14.11.2013 Views

Vanadium Bearing Titaniferous Magnetite Ore Bodies of Ganjang ...

Vanadium Bearing Titaniferous Magnetite Ore Bodies of Ganjang ...

Vanadium Bearing Titaniferous Magnetite Ore Bodies of Ganjang ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

26 JOURNAL ABHISHEK GEOLOGICAL SAHA AND SOCIETY OTHERS OF INDIA<br />

Vol.76, July 2010, pp.26-32<br />

<strong>Vanadium</strong> <strong>Bearing</strong> <strong>Titaniferous</strong> <strong>Magnetite</strong> <strong>Ore</strong> <strong>Bodies</strong> <strong>of</strong> <strong>Ganjang</strong>,<br />

Karbi-Anglong District, Northeastern India<br />

ABHISHEK SAHA 1 , SOHINI GANGULY 1 , JYOTISANKAR RAY 1 and AVIK DHANG 2<br />

1 Department <strong>of</strong> Geology, University <strong>of</strong> Calcutta, 35, Ballygunge Circular Road, Kolkata 700 019, India<br />

2 Aurum S.P.R.L., 59, Avenue Colnol Muzemba, Lubumbashi, Democratic Republic <strong>of</strong> Congo<br />

Email: jsray65@hotmail.com<br />

Abstract: A new occurrence <strong>of</strong> (syenite-hosted) <strong>Vanadium</strong> bearing titaniferous magnetite ore body has been reported<br />

from <strong>Ganjang</strong> (26°09'35" N: 93°20' E), Karbi-Anglong, Northeastern India. The magnetite ore bodies have lumpy and<br />

sporadic occurrences within the host syenite pluton intrusive into gneissic country rocks. <strong>Ore</strong> microscopic studies reveal<br />

that magnetite is <strong>of</strong>ten associated with haematite and ilmenite depicting different textural patterns. Critical consideration<br />

<strong>of</strong> several elemental patterns suggests magmatic differentiation to be main ore-forming process. The ore body is suggested<br />

to have been formed as late stage segregation from a differentiating alkaline magma in a fluid enriched milieu.<br />

Keywords: <strong>Vanadium</strong> bearing titaniferous magnetite, Karbi-Anglong, Widmanstatten texture, Magmatic differentiation,<br />

Northeastern India.<br />

INTRODUCTION<br />

The emplacement <strong>of</strong> alkaline-carbonatite magmas in<br />

relatively stable, intracratonic platforms is facilitated by<br />

lithospheric uparching, crustal thinning followed by<br />

fracturing and rifting caused by the impact <strong>of</strong> an incubating<br />

mantle plume onto the base <strong>of</strong> continental lithosphere<br />

(Woolley, 1989). A wide range <strong>of</strong> ore-forming processes are<br />

known to be related to the mechanism <strong>of</strong> intracontinental<br />

rifting and the resulting alkaline-carbonatite magmatism<br />

(Piranjo, 2007).The various processes <strong>of</strong> magmatic<br />

differentiation operating in a fluid enriched environment,<br />

sometimes aided by metasomatic effects on the parent melt,<br />

favour intrusions <strong>of</strong> alkaline-mafic-ultramafic rocks and<br />

carbonatites. This is accompanied by late stage enrichment<br />

<strong>of</strong> elements like Ti, V, Fe, Mn, Zr, Ni, Co, Cr, Cu etc. in the<br />

residual or immiscible liquid fraction (Krishnamurthy et al.<br />

2000; Krishnamurthy, 2007). Economic minerals are known<br />

to occur in alkaline igneous rocks and associated<br />

carbonatites as they are enriched in elements like Ti, V, Fe,<br />

Mn, Zr, Pb, Ni, Mo, Co, Cr, Cu, Th, Au, Ag and PGE. Titanium,<br />

<strong>Vanadium</strong> and Fe oxides are generally derived from magmas<br />

that are richer in Fe, Ca and alkali. Economically important,<br />

orthomagmatic, vanadium bearing titaniferous magnetite<br />

ores are formed by late stage segregation from volatile rich,<br />

differentiated alkaline magmas triggered by episodic<br />

increases in fO 2<br />

(Piranjo, 2007). The present article reports<br />

for the first time the occurrence <strong>of</strong> orthomagmatic vanadium<br />

bearing titaniferous magnetite ore body from <strong>Ganjang</strong> (26°09'<br />

35"N: 93°20'E), Karbi-Anglong, Northeastern India,<br />

supported by petrograhic and geochemical data. Available<br />

literatures (Kumar et al. 1989; Hoda et al. 1997) on this body<br />

are preliminary in nature and describe it as apatite-magnetiteperovskite<br />

(AMP) rock.<br />

GEOLOGICAL SET UP AND MODE OF<br />

OCCURRENCE<br />

The presently investigated vanadium bearing<br />

titaniferous magnetite ore bodies occur within the<br />

Samchampi-Samteran ultramafic-mafic-alkaline-carbonatite<br />

complex <strong>of</strong> Northeastern India (Kumar et al. 1989; Nag et al.<br />

1999). The Samchampi-Samteran complex occurs as a near<br />

circular, stock like intrusion emplaced into the Precambrian<br />

gneissic rocks <strong>of</strong> Mikir Hills, in the Karbi-Anglong district<br />

<strong>of</strong> Assam (Kumar et al. 1989; Nag et al.1999; Srivastava and<br />

Sinha, 2004; Srivastava and Sinha, 2007). This lineament<br />

controlled emplacement is a part <strong>of</strong> ultramafic-mafic-alkalinecarbonatite<br />

magmatism <strong>of</strong> Shillong Plateau, representing<br />

latest differentiation phases <strong>of</strong> Sylhet Trap basalts in<br />

Northeastern India (C<strong>of</strong>fin et al. 2002; Kent et al. 2002). The<br />

oval shaped syenite body with arcuate ijolite-melteigite suite<br />

<strong>of</strong> rocks occurs as a discrete plug like pluton within the<br />

Precambrian basement gneisses. The ijolite-melteigite suite<br />

<strong>of</strong> rocks also shows occasional presence <strong>of</strong> inliers <strong>of</strong> alkali<br />

0016-7622/2010-76-1-26/$ 1.00 © GEOL. SOC. JOUR.GEOL.SOC.INDIA, VOL.76,JULY2010


VANADIUM BEARING TITANIFEROUS MAGNETITE ORE BODIES OF GANJANG, NE INDIA 27<br />

36<br />

28<br />

20<br />

12<br />

N<br />

72 80 88 96<br />

ARABIAN<br />

SEA<br />

DELHI<br />

INDIAN OCEAN<br />

I N D E X<br />

KOLKATA<br />

0 600 Km<br />

SCALE<br />

STUDY AREA<br />

BAY OF<br />

BENGAL<br />

72 80 88 96<br />

26°13´30´´ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +<br />

+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +<br />

+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +<br />

N<br />

1 Km + +<br />

36<br />

+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +<br />

+ + + +<br />

Samchampi<br />

+ + + + + + + + + + + + + + + + + + + + + + + + + +<br />

+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +<br />

+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +<br />

28<br />

+ + + + + + + + + + + + + + + + + + + + + + + + + + +<br />

+ + + + + + + + + + + + + + + + + + + + +<br />

+ + + + + + + + + + + +<br />

20<br />

+ + + + + + + + + +<br />

+ + + + + + + + + +<br />

+ + + + + + + + +<br />

12<br />

+ + + + + + + +<br />

+ + + + + + +<br />

+ + + + + +<br />

+ + + + +<br />

+ + + + +<br />

+ + + + +<br />

+ + Samteran + + +<br />

+ + + + + + + +<br />

+ + + + + + + + +<br />

+ + + + + + + + + +<br />

+ + + + + + + + + + + +<br />

+ + + + + + + + + + + +<br />

+ + + + + + + + + + + +<br />

+ + + + + + + + + + + + + +<br />

+ + + + + + + + + + + + + + +<br />

+ + + + + + + + + + + + + + + +<br />

+ + + + + + + + + + + + + + + + +<br />

+ + + + + + + + + + + + + + + + + + + + + +<br />

+ + + + + + + + + + + + + + +<br />

<strong>Ganjang</strong><br />

+ + + + + + + + + + + + +<br />

+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +<br />

26°09´15´´<br />

93°14´ 93°27´20´´<br />

+ + + Precambrian Granite gneiss<br />

+ + + with minor occurrences <strong>of</strong><br />

migmatite<br />

Alkali Gabbro<br />

Nepheline syenite<br />

dykes<br />

66°<br />

75°<br />

52°<br />

Syenite bodies<br />

Alkali pyroxenite<br />

63°<br />

Foliation plane in Granite Gneiss<br />

<strong>Vanadium</strong> bearing<br />

<strong>Titaniferous</strong><strong>Magnetite</strong><br />

ore bodies<br />

Ijolite-Melteigite<br />

suite<br />

Brecciated rock<br />

Carbonatite<br />

Fig.1. Geological map <strong>of</strong> the study area. Inset map shows the location <strong>of</strong> study area in the map <strong>of</strong> India.<br />

pyroxenite and alkali gabbro. Younger intrusives marked by<br />

carbonatite and nepheline syenite traverse the pluton (Fig.1).<br />

The vanadium bearing titaniferous magnetite ore bodies<br />

have lumpy and sporadic occurrences and are distributed<br />

at and around <strong>Ganjang</strong> (26°09'35"N: 93°20' E) being hosted<br />

in syenite pluton (Fig.1). The vanadium bearing titaniferous<br />

magnetite ore is hard, massive, deep brown in colour with a<br />

very high specific gravity. <strong>Ore</strong> microscopic study <strong>of</strong> the<br />

polished sections <strong>of</strong> the representative samples reveals that<br />

these rocks are dominantly composed <strong>of</strong> magnetite with<br />

subordinate amount <strong>of</strong> haematite and ilmenite. Pronounced<br />

effect <strong>of</strong> martitization is also evident in magnetite (Fig.2).<br />

Ilmenite occurs as exsolution lenses in close association<br />

with haematite (Fig.3). Widmanstatten (Box-work type)<br />

Mar<br />

M<br />

Fig.2. Photomicrograph showing pronounced effects <strong>of</strong><br />

martitization (Mar) in <strong>Magnetite</strong> (M).<br />

Fig.3. Photomicrograph depicting exsolution lenses <strong>of</strong> ilmenite (I)<br />

occuring in close association with haematite (H).<br />

JOUR.GEOL.SOC.INDIA, VOL.76,JULY2010


28 ABHISHEK SAHA AND OTHERS<br />

Fig.4. Photomicrograph depicting Widmanstatten (Box-work<br />

type) textural pattern in martitized magnetite.<br />

textural pattern has also been observed in martitized grains<br />

(Fig.4).<br />

CHEMISTRY<br />

In order to decipher the pattern <strong>of</strong> elemental zonation<br />

and chemical variations within vanadium bearing titaniferous<br />

magnetite ore bodies, several constituent elements were<br />

analysed from representative grid samples using hand-held<br />

XRF XLt Niton (Model No. XLt 592 KVw). The analyses<br />

were performed at Aurum S.P.R.L. Laboratory, Lubumbashi,<br />

Democratic Republic <strong>of</strong> Congo. The details <strong>of</strong> analytical<br />

procedure and accuracy are given in Acharya et al.(2006).<br />

The analytical data (Table 1) reveal that this ore body is<br />

predominantly composed <strong>of</strong> FeO (FeO (t) content ranging<br />

from 82.97 to 94.94 wt. %), followed by TiO 2<br />

(4.38 to 13.73<br />

wt. %) and V 2<br />

O 5<br />

(0.07 to 2.14 wt. %) which justifies its<br />

vanadium bearing titaniferous nature. Among trace<br />

elements, the vanadium bearing titaniferous magnetite ore<br />

body is characterized by consistent and appreciable<br />

concentrations <strong>of</strong> Co (264-1765 ppm), Cr (86-1546 ppm), Ni<br />

(68-238 ppm), Cu (164-629 ppm), Zn (373-1161 ppm) and Zr<br />

(337-4542 ppm) with lesser amounts <strong>of</strong> As, Pt, Nb, Pd and<br />

Ag. The Zr concentrations <strong>of</strong> the vanadium bearing<br />

titaniferous magnetite ore body are found to vary from 337<br />

ppm. (in the margin) to 4542 ppm (in the core). The<br />

combination <strong>of</strong> high charge and comparatively high radius<br />

(0.79 Å) compels Zr not to enter into the common rock<br />

forming minerals to any degree but helps Zr to be enriched<br />

into later differentiates (Mason and Moore, 1985). This<br />

Table 1. Chemical analysis <strong>of</strong> <strong>Vanadium</strong> bearing titaniferous magnetite ore body<br />

Major oxides (wt %)<br />

Specimen no. SAJ 75 SAJ 72 SAJ 77 SAJ 70 SAJ 61 SAJ 65 SAJ 67<br />

FeO(t) 94.73 94.66 82.97 89.82 89.94 93.11 94.94<br />

TiO 2<br />

4.38 4.43 13.73 9.24 8.75 6.36 4.59<br />

V 2<br />

O 5<br />

* 0.61 0.58 2.14 0.67 0.90 0.30 0.07<br />

MnO 0.29 0.34 1.17 0.38 0.41 0.24 0.40<br />

FeO** 60.95 60.91 53.38 57.80 57.87 59.91 61.09<br />

Fe 2<br />

O 3<br />

** 37.53 37.50 32.87 35.59 35.63 36.89 37.62<br />

Trace elements (ppm)<br />

Specimen no. SAJ 75 SAJ 72 SAJ 77 SAJ 70 SAJ 61 SAJ 65 SAJ 67<br />

Location <strong>of</strong> samples<br />

Margin Core Margin<br />

in the ore body<br />

Pd 35 0 18 19 0 12 11<br />

Ag 47 96 0 68 99 0 22<br />

Mo 0 0 9 48 9 0 0<br />

Nb 12 0 712 1101 838 12 68<br />

Zr 381 337 - 4125 4542 423 362<br />

Bi 0 0 0 125 164 0 0<br />

Au 0 0 18 0 0 25 0<br />

Pt 36 0 27 0 0 59 0<br />

As 36 96 36 29 58 0 34<br />

W 60 217 91 164 0 0 137<br />

Zn 570 482 1161 561 769 373 713<br />

Cu 617 361 244 164 239 629 271<br />

Ni 238 169 100 68 103 194 -<br />

Co 1119 1614 264 - 922 1048 1765<br />

Cr 216 - 173 1546 532 86 485<br />

V 3420 3252 11989 3736 5056 1675 375<br />

*V 2<br />

O 5<br />

recalculated from V content in ppm; ** FeO/Fe 2<br />

O 3<br />

recalculated values<br />

JOUR.GEOL.SOC.INDIA, VOL.76,JULY2010


100<br />

VANADIUM BEARING TITANIFEROUS MAGNETITE ORE BODIES OF GANJANG, NE INDIA 29<br />

93°19´<br />

26°10´50´´<br />

N<br />

93°21´30´´<br />

93°19´<br />

26°10´50´´<br />

N<br />

381<br />

337<br />

194<br />

194<br />

4125<br />

423<br />

238<br />

169<br />

103<br />

362<br />

103<br />

169<br />

238<br />

4542<br />

4125<br />

100<br />

381<br />

337<br />

423<br />

423<br />

337<br />

362<br />

68<br />

103<br />

362<br />

381<br />

INDEX<br />

238<br />

169<br />

194<br />

INDEX<br />

26°09´30´´<br />

(a)<br />

<strong>Ganjang</strong><br />

<strong>Vanadium</strong> bearing Titani-<br />

-ferous <strong>Magnetite</strong> ore<br />

bodies<br />

Syenite<br />

26°09´30´´<br />

(b)<br />

<strong>Ganjang</strong><br />

<strong>Vanadium</strong> bearing Tiatani-<br />

-ferous ore bodies<br />

Syenite<br />

26°10´50´´<br />

93°19´ 93°21´30´´<br />

N<br />

93°19´<br />

26°10´50´´<br />

N<br />

325<br />

3420<br />

325<br />

3252<br />

3252<br />

5056<br />

1675<br />

3736<br />

5056<br />

3736<br />

11<br />

11989<br />

264<br />

5056<br />

922<br />

1675<br />

3420<br />

1614<br />

1765<br />

1048<br />

1119<br />

INDEX<br />

3736<br />

3420<br />

3252<br />

1675<br />

325<br />

INDEX<br />

26°09´30´´<br />

(c)<br />

<strong>Ganjang</strong><br />

<strong>Vanadium</strong> bearing Titani-<br />

-ferous <strong>Magnetite</strong> ore<br />

bodies<br />

Syenite<br />

26°09´30´´<br />

(d)<br />

<strong>Ganjang</strong><br />

<strong>Vanadium</strong> bearing Titani-<br />

-ferous <strong>Magnetite</strong> ore<br />

bodies<br />

Syenite<br />

Fig.5. Contour maps showing (a) variation <strong>of</strong> Zr concentration in <strong>Vanadium</strong> bearing <strong>Titaniferous</strong> <strong>Magnetite</strong> ore body (from <strong>Ganjang</strong>).<br />

Bolder dotted line represents the margin <strong>of</strong> the investigated body. Figs.5 (b), (c) and (d) denotes contour-patterns for Ni, Co and<br />

V respectively in the ore body.<br />

JOUR.GEOL.SOC.INDIA, VOL.76,JULY2010


30 ABHISHEK SAHA AND OTHERS<br />

feature <strong>of</strong> progressive enhancement <strong>of</strong> Zr from margin to<br />

core has been nicely depicted in Fig.5a. This behaviour<br />

clearly suggests that Zr gets enriched from margin to core<br />

<strong>of</strong> the <strong>Vanadium</strong> bearing titaniferous magnetite ore body<br />

concomitant to the advent <strong>of</strong> differentiation. Among the<br />

Mg, Fe and coherent heavy trace elements, the sequence <strong>of</strong><br />

entry into crystal lattice is as follows: Mg, Ni, Co, Fe 2+ on<br />

the basis <strong>of</strong> ionic charges, radii and electronegativity<br />

principles (Ringwood, 1955; Taylor, 1965). The Ni content<br />

<strong>of</strong> the <strong>Vanadium</strong> bearing titaniferous magnetite ore body is<br />

found to range from 68 ppm to 238 ppm against 110 ppm <strong>of</strong><br />

the world average <strong>of</strong> ultramafic rocks (Goles, 1967). Figure<br />

5b shows that Ni content <strong>of</strong> the <strong>Vanadium</strong> bearing<br />

titaniferous magnetite ore body gradually falls from 238 ppm<br />

(in the margin) to 68 ppm (in the core) again attesting to<br />

normal differentiation <strong>of</strong> the parent melt. Figure 5c shows<br />

that Co depicts systematic fall from 1765 ppm in the margin<br />

to 264 ppm in the core. The elemental variation pattern for<br />

cobalt is therefore found to be similar to that observed for<br />

nickel. Since Co proxies for Mg during magmatic<br />

fractionation (Mason, 1966, p.136), the fall <strong>of</strong> cobalt<br />

concentration from margin to core <strong>of</strong> the ore body suggests<br />

progressive magmatic differentiation. The V concentration<br />

in the vanadium bearing titaniferous magnetite ore body<br />

has been depicted in Fig.5d which clearly shows extreme<br />

vanadium enrichment (11989 ppm) towards the core part <strong>of</strong><br />

the ore body while in the marginal part vanadium content<br />

falls down to 325 ppm which again suggests normal magmatic<br />

differentiation trend. Logarithmic elemental concentration<br />

patterns <strong>of</strong> Zr, Ni, Co and V within the investigated ore<br />

body (margin-core-margin) have been shown in Fig.6 to<br />

depict the spatial variation <strong>of</strong> these elements.<br />

log <strong>of</strong> elemental concentration in ppm<br />

100000<br />

10000<br />

1000<br />

100<br />

10<br />

Ni<br />

V<br />

Co<br />

Zr<br />

Margin <strong>of</strong> the<br />

investigated body<br />

Core <strong>of</strong> the investigated body<br />

varying degrees <strong>of</strong> oxygen fugacity as documented by<br />

presence <strong>of</strong> carbonatite with variable proportions <strong>of</strong> apatite<br />

and opaque minerals. <strong>Vanadium</strong> bearing titaniferous<br />

magnetite ore bodies have been described from different<br />

parts <strong>of</strong> the Indian shield viz. Kumhardubi, Singhbhum<br />

(Banerjee, 1984), Nausahi, Orissa (Chakraborty et al. 1988),<br />

Masanikere, Shimoga, Karnataka (Govindaiah et al.1989) and<br />

Kurihundi, Sargur, Karnataka (Vidyashankar and Govindaiah,<br />

2009). In most <strong>of</strong> the cases, such ore bodies are related to<br />

primary magmatic crystallization involving cumulus,<br />

adcumulus and postcumulus mechanisms. Nevertheless,<br />

report on syenite-hosted <strong>Vanadium</strong> bearing titaniferous<br />

V<br />

Ni<br />

Co<br />

Zr<br />

Margin <strong>of</strong> the<br />

investigated body<br />

Fig.6. Logarithmic elemental concentrations for Ni, V, Co and Zr<br />

in the <strong>Ganjang</strong> ore body (margin – core – margin).<br />

FeO(t)<br />

FeO (t)<br />

DISCUSSION<br />

Alkaline-carbonatite magmatism and associated<br />

<strong>Vanadium</strong> bearing titaniferous magnetite mineralization can<br />

be attributed to a complex interplay <strong>of</strong> several tectonomagmatic<br />

processes (Gaspar and Wyllie, 1983; Piranjo, 2007;<br />

Reguir et al. 2008). The occurrence and geological<br />

relationships <strong>of</strong> <strong>Ganjang</strong> vanadium bearing titaniferous<br />

magnetite ores indicate that their genesis is intimately<br />

related to fractional crystallization processes that were<br />

responsible for the formation <strong>of</strong> their silicate host rocks as it<br />

has been documented from Bushveld Complex (Reynolds,<br />

1985). The elemental concentration patterns and overall<br />

chemical features suggest that the <strong>Ganjang</strong> <strong>Vanadium</strong>titanium-magnetite<br />

mineralization has resulted due to late<br />

stage segregations from a differentiating alkaline magma in<br />

a fluid enriched milieu controlled by metasomatism and<br />

TiO2 2<br />

MnO<br />

Fig.7. Plots <strong>of</strong> investigated samples (open square) from <strong>Ganjang</strong><br />

in FeO (t) -TiO 2<br />

-MnO triangular diagram. Shaded area<br />

demarcates field for vanadium bearing titaniferous magnetite<br />

ore body from Singbhum region, Eastern India (Banerjee,<br />

1984; Saha, 1994)<br />

JOUR.GEOL.SOC.INDIA, VOL.76,JULY2010


VANADIUM BEARING TITANIFEROUS MAGNETITE ORE BODIES OF GANJANG, NE INDIA 31<br />

Table 2. Electron probe analysis <strong>of</strong> magnetite (major), ilmenite<br />

(minor) phases <strong>of</strong> Kumhardubi ore, Singhbhum (after<br />

Banerjee, 1984)<br />

Sample no. 53 54 50<br />

Phase Mt Mt Il Mt Il<br />

MgO 0.24 0.4 0.19 0.41 0.86<br />

Al 2<br />

O 3<br />

2.62 3.75 1.63 1.6 1.43<br />

TiO 2<br />

5.76 10.26 25.72 12.85 28.48<br />

V 2<br />

O 5<br />

1.54 1.18 1.31 1.71 1.81<br />

MnO 0.007 0.12 0.12 0.13 0.11<br />

FeO(t) 90.21 80.85 67.85 80.13 63.7<br />

Total 100.38 96.56 96.82 96.83 96.39<br />

Mt: <strong>Magnetite</strong>, Il: Ilmenite<br />

magnetite ore body from Indian shield is rather rare. As<br />

FeO (t) ,TiO 2<br />

and MnO are dominant constituents <strong>of</strong> vanadium<br />

bearing titaniferous magnetite ore bodies <strong>of</strong> <strong>Ganjang</strong>, an<br />

attempt has been made to compare its chemistry with that <strong>of</strong><br />

vanadium bearing titaniferous magnetite ore body <strong>of</strong><br />

Kumhardubi, Singhbhum (Banerjee, 1984; Saha, 1994, pp.219-<br />

221) on compositional-basis (Table 2). The data plots for<br />

<strong>Ganjang</strong> clearly occupy the field demarcated by vanadium<br />

bearing titaniferous magnetite body <strong>of</strong> Singhbhum in FeO (t)<br />

- TiO 2<br />

– MnO diagram (Fig.7). The vanadium and titanium<br />

concentrations <strong>of</strong> the investigated magnetite ore body (V 2<br />

O 5<br />

:<br />

0.07-2.14 wt. % and TiO 2<br />

: 4.38-13.73 wt%) seem to be quite<br />

encouraging considering the economic prospects (see<br />

Mohanty et al. 1999; Devaraju et al. 2009) and hence, this<br />

ore body may be explored by suitable organizations at an<br />

early date.<br />

Acknowledgements: The authors thank Dr. M.<br />

Angamuthu (IAS), Mr. Pradip Singner and Mr. Har Singh<br />

Kro for providing ample administrative and logistic support<br />

for carrying out the present field investigation in the remote<br />

part <strong>of</strong> Karbi-Anglong. The authors are also thankful to Dr.<br />

Shyamal Sengupta for some stimulating discussion on<br />

geology <strong>of</strong> Samchampi-Samteran Complex. JR thanks the<br />

University Grants Commission, New Delhi for financial<br />

support in form <strong>of</strong> a major research project {Sanction No:<br />

34-51/2008(SR)}. The Head, Department <strong>of</strong> Geology,<br />

University <strong>of</strong> Calcutta and authorities <strong>of</strong> Aurum, S.R.P.L.,<br />

Lubumbashi, DRC provided necessary laboratory facilities.<br />

The authors gratefully acknowledge an anonymous reviewer<br />

for constructive comments and suggestions.<br />

References<br />

ACHARYA, A., RAY, S., CHAUDHURI, B.K., BASU, S.K., BHADURI, S.K.<br />

and SANYAL, A.K. (2006) Proterozoic Rock suites along South<br />

Purulia Shear Zone, Eastern India: evidence for rift-related<br />

settings. Jour. Geol. Soc. India, v.68,no.6,pp.1069-1087.<br />

BANERJEE, P.K. (1984) On some geochemical features <strong>of</strong> the<br />

vanadiferous magnetite deposits <strong>of</strong> Kumhardubi and Betjharan,<br />

Mayurbhanj district, Orissa. Chem. Geol., v.43, pp.257-269.<br />

CHAKRABORTY, K.L., ROY, J. and MAZUMDAR, T. (1988) Structures<br />

and textures <strong>of</strong> vanadium-bearing titaniferous magnetite ores<br />

and their interpretation. Jour. Geol. Soc. India, v.31, pp.305-<br />

313.<br />

COFFIN, M.F., PRINGLE, M.G., DUNCAN, R. A., GLADEZENKO, T.P.,<br />

STOREY, M., MILLAR, R.D. and GAHAGAN, L.A. (2002) Kerguelen<br />

hotspot magma output since 130 Ma. Jour. Petrol., v.43,<br />

pp.1121-1139.<br />

DEVARAJU, T.C., VILJOEN, R.P., SAWKAR, R.H. and SUDHAKARA, T.L.<br />

(2009) Mafic and Ultramafic Magmatism and Associated<br />

Mineralization in the Dharwar Craton, Southern India. Jour.<br />

Geol. Soc. India, v.73, pp.73-100.<br />

GASPAR, J.C. and WYLLIE, P.J. (1983) <strong>Magnetite</strong> in the carbonatite<br />

from the Jacupiranga Complex, Brazil. Amer. Mineral., v.68,<br />

pp.195-213.<br />

GOLES, G.G. (1967) Trace elements in Ultramafic rocks. In:<br />

P.J.Wyllie (Ed.), Ultramafic and related rocks. John Wiley and<br />

Sons. Inc., pp.352-362.<br />

GOVINDAIAH, S., PATHAN, A.M. and NAGANNA, C. (1989) Textural<br />

features <strong>of</strong> V-Ti magnetite deposits <strong>of</strong> area around Masanikere,<br />

Shimoga greenstone belt, India. Jour. Indian Acad. Geosci.,<br />

v.32, pp.1-14.<br />

HODA, S.Q., RAWAT, T.P.S., KRISHNAMURTHY, P. and DWIVEDY, K.K.<br />

(1997) Geology and the Economic Resources <strong>of</strong> the Samchampi<br />

Alkaline Carbonatite Complex, Mikir Hills, Assam, India.<br />

Explo. Res. At. Min., v.10, pp.79-86.<br />

KENT, R.W., PRINGLE, M.S., MULLER, R.D., SAUNDERS, A.W. and<br />

GHOSH, N.C. (2002) 40 Ar/ 39 Ar geochronology <strong>of</strong> the Rajmahal<br />

basalts, India, and their relationship to the Kerguelen Plateau.<br />

Jour. Petrol., v.43, pp.1141-1153.<br />

KRISHNAMURTHY, P., HODA, S.Q., SINHA, R.P., BANERJEE, D.C. and<br />

DWIVEDY, K.K. (2000) Economic aspects <strong>of</strong> carbonatites <strong>of</strong><br />

India. Jour. Asian Earth Sci., v.18, no.2, pp.229-235.<br />

KRISHNAMURTHY, P. (2007) Basalts and Carbonatites: Some<br />

Petrological Perspectives and Integrated Studies in the 21 st<br />

Century In: J. Ray and C. Bhattacharyya (Ed.), Igneous<br />

Petrology: 21 st century perspective. Allied Publ., New Delhi,<br />

pp.165-181.<br />

KUMAR, D., MAMALLAN, R., SARAVANAN, B., JAIN, S.K. and<br />

KRISHNAMURTHY, P. (1989) Petrology and geochemistry <strong>of</strong> the<br />

Samchampi alkaline carbonatite complex, Mikir hills, Assam,<br />

India. Explo. Res. for Atomic Minerals, v.2, pp.183-199.<br />

MASON, B. (1966) Principles <strong>of</strong> Geochemistry. John Wiley, New<br />

York, 136p.<br />

MASON, B. and MOORE, C.B. (1985) Principles <strong>of</strong> Geochemistry.<br />

Wiley Eastern, New Delhi, 350p.<br />

MOHANTY, J.K., KHAOASH, S., SINGH, S.K., SAHOO, P.K. and PAUL,<br />

JOUR.GEOL.SOC.INDIA, VOL.76,JULY2010


32 ABHISHEK SAHA AND OTHERS<br />

A.K. (1999) Characterisation and utilisation <strong>of</strong> vanadiumbearing<br />

titaniferous magnetite <strong>of</strong> Boula-Nausahi igneous<br />

complex, Orissa, India. Scan. Jour. Metal., v.28(6), pp.254-259.<br />

NAG, S., SENGUPTA, S. K., GAUR, R. K. and ABSAR, A. (1999) Alkaline<br />

rocks <strong>of</strong> Samchampi-Samteran, District Karbi Anglong, Assam,<br />

India. Proc. Indian Acad. Sci. (Earth Planet. Sci.), v.108, pp.33-<br />

48.<br />

PIRANJO, F. (2007) Mantle plumes, associated intraplate tectonomagmatic<br />

process and ore systems. Episodes, v.30(1), pp.6-19.<br />

REGUIR, E.P., CHAKHMOURADIAN, A.R., HALDEN, N.M. and YANG, P.<br />

(2008) Early Magmatic and Reaction-Induced Trends in<br />

<strong>Magnetite</strong> from the Carbonatites <strong>of</strong> Keriwasi, Tanzania.<br />

Canadian Mineral., v.46,pp.879-900.<br />

REYNOLDS, I.M. (1985) The nature and origin <strong>of</strong> titaniferous<br />

magnetite-rich layers in the upper zone <strong>of</strong> the Bushveld<br />

Complex; a review and synthesis. Econ. Geol., v.80, no.4,<br />

pp.1089-1108.<br />

RINGWOOD, A.E. (1955) The principles governing trace element<br />

distribution during magmatic crystallisation. Pt. I. Influence <strong>of</strong><br />

electronegativity . Geochem. Cosmochem. Acta, v.7(3-4),<br />

pp.189-202.<br />

SAHA, A.K. (1994) Crustal Evolution <strong>of</strong> Singhbhum-North Orissa,<br />

Eastern India. Mem. Geol. Soc. India, no.27, 341p.<br />

SRIVASTAVA, R.K. and SINHA, A.K. (2004) Geochemistry <strong>of</strong> Early<br />

Cretaceous Alkaline Ultramafic-Mafic complex from Jasra,<br />

Karbi Anglong, Shillong Plateau, Northeastern India. Gondwana<br />

Res., v.7, no.2, pp.549-561.<br />

SRIVASTAVA, R.K. and SINHA, A.K. (2007) Petrogenesis <strong>of</strong> the Early<br />

Cretaceous Ultramafic–Mafic-Alkaline-Carbonatite Igneous<br />

complexes from the Shillong Plateau, NE India In: J. Ray and<br />

C. Bhattacharyya (Ed.), Igneous Petrology: 21 st century<br />

perspective. Allied Publ., New Delhi, pp.143-164.<br />

TAYLOR, S.R. (1965) The application <strong>of</strong> trace element data to<br />

problems in petrology In: L.H.Arhens (Ed.), Physics and<br />

Chemistry <strong>of</strong> the Earth. Pergamon Press., v.6, pp.133-213.<br />

VIDYASHANKAR, H.V. and GOVINDAIAH, S. (2009) <strong>Ore</strong> Petrology <strong>of</strong><br />

the V-Ti <strong>Magnetite</strong> (Lodestone) Layers <strong>of</strong> the Kurihundi Area<br />

<strong>of</strong> Sargur Schist Belt, Dharwar Craton. Jour. Geol. Soc. India,<br />

v.74, pp.58-68.<br />

WOOLLEY, A.R. (1989) The spatial and temporal distribution <strong>of</strong><br />

carbonatite In: K. Bell (Ed.), Carbonatite genesis and evolution.<br />

Unwin Hyman, London, pp.15-37.<br />

(Received: 20 July 2009; Revised form accepted: 22 December 2009)<br />

JOUR.GEOL.SOC.INDIA, VOL.76,JULY2010

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!