16.11.2013 Views

Elements of Thermodynamics

Elements of Thermodynamics

Elements of Thermodynamics

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>Elements</strong> <strong>of</strong> <strong>Thermodynamics</strong><br />

Indispensable link between<br />

seismology and mineral physics


Physical quantities are needed to describe the<br />

state <strong>of</strong> a system:<br />

• Scalars: Volume, pressure, number <strong>of</strong> moles<br />

• Vectors: Electric or magnetic field<br />

• Tensors: Stress, strain


We distinguish extensive (size dependent) and<br />

intensive (size independent) quantities.<br />

Conjugate quantities: product has the dimension<br />

<strong>of</strong> energy or energy per unit volume.<br />

intensive<br />

Temperature T<br />

extensive<br />

Entropy S<br />

Pressure P<br />

Volume V<br />

Chemical potential µ Number <strong>of</strong> moles n<br />

Electrical field E<br />

Stress σ <br />

Displacement D<br />

Strain ε


By analogy with the expression for mechanical<br />

work as the product <strong>of</strong> force times displacement,<br />

Intensive quantities à generalized forces<br />

Extensive quantities à generalized displacements


Consider a system <strong>of</strong> n extensive quantities e k and<br />

n intensive quantities i k , the differential increase<br />

in energy for a variation <strong>of</strong> e k is:<br />

dE = Σ k=1,n i k de k<br />

The intensive quantities can thus be defined as the<br />

partial derivative <strong>of</strong> the energy with respect their<br />

conjugate quantities:<br />

i k = ∂E/ ∂ e k


To define the extensive quantities we have to<br />

introduce the Gibbs potential:<br />

G = E - Σ i k e k<br />

dG = - Σ e k di k<br />

The intensive quantities can thus be defined as the<br />

partial derivative <strong>of</strong> the Gibbs potential with<br />

respect their conjugate quantities:<br />

e k = - ∂ G/ ∂ i k


Conjugate quantities are related by constitutive<br />

relations that describe the response <strong>of</strong> the system<br />

in terms <strong>of</strong> one quantity, when its conjugate is<br />

varied. The relation is usually taken to be linear<br />

(approximation) and the coefficient is a material<br />

constant. An example are the elastic moduli in<br />

Hooke’s law.<br />

σ ij = C ijkl ε kl (C ijkl are called stiffnesses)<br />

ε ij = c ijkl σ kl (c ijkl are called compliances)<br />

!!! In general C ijkl ≠ 1/c ijkl


The linear approximation only holds for small<br />

variations around a reference state. In the Earth,<br />

this is a problem for the relation between pressure<br />

and volume at increasing depths. Very high<br />

pressures create finite strains and the linear<br />

relation (Hooke’s law) is not valid over such a<br />

wide pressure range. We will have to introduce<br />

more sophisticated equations <strong>of</strong> state.


Thermodynamic potentials<br />

The energy <strong>of</strong> a thermodynamic system is a state<br />

function. The variation <strong>of</strong> such a function depends<br />

only on the initial and final state.<br />

P<br />

B<br />

A<br />

T


1 st law<br />

dU = dQ + dW<br />

= TdS - PdV<br />

Internal energy = heat + mechanical work<br />

Internal energy is the most physically<br />

understandable expressed with the variables<br />

entropy and volume. They are not the most<br />

convenient in general à other potentials H, F and<br />

G by Legendre transform


Energy can be expressed using various potentials<br />

according to which conjugate quantities are<br />

chosen to describe the system.<br />

Internal energy<br />

Enthalpie<br />

Helmholtz free energy<br />

Gibbs free energy<br />

U<br />

H=U+PV<br />

F=U-TS<br />

G=H-TS


In differential form<br />

Internal energy (1 st law) dU = TdS - PdV<br />

Enthalpie<br />

Helmholtz free energy<br />

Gibbs free energy<br />

dH= TdS + VdP<br />

dF = -SdT - PdV<br />

dG = -SdT +VdP


These expressions allow us to define various<br />

extrinsic and intrinsic quantities.<br />

T<br />

S<br />

P<br />

V<br />

=<br />

=<br />

⎛⎛ ∂U<br />

⎞⎞<br />

⎜⎜ ⎟⎟<br />

⎝⎝ ∂S<br />

⎠⎠V<br />

⎛⎛ ∂F<br />

⎞⎞<br />

⎜⎜ ⎟⎟<br />

⎝⎝ ∂T<br />

⎠⎠V<br />

⎛⎛ ∂U<br />

⎞⎞<br />

⎜⎜ ⎟⎟<br />

⎝⎝ ∂V<br />

⎠⎠<br />

⎛⎛ ∂H<br />

⎞⎞<br />

⎜⎜ ⎟⎟<br />

⎝⎝ ∂P<br />

⎠⎠S<br />

= −<br />

= −<br />

=<br />

S<br />

=<br />

⎛⎛<br />

⎜⎜<br />

⎝⎝<br />

= −<br />

= −<br />

⎛⎛<br />

⎜⎜<br />

⎝⎝<br />

∂H<br />

⎞⎞<br />

⎟⎟<br />

∂S<br />

⎠⎠P<br />

⎛⎛ ∂G<br />

⎞⎞<br />

⎜⎜ ⎟⎟<br />

⎝⎝ ∂T<br />

⎠⎠<br />

⎛⎛ ∂F<br />

⎞⎞<br />

⎜⎜ ⎟⎟<br />

⎝⎝ ∂V<br />

⎠⎠<br />

∂G<br />

⎞⎞<br />

⎟⎟<br />

∂P<br />

⎠⎠T<br />

P<br />

T


Maxwell’s relations<br />

Potentials are functions <strong>of</strong> state and their<br />

differentials are total and exact. Thus, the<br />

second derivative <strong>of</strong> the potentials with<br />

respect to the independent variables does not<br />

depend on the order <strong>of</strong> derivation.<br />

if f ( x,<br />

y)<br />

and<br />

then<br />

df<br />

∂<br />

2<br />

=<br />

f<br />

∂x∂y<br />

∂f<br />

∂x<br />

=<br />

dx<br />

∂<br />

2<br />

f<br />

∂y∂x<br />

∂f<br />

+ dy<br />

∂y


dU = TdS − PdV<br />

#<br />

dU = %<br />

∂U<br />

$ ∂S<br />

& #<br />

(dS + ∂U &<br />

%<br />

' $ ∂V<br />

(dV<br />

'<br />

∂ 2 U<br />

∂S∂V = ∂2 U<br />

∂V∂S<br />

# ∂T<br />

%<br />

$ ∂V<br />

&<br />

(<br />

'<br />

S<br />

#<br />

= − ∂P &<br />

% (<br />

$ ∂S '<br />

V<br />

Similar relations using the other potentials. Try it!!!


Maxwell’s relations are for conjugate quantities.<br />

Relations between non-conjugate quantities are<br />

possible<br />

1 = 0<br />

⎟⎟<br />

⎟⎟<br />

⎟⎟<br />

⎠⎠<br />

⎞⎞<br />

⎜⎜<br />

⎜⎜<br />

⎜⎜<br />

⎝⎝<br />

⎛⎛<br />

+<br />

−<br />

⎟⎟<br />

⎟⎟<br />

⎟⎟<br />

⎠⎠<br />

⎞⎞<br />

⎜⎜<br />

⎜⎜<br />

⎜⎜<br />

⎝⎝<br />

⎛⎛<br />

−<br />

+<br />

⎟⎟<br />

⎟⎟<br />

⎟⎟<br />

⎠⎠<br />

⎞⎞<br />

⎜⎜<br />

⎜⎜<br />

⎜⎜<br />

⎝⎝<br />

⎛⎛<br />

+<br />

=<br />

+<br />

=<br />

+<br />

=<br />

⎟⎟<br />

⎠⎠<br />

⎞⎞<br />

⎜⎜<br />

⎝⎝<br />

⎛⎛<br />

∂<br />

∂<br />

⎟⎟<br />

⎠⎠<br />

⎞⎞<br />

⎜⎜<br />

⎝⎝<br />

⎛⎛<br />

∂<br />

∂<br />

⎟⎟<br />

⎠⎠<br />

⎞⎞<br />

⎜⎜<br />

⎝⎝<br />

⎛⎛<br />

∂<br />

∂<br />

⎟⎟<br />

⎠⎠<br />

⎞⎞<br />

⎜⎜<br />

⎝⎝<br />

⎛⎛<br />

∂<br />

∂<br />

⎟⎟<br />

⎠⎠<br />

⎞⎞<br />

⎜⎜<br />

⎝⎝<br />

⎛⎛<br />

∂<br />

∂<br />

⎟⎟<br />

⎠⎠<br />

⎞⎞<br />

⎜⎜<br />

⎝⎝<br />

⎛⎛<br />

∂<br />

∂<br />

⎟⎟<br />

⎠⎠<br />

⎞⎞<br />

⎜⎜<br />

⎝⎝<br />

⎛⎛<br />

∂<br />

∂<br />

⎟⎟<br />

⎠⎠<br />

⎞⎞<br />

⎜⎜<br />

⎝⎝<br />

⎛⎛<br />

∂<br />

∂<br />

⎟⎟<br />

⎠⎠<br />

⎞⎞<br />

⎜⎜<br />

⎝⎝<br />

⎛⎛<br />

∂<br />

∂<br />

⎟⎟<br />

⎠⎠<br />

⎞⎞<br />

⎜⎜<br />

⎝⎝<br />

⎛⎛<br />

∂<br />

∂<br />

⎟⎟<br />

⎠⎠<br />

⎞⎞<br />

⎜⎜<br />

⎝⎝<br />

⎛⎛<br />

∂<br />

∂<br />

⎟⎟<br />

⎠⎠<br />

⎞⎞<br />

⎜⎜<br />

⎝⎝<br />

⎛⎛<br />

∂<br />

∂<br />

⎟⎟<br />

⎠⎠<br />

⎞⎞<br />

⎜⎜<br />

⎝⎝<br />

⎛⎛<br />

∂<br />

∂<br />

Z<br />

X<br />

Z<br />

Y<br />

Y<br />

X<br />

X<br />

Y<br />

Y<br />

X<br />

Z<br />

X<br />

Z<br />

Y<br />

X<br />

Y<br />

Y<br />

X<br />

Z<br />

Y<br />

X<br />

Y<br />

Z<br />

X<br />

Y<br />

X<br />

Y<br />

X<br />

Z<br />

Z<br />

Y<br />

X<br />

Z<br />

Z<br />

X<br />

Z<br />

Y<br />

Z<br />

Z<br />

dZ<br />

dX<br />

dZ<br />

dZ<br />

dX<br />

dX<br />

dZ<br />

dX<br />

dY<br />

dZ<br />

dY<br />

dX


⎟⎟<br />

⎠⎠<br />

⎞⎞<br />

⎜⎜<br />

⎝⎝<br />

⎛⎛<br />

∂<br />

∂<br />

⎟⎟<br />

⎠⎠<br />

⎞⎞<br />

⎜⎜<br />

⎝⎝<br />

⎛⎛<br />

∂<br />

∂<br />

=−<br />

⎟⎟<br />

⎠⎠<br />

⎞⎞<br />

⎜⎜<br />

⎝⎝<br />

⎛⎛<br />

∂<br />

∂<br />

⎟⎟<br />

⎠⎠<br />

⎞⎞<br />

⎜⎜<br />

⎝⎝<br />

⎛⎛<br />

∂<br />

∂<br />

⎟⎟<br />

⎠⎠<br />

⎞⎞<br />

⎜⎜<br />

⎝⎝<br />

⎛⎛<br />

∂<br />

∂<br />

⎟⎟<br />

⎠⎠<br />

⎞⎞<br />

⎜⎜<br />

⎝⎝<br />

⎛⎛<br />

∂<br />

∂<br />

⎟⎟<br />

⎠⎠<br />

⎞⎞<br />

⎜⎜<br />

⎝⎝<br />

⎛⎛<br />

∂<br />

∂<br />

⎟⎟<br />

⎠⎠<br />

⎞⎞<br />

⎜⎜<br />

⎝⎝<br />

⎛⎛<br />

∂<br />

∂<br />

= −<br />

=<br />

T<br />

P<br />

P<br />

V<br />

T<br />

V<br />

X<br />

Z<br />

Z<br />

Y<br />

Y<br />

X<br />

X<br />

Y<br />

Y<br />

X<br />

V<br />

T<br />

Y<br />

X<br />

Z<br />

Z<br />

P<br />

Z<br />

1<br />

1<br />

useful<br />

relations<br />

example<br />

If f(P,V,T)=0 then


Dealing with heterogeneous<br />

rocks


In general, the heterogeneity depends on the scale


If at the small scale, the heterogeneity is random,<br />

it is useful to define an effective homogeneous<br />

medium over a large scale<br />

1<br />

u = ∫ u(<br />

x,<br />

y,<br />

z)<br />

dxdydz<br />

V<br />

V


In general, <strong>of</strong> course, rocks are not statistically<br />

homogeneous. There is some kind <strong>of</strong><br />

organization. In the classical approximation this<br />

is usually ignored, however.<br />

In the direct calculation, the evaluation <strong>of</strong><br />

1<br />

u = ∫ u(<br />

x,<br />

y,<br />

z)<br />

dxdydz requires the knowledge <strong>of</strong> the<br />

V<br />

V<br />

exact quantities and geometry <strong>of</strong> all<br />

constituents. This is <strong>of</strong>ten not known, but we<br />

can calculate reliable bounds.


(a) Deformation is perpendicular to layers.<br />

We define M a =(σ/ε) a<br />

We have σ=σ 1 =σ 2 homogeneous stress (Reuss)<br />

And ε=ε 1 V 1 +ε 2 V 2<br />

Thus 1/M a =V 1 /M 1 +V 2 /M 2


(b) Deformation is parallel to layers.<br />

We define M b =(σ/ε) b<br />

We have σ=σ 1 V 1 +σ 2 V 2<br />

And ε=ε 1 =ε 2 homogeneous strain (Voigt)<br />

Thus M b =V 1 M 1 +V 2 M 2


The effective medium constant has the property<br />

M a < M < M b<br />

Hill proposed to average M a and M b which is<br />

known as the Voigt-Reuss-Hill average<br />

M=(M a +M b )/2<br />

In general, 1/M a = Σ V i /M i and M b = Σ V i M i<br />

Tighter bounds are possible, but require the<br />

knowledge <strong>of</strong> the geometry (Hashin-Shtrikman)

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!