14.11.2013 Views

Quantitative paleoenvironmental and paleoclimatic reconstruction ...

Quantitative paleoenvironmental and paleoclimatic reconstruction ...

Quantitative paleoenvironmental and paleoclimatic reconstruction ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

ARTICLE IN PRESS<br />

2 N.D. Sheldon, N.J. Tabor / Earth-Science Reviews xxx (2009) xxx–xxx<br />

5.5. Paleoprecipitation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0<br />

5.5.1. Content of Fe–Mn nodules in vertisols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0<br />

5.5.2. Depth to Bk horizon . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0<br />

5.5.3. Bw/Bt horizon geochemistry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0<br />

5.6. Long-term chemical weathering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0<br />

6. Thermodynamic approaches. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0<br />

6.1. Simple versus complex systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0<br />

6.2. Single-equation approaches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0<br />

6.2.1. Precambrian atmospheric CO 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0<br />

6.2.2. Earliest Triassic soil formation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0<br />

6.3. Multiple-equation approaches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0<br />

7. Stable isotope approaches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0<br />

7.1. Stableisotopiccompositionofpedogenicmineralsas<strong>paleoenvironmental</strong>proxies. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0<br />

7.1.1. Mineral-water isotope fractionation <strong>and</strong> the jargon of stable isotope geochemistry . . . . . . . . . . . . . . . . . . . . . . . 0<br />

7.1.2. Stable isotope fractionation factors of common pedogenic minerals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0<br />

7.1.3. Relationship between hydrogen <strong>and</strong> oxygen isotopes in continental waters . . . . . . . . . . . . . . . . . . . . . . . . . . 0<br />

7.2. Carbon in soils. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0<br />

7.2.1. One-component soil CO 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0<br />

7.2.2. Two-component soil CO 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0<br />

7.2.3. Three-component soil CO 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0<br />

7.3. Soil <strong>and</strong> paleosol carbonate. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0<br />

7.3.1. Pedogenic calcite δ 18 O values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0<br />

7.3.2. Pedogenic siderite as a proxy for soil moisture δ 18 O values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0<br />

7.4. δ 13 C values of soil carbonate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0<br />

7.4.1. Calcite from one-component of soil CO 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0<br />

7.4.2. δ 13 C of pedogenic siderite . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0<br />

7.4.3. Calcite derived from 2-component soil CO 2 mixing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0<br />

7.4.4. Soil carbonates formed by mixing of three-components of soil CO 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0<br />

7.5. δ 18 O <strong>and</strong> δD of hydroxylated minerals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0<br />

7.5.1. Origin of residual deposits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0<br />

7.5.2. Variations in soil moisture δ 18 O <strong>and</strong> δD values. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0<br />

7.5.3. Single-mineral paleotemperature estimates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0<br />

7.5.4. Mineral-pair δ 18 O values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0<br />

7.6. Paleo-vegetation/paleo-photosynthesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0<br />

8. Future approaches <strong>and</strong> challenges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0<br />

8.1. Boron isotopes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0<br />

8.2. Energy balance models. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0<br />

8.3. “Clumped isotope” paleothermometry. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0<br />

9. Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0<br />

Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0<br />

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0<br />

1. Introduction<br />

Increasing recognition of paleosols (fossil soils; Fig. 1) in nonmarine<br />

strata has opened up new types of <strong>paleoenvironmental</strong> <strong>and</strong><br />

<strong>paleoclimatic</strong> <strong>reconstruction</strong>s. While good quantitative <strong>paleoclimatic</strong><br />

data may be obtained from plant fossil assemblages using either<br />

nearest living relative (e.g., Leopold <strong>and</strong> Clay-Poole, 2001; Utescher<br />

<strong>and</strong> Mosbrugger, 2007) or leaf morphometric approaches (e.g., Wolfe,<br />

1994; Uhl et al., 2007), those approaches yield snap shots of past<br />

environments <strong>and</strong> are relatively rare in the fossil record. Paleosols<br />

preserved in continental basins on the other h<strong>and</strong>, raise the possibility<br />

of long-term, fairly continuous <strong>paleoclimatic</strong> records, potentially with<br />

a temporal resolution that equals that of marine proxy records (e.g.,<br />

Retallack et al., 2004b; Sheldon <strong>and</strong> Retallack, 2004; Retallack, 2007).<br />

The last point is crucial because unlike most marine proxies, which are<br />

fundamentally indirect climatic records, paleosols formed at the<br />

Earth's surface, in direct contact with climatic <strong>and</strong> environmental<br />

conditions that prevailed at the time of their formation. Potentially<br />

then, paleosol-based proxies could be among the most powerful tools<br />

for reconstructing past environments. Until recently, paleopedology<br />

(the study of paleosols) was largely a qualitative science that relied on<br />

the recognition of features similar to modern soils that allowed for a<br />

“nearest living relative” comparison. That is, a paleosol was identified<br />

as indicating an ancient grassl<strong>and</strong> if it had features similar to a modern<br />

grassl<strong>and</strong> (Fig. 2). This approach still underlies most paleopedology,<br />

but has some fundamental limitations, namely the need for taxonomic<br />

uniformitarianism. Continuing on with the grassl<strong>and</strong> example, the<br />

origin of grasses is most likely in the Cenozoic (e.g., Strömberg, 2002).<br />

However, paleosol-based estimates for the origin of grassl<strong>and</strong>s as<br />

evidenced by Mollisol-like paleosols range from Eocene to Miocene<br />

(Retallack, 1997a,b, 2001a,b) depending on the strictness of one's<br />

taxonomy. Furthermore, others (Terry, 2001) have described Oligocene-age<br />

paleosols as “Mollisols” without meaning to connote that a<br />

grassl<strong>and</strong> ecosystem was present. On the other h<strong>and</strong>, there are some<br />

types of paleosols found in the Earth's past for which there are<br />

imperfect analogues (e.g., Retallack, 1997c; Sheldon, 2005), or for<br />

which there is no appropriate modern analogue owing to different<br />

environmental <strong>and</strong> ecological conditions in Earth's past. For example,<br />

weathering at the Earth's surface was occurring in the Precambrian<br />

(e.g., Driese, 2004; Sheldon, 2006b), but under the influence of<br />

microbial enhancement only in the absence of higher plants.<br />

The emergence of new quantitative techniques for reconstructing<br />

various <strong>paleoenvironmental</strong> <strong>and</strong> <strong>paleoclimatic</strong> conditions using<br />

whole rock <strong>and</strong> isotopic geochemistry has fundamentally changed<br />

the field of paleopedology. Proxies for variables ranging from levissage<br />

to mean annual precipitation to the composition of the paleoatmosphere<br />

at the time of the paleosols' formation have now been<br />

developed. Some of the approaches that we describe in this review<br />

have been widely applied, others have not but could have wider<br />

applicability. We also attempt to “gaze into the crystal ball” to evaluate<br />

Please cite this article as: Sheldon, N.D., Tabor, N.J., <strong>Quantitative</strong> <strong>paleoenvironmental</strong> <strong>and</strong> <strong>paleoclimatic</strong> <strong>reconstruction</strong> using paleosols, Earth-<br />

Science Reviews (2009), doi:10.1016/j.earscirev.2009.03.004

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!