (strength, CTE...)<br />

- dielectric properties (insulation, impedance...)<br />

11/11/11 3


<strong>glass</strong> cloth conditioning<br />

<strong>PCB</strong> Symposium Raleigh 2011<br />

<strong>glass</strong> <strong>fiber</strong>s pre-treated with Silanes <strong>for</strong><br />

- improved surface wetting (contact angle reduction)<br />

- improved matrix adhesion (organ<strong>of</strong>unctional group R to match matrix resin)<br />

11/11/11 4


process steps critical with regard to Silanation:<br />

- starch size required <strong>for</strong> yarn processing<br />

- pyrolytic de-sizing (thorough?)<br />

- Silanation process<br />

application <strong>of</strong> starch sizing<br />

<strong>glass</strong> cloth conditioning<br />

pyrolytic de-sizing<br />

source: JPS Composite Materials<br />

<strong>PCB</strong> Symposium Raleigh 2011<br />

(wet) application <strong>of</strong> Silanes<br />

11/11/11 5


<strong>PCB</strong> Symposium Raleigh 2011<br />

motivation <strong>for</strong> <strong>ToF</strong>-<strong>SIMS</strong> <strong>analysis</strong><br />

challenges <strong>for</strong> modern high per<strong>for</strong>mance boards<br />

- increasing # <strong>of</strong> copper layers (�40 and above)<br />

- decreasing line width and spacing (� 50µm and below)<br />

- RoHS (Pb-free solder; solder process + 20K, new resins)<br />

���� known sporadic failures become epidemic!<br />

Thermal cracks:<br />

pictures source: Dynamic Details Inc.<br />

SEM micrograph: <strong>IBM</strong><br />

CAF: Copper Anodic Filament<br />

11/11/11 6


<strong>PCB</strong> Symposium Raleigh 2011<br />

motivation <strong>for</strong> <strong>ToF</strong>-<strong>SIMS</strong> <strong>analysis</strong><br />

TGA and SEM/EDX results <strong>of</strong> analysed <strong>glass</strong> cloth<br />

indicate presence <strong>of</strong> undesired material<br />

expected weight loss < 0.1%!<br />

TGA <strong>analysis</strong> and SEM micrographs: <strong>IBM</strong><br />

organic debris<br />

11/11/11 7


<strong>ToF</strong>-<strong>SIMS</strong><br />

Time-<strong>of</strong>-Flight Secondary Ion Mass Spectrometry<br />

(Sample)<br />

<strong>PCB</strong> Symposium Raleigh 2011<br />

extractor accelerates secondary ions to:<br />

E = q ⋅ U<br />

mass dispersion via ion flight time:<br />

v =<br />

⇒<br />

t<br />

=<br />

2E<br />

m<br />

s<br />

v<br />

=<br />

= s ⋅<br />

2q<br />

⋅ U<br />

m<br />

m<br />

2q<br />

⋅ U<br />

11/11/11 8


analytical setup<br />

Method: <strong>ToF</strong>-<strong>SIMS</strong> static and dynamic mode<br />

Tool: ION-TOF IV at , Germany<br />

<strong>PCB</strong> Symposium Raleigh 2011<br />

Primary ions: 25keV Bi 3 + (clusters to promote molecular secondary ions)<br />

Samples: various samples <strong>of</strong> <strong>glass</strong> cloth –<br />

supposedly de-sized and coated with coupling agent<br />

sample<br />

#<br />

1<br />

2<br />

3<br />

4<br />

5<br />

6<br />

supplier<br />

A<br />

B<br />

C<br />

C<br />

C<br />

C<br />

cloth<br />

2116<br />

1080<br />

1080<br />

2113<br />

0106<br />

2116<br />

11/11/11 9


<strong>ToF</strong>-<strong>SIMS</strong> - static mode<br />

raw spectra<br />

significant differences especially in the hi-mass region<br />

<strong>PCB</strong> Symposium Raleigh 2011<br />

#6 #6<br />

#6<br />

11/11/11 10


<strong>ToF</strong>-<strong>SIMS</strong> - dynamic mode<br />

dynamic mode to distinguish between signals from<br />

surface coverage and bulk material<br />

<strong>glass</strong> bulk<br />

surface coverage<br />

sputter<br />

removal<br />

sputter<br />

removal<br />

<strong>PCB</strong> Symposium Raleigh 2011<br />

11/11/11 11


<strong>ToF</strong>-<strong>SIMS</strong> – first results<br />

� <strong>ToF</strong>-<strong>SIMS</strong> imaging capability<br />

(microscopic picture 300µmx300µm „in the light <strong>of</strong> an ion mass“)<br />

<strong>PCB</strong> Symposium Raleigh 2011<br />

� major signals assigned to one <strong>of</strong> 4 peak groups with common<br />

appearance and behaviour<br />

group A: group B: group C: group D:<br />

11/11/11 12


<strong>ToF</strong>-<strong>SIMS</strong> – peak groups<br />

group A (<strong>glass</strong> constituents)<br />

� laterally homogeneous signal<br />

� <strong>glass</strong> constituents (Li, B, Mg, Al, Si, Ca, Ti, Na, K)<br />

<strong>PCB</strong> Symposium Raleigh 2011<br />

� signal increased after sputter removal <strong>of</strong> surface layer (≈30nm)<br />

� confirms <strong>glass</strong> constituent<br />

different:<br />

� Na and K: signal increase after sputter on #7,<br />

signal decrease on #1 � sizing component?<br />

after sputter removal<br />

<strong>of</strong> surface layer:<br />

11/11/11 13


<strong>ToF</strong>-<strong>SIMS</strong> – peak groups<br />

group B (inhomogeneity I)<br />

� signal limited to prominent portions <strong>of</strong> single <strong>fiber</strong>s<br />

� Sulfate component<br />

<strong>PCB</strong> Symposium Raleigh 2011<br />

� signal decreased after sputter removal <strong>of</strong> surface layer (≈30nm)<br />

� confirms surface coverage<br />

residues from sizing or just abrasion debris from plastic bag?<br />

after sputter removal<br />

<strong>of</strong> surface layer:<br />

11/11/11 14


<strong>ToF</strong>-<strong>SIMS</strong> – peak groups<br />

group C (homogeneous organics)<br />

� laterally homogeneous signal<br />

� mainly hydrocarbons (C 7 H 7 , C 9 H 7 , C 9 H 9 , C 10 H 8 )<br />

� phosphate component<br />

<strong>PCB</strong> Symposium Raleigh 2011<br />

� signal decreased after sputter removal <strong>of</strong> surface layer (≈30nm)<br />

� surface coverage<br />

coupling agent?<br />

after sputter removal<br />

<strong>of</strong> surface layer:<br />

11/11/11 15


<strong>ToF</strong>-<strong>SIMS</strong> – peak groups<br />

group D (inhomogeneity II)<br />

� signal confined to small areas on single <strong>fiber</strong>s<br />

� fragmentation pattern match: Erucamide (m=337)<br />

<strong>PCB</strong> Symposium Raleigh 2011<br />

� signal decreased after sputter removal <strong>of</strong> surface layer (≈30nm)<br />

� surface coverage<br />

coupling agent or residues from sizing?<br />

after sputter removal<br />

<strong>of</strong> surface layer:<br />

11/11/11 16


<strong>ToF</strong>-<strong>SIMS</strong> – second run<br />

Method: <strong>ToF</strong>-<strong>SIMS</strong> static and dynamic mode<br />

Tool: ION-TOF IV at , Germany<br />

<strong>PCB</strong> Symposium Raleigh 2011<br />

Primary ions: 25keV Bi 3 + (clusters to promote molecular secondary ions)<br />

Samples: 1. 2116 <strong>glass</strong> cloth w/ Silane treatment (supplier‘s claim)<br />

- as received<br />

- heat cleaned (matching pyrolytic de-sizing)<br />

- UV-ozone cleaned (details undisclosed)<br />

2. pellet <strong>of</strong> <strong>glass</strong> raw material (as used to pull <strong>fiber</strong>s <strong>for</strong> 2116)<br />

analyzed as a reference<br />

- as receiced<br />

- on freshly fractured surface<br />

- on sputter cleaned surface<br />

11/11/11 17


Glass cloth<br />

analyses<br />

first results<br />

<strong>PCB</strong> Symposium Raleigh 2011<br />

NO SiCH 3 O + as reported by Norrmann et al (J. Mass Spectrom. 2002, 37, 695-708)<br />

NO other SiC complexes<br />

signal<br />

1,0E+05<br />

1,0E+04<br />

1,0E+03<br />

1,0E+02<br />

1,0E+01<br />

CH_3+<br />

potentially Silane related: C x H y + and Cx H y O +<br />

but no change after heat and UV ozone treatment!<br />

C_2H_3+<br />

C_2H_5+<br />

C_3H_5+<br />

C_3H_7+<br />

C_4H_7+<br />

C_4H_9+<br />

C_5H_7+<br />

C_5H_9+<br />

element / fragment<br />

heat treated<br />

UV ozone<br />

as received<br />

C_2H_3O+<br />

C_3H_3O+<br />

C_3H_5O+<br />

11/11/11 18


Glass pellet<br />

analyses<br />

first results<br />

signal<br />

1,0E+06<br />

1,0E+04<br />

1,0E+02<br />

1,0E+00<br />

<strong>PCB</strong> Symposium Raleigh 2011<br />

potentially Silane related species C x H y + and Cx H y O +<br />

also present on bulk reference sample!<br />

����adsorbates from the ambient<br />

C_2H_3+<br />

C_2H_5+<br />

C_3H_5+<br />

C_3H_7+<br />

C_4H_7+<br />

C_4H_9+<br />

C_5H_7+<br />

C_5H_9+<br />

element/fragment<br />

fracture surface<br />

sputter cleaned<br />

as received<br />

C_2H_3O+<br />

C_3H_3O+<br />

C_3H_5O+<br />

11/11/11 19


summary and outlook<br />

new <strong>ToF</strong>-<strong>SIMS</strong> application in reverse engineering:<br />

Silane treatment <strong>of</strong> <strong>glass</strong> fibre cloth<br />

first results on supplier samples:<br />

NO Silane related secondary ions detected<br />

� functionalized surface not as desired<br />

- Silanes either not present<br />

next steps:<br />

<strong>PCB</strong> Symposium Raleigh 2011<br />

- or only physisorbed instead <strong>of</strong> chemisorbed<br />

(due to insufficient fibre treatment)<br />

�work with supplier to improve Silanation process<br />

�Is “pad cratering” part <strong>of</strong> the same problem?<br />

�Is this the time to involve „computational materials science“?<br />

11/11/11 20

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!