16.11.2013 Views

Elements of Thermodynamics

Elements of Thermodynamics

Elements of Thermodynamics

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<strong>Elements</strong> <strong>of</strong> <strong>Thermodynamics</strong><br />

Indispensable link between<br />

seismology and mineral physics


Physical quantities are needed to describe the<br />

state <strong>of</strong> a system:<br />

• Scalars: Volume, pressure, number <strong>of</strong> moles<br />

• Vectors: Electric or magnetic field<br />

• Tensors: Stress, strain


We distinguish extensive (size dependent) and<br />

intensive (size independent) quantities.<br />

Conjugate quantities: product has the dimension<br />

<strong>of</strong> energy or energy per unit volume.<br />

intensive<br />

Temperature T<br />

extensive<br />

Entropy S<br />

Pressure P<br />

Volume V<br />

Chemical potential µ Number <strong>of</strong> moles n<br />

Electrical field E<br />

Stress σ <br />

Displacement D<br />

Strain ε


By analogy with the expression for mechanical<br />

work as the product <strong>of</strong> force times displacement,<br />

Intensive quantities à generalized forces<br />

Extensive quantities à generalized displacements


Consider a system <strong>of</strong> n extensive quantities e k and<br />

n intensive quantities i k , the differential increase<br />

in energy for a variation <strong>of</strong> e k is:<br />

dE = Σ k=1,n i k de k<br />

The intensive quantities can thus be defined as the<br />

partial derivative <strong>of</strong> the energy with respect their<br />

conjugate quantities:<br />

i k = ∂E/ ∂ e k


To define the extensive quantities we have to<br />

introduce the Gibbs potential:<br />

G = E - Σ i k e k<br />

dG = - Σ e k di k<br />

The intensive quantities can thus be defined as the<br />

partial derivative <strong>of</strong> the Gibbs potential with<br />

respect their conjugate quantities:<br />

e k = - ∂ G/ ∂ i k


Conjugate quantities are related by constitutive<br />

relations that describe the response <strong>of</strong> the system<br />

in terms <strong>of</strong> one quantity, when its conjugate is<br />

varied. The relation is usually taken to be linear<br />

(approximation) and the coefficient is a material<br />

constant. An example are the elastic moduli in<br />

Hooke’s law.<br />

σ ij = C ijkl ε kl (C ijkl are called stiffnesses)<br />

ε ij = c ijkl σ kl (c ijkl are called compliances)<br />

!!! In general C ijkl ≠ 1/c ijkl


The linear approximation only holds for small<br />

variations around a reference state. In the Earth,<br />

this is a problem for the relation between pressure<br />

and volume at increasing depths. Very high<br />

pressures create finite strains and the linear<br />

relation (Hooke’s law) is not valid over such a<br />

wide pressure range. We will have to introduce<br />

more sophisticated equations <strong>of</strong> state.


Thermodynamic potentials<br />

The energy <strong>of</strong> a thermodynamic system is a state<br />

function. The variation <strong>of</strong> such a function depends<br />

only on the initial and final state.<br />

P<br />

B<br />

A<br />

T


1 st law<br />

dU = dQ + dW<br />

= TdS - PdV<br />

Internal energy = heat + mechanical work<br />

Internal energy is the most physically<br />

understandable expressed with the variables<br />

entropy and volume. They are not the most<br />

convenient in general à other potentials H, F and<br />

G by Legendre transform


Energy can be expressed using various potentials<br />

according to which conjugate quantities are<br />

chosen to describe the system.<br />

Internal energy<br />

Enthalpie<br />

Helmholtz free energy<br />

Gibbs free energy<br />

U<br />

H=U+PV<br />

F=U-TS<br />

G=H-TS


In differential form<br />

Internal energy (1 st law) dU = TdS - PdV<br />

Enthalpie<br />

Helmholtz free energy<br />

Gibbs free energy<br />

dH= TdS + VdP<br />

dF = -SdT - PdV<br />

dG = -SdT +VdP


These expressions allow us to define various<br />

extrinsic and intrinsic quantities.<br />

T<br />

S<br />

P<br />

V<br />

=<br />

=<br />

⎛⎛ ∂U<br />

⎞⎞<br />

⎜⎜ ⎟⎟<br />

⎝⎝ ∂S<br />

⎠⎠V<br />

⎛⎛ ∂F<br />

⎞⎞<br />

⎜⎜ ⎟⎟<br />

⎝⎝ ∂T<br />

⎠⎠V<br />

⎛⎛ ∂U<br />

⎞⎞<br />

⎜⎜ ⎟⎟<br />

⎝⎝ ∂V<br />

⎠⎠<br />

⎛⎛ ∂H<br />

⎞⎞<br />

⎜⎜ ⎟⎟<br />

⎝⎝ ∂P<br />

⎠⎠S<br />

= −<br />

= −<br />

=<br />

S<br />

=<br />

⎛⎛<br />

⎜⎜<br />

⎝⎝<br />

= −<br />

= −<br />

⎛⎛<br />

⎜⎜<br />

⎝⎝<br />

∂H<br />

⎞⎞<br />

⎟⎟<br />

∂S<br />

⎠⎠P<br />

⎛⎛ ∂G<br />

⎞⎞<br />

⎜⎜ ⎟⎟<br />

⎝⎝ ∂T<br />

⎠⎠<br />

⎛⎛ ∂F<br />

⎞⎞<br />

⎜⎜ ⎟⎟<br />

⎝⎝ ∂V<br />

⎠⎠<br />

∂G<br />

⎞⎞<br />

⎟⎟<br />

∂P<br />

⎠⎠T<br />

P<br />

T


Maxwell’s relations<br />

Potentials are functions <strong>of</strong> state and their<br />

differentials are total and exact. Thus, the<br />

second derivative <strong>of</strong> the potentials with<br />

respect to the independent variables does not<br />

depend on the order <strong>of</strong> derivation.<br />

if f ( x,<br />

y)<br />

and<br />

then<br />

df<br />

∂<br />

2<br />

=<br />

f<br />

∂x∂y<br />

∂f<br />

∂x<br />

=<br />

dx<br />

∂<br />

2<br />

f<br />

∂y∂x<br />

∂f<br />

+ dy<br />

∂y


dU = TdS − PdV<br />

#<br />

dU = %<br />

∂U<br />

$ ∂S<br />

& #<br />

(dS + ∂U &<br />

%<br />

' $ ∂V<br />

(dV<br />

'<br />

∂ 2 U<br />

∂S∂V = ∂2 U<br />

∂V∂S<br />

# ∂T<br />

%<br />

$ ∂V<br />

&<br />

(<br />

'<br />

S<br />

#<br />

= − ∂P &<br />

% (<br />

$ ∂S '<br />

V<br />

Similar relations using the other potentials. Try it!!!


Maxwell’s relations are for conjugate quantities.<br />

Relations between non-conjugate quantities are<br />

possible<br />

1 = 0<br />

⎟⎟<br />

⎟⎟<br />

⎟⎟<br />

⎠⎠<br />

⎞⎞<br />

⎜⎜<br />

⎜⎜<br />

⎜⎜<br />

⎝⎝<br />

⎛⎛<br />

+<br />

−<br />

⎟⎟<br />

⎟⎟<br />

⎟⎟<br />

⎠⎠<br />

⎞⎞<br />

⎜⎜<br />

⎜⎜<br />

⎜⎜<br />

⎝⎝<br />

⎛⎛<br />

−<br />

+<br />

⎟⎟<br />

⎟⎟<br />

⎟⎟<br />

⎠⎠<br />

⎞⎞<br />

⎜⎜<br />

⎜⎜<br />

⎜⎜<br />

⎝⎝<br />

⎛⎛<br />

+<br />

=<br />

+<br />

=<br />

+<br />

=<br />

⎟⎟<br />

⎠⎠<br />

⎞⎞<br />

⎜⎜<br />

⎝⎝<br />

⎛⎛<br />

∂<br />

∂<br />

⎟⎟<br />

⎠⎠<br />

⎞⎞<br />

⎜⎜<br />

⎝⎝<br />

⎛⎛<br />

∂<br />

∂<br />

⎟⎟<br />

⎠⎠<br />

⎞⎞<br />

⎜⎜<br />

⎝⎝<br />

⎛⎛<br />

∂<br />

∂<br />

⎟⎟<br />

⎠⎠<br />

⎞⎞<br />

⎜⎜<br />

⎝⎝<br />

⎛⎛<br />

∂<br />

∂<br />

⎟⎟<br />

⎠⎠<br />

⎞⎞<br />

⎜⎜<br />

⎝⎝<br />

⎛⎛<br />

∂<br />

∂<br />

⎟⎟<br />

⎠⎠<br />

⎞⎞<br />

⎜⎜<br />

⎝⎝<br />

⎛⎛<br />

∂<br />

∂<br />

⎟⎟<br />

⎠⎠<br />

⎞⎞<br />

⎜⎜<br />

⎝⎝<br />

⎛⎛<br />

∂<br />

∂<br />

⎟⎟<br />

⎠⎠<br />

⎞⎞<br />

⎜⎜<br />

⎝⎝<br />

⎛⎛<br />

∂<br />

∂<br />

⎟⎟<br />

⎠⎠<br />

⎞⎞<br />

⎜⎜<br />

⎝⎝<br />

⎛⎛<br />

∂<br />

∂<br />

⎟⎟<br />

⎠⎠<br />

⎞⎞<br />

⎜⎜<br />

⎝⎝<br />

⎛⎛<br />

∂<br />

∂<br />

⎟⎟<br />

⎠⎠<br />

⎞⎞<br />

⎜⎜<br />

⎝⎝<br />

⎛⎛<br />

∂<br />

∂<br />

⎟⎟<br />

⎠⎠<br />

⎞⎞<br />

⎜⎜<br />

⎝⎝<br />

⎛⎛<br />

∂<br />

∂<br />

⎟⎟<br />

⎠⎠<br />

⎞⎞<br />

⎜⎜<br />

⎝⎝<br />

⎛⎛<br />

∂<br />

∂<br />

Z<br />

X<br />

Z<br />

Y<br />

Y<br />

X<br />

X<br />

Y<br />

Y<br />

X<br />

Z<br />

X<br />

Z<br />

Y<br />

X<br />

Y<br />

Y<br />

X<br />

Z<br />

Y<br />

X<br />

Y<br />

Z<br />

X<br />

Y<br />

X<br />

Y<br />

X<br />

Z<br />

Z<br />

Y<br />

X<br />

Z<br />

Z<br />

X<br />

Z<br />

Y<br />

Z<br />

Z<br />

dZ<br />

dX<br />

dZ<br />

dZ<br />

dX<br />

dX<br />

dZ<br />

dX<br />

dY<br />

dZ<br />

dY<br />

dX


⎟⎟<br />

⎠⎠<br />

⎞⎞<br />

⎜⎜<br />

⎝⎝<br />

⎛⎛<br />

∂<br />

∂<br />

⎟⎟<br />

⎠⎠<br />

⎞⎞<br />

⎜⎜<br />

⎝⎝<br />

⎛⎛<br />

∂<br />

∂<br />

=−<br />

⎟⎟<br />

⎠⎠<br />

⎞⎞<br />

⎜⎜<br />

⎝⎝<br />

⎛⎛<br />

∂<br />

∂<br />

⎟⎟<br />

⎠⎠<br />

⎞⎞<br />

⎜⎜<br />

⎝⎝<br />

⎛⎛<br />

∂<br />

∂<br />

⎟⎟<br />

⎠⎠<br />

⎞⎞<br />

⎜⎜<br />

⎝⎝<br />

⎛⎛<br />

∂<br />

∂<br />

⎟⎟<br />

⎠⎠<br />

⎞⎞<br />

⎜⎜<br />

⎝⎝<br />

⎛⎛<br />

∂<br />

∂<br />

⎟⎟<br />

⎠⎠<br />

⎞⎞<br />

⎜⎜<br />

⎝⎝<br />

⎛⎛<br />

∂<br />

∂<br />

⎟⎟<br />

⎠⎠<br />

⎞⎞<br />

⎜⎜<br />

⎝⎝<br />

⎛⎛<br />

∂<br />

∂<br />

= −<br />

=<br />

T<br />

P<br />

P<br />

V<br />

T<br />

V<br />

X<br />

Z<br />

Z<br />

Y<br />

Y<br />

X<br />

X<br />

Y<br />

Y<br />

X<br />

V<br />

T<br />

Y<br />

X<br />

Z<br />

Z<br />

P<br />

Z<br />

1<br />

1<br />

useful<br />

relations<br />

example<br />

If f(P,V,T)=0 then


Dealing with heterogeneous<br />

rocks


In general, the heterogeneity depends on the scale


If at the small scale, the heterogeneity is random,<br />

it is useful to define an effective homogeneous<br />

medium over a large scale<br />

1<br />

u = ∫ u(<br />

x,<br />

y,<br />

z)<br />

dxdydz<br />

V<br />

V


In general, <strong>of</strong> course, rocks are not statistically<br />

homogeneous. There is some kind <strong>of</strong><br />

organization. In the classical approximation this<br />

is usually ignored, however.<br />

In the direct calculation, the evaluation <strong>of</strong><br />

1<br />

u = ∫ u(<br />

x,<br />

y,<br />

z)<br />

dxdydz requires the knowledge <strong>of</strong> the<br />

V<br />

V<br />

exact quantities and geometry <strong>of</strong> all<br />

constituents. This is <strong>of</strong>ten not known, but we<br />

can calculate reliable bounds.


(a) Deformation is perpendicular to layers.<br />

We define M a =(σ/ε) a<br />

We have σ=σ 1 =σ 2 homogeneous stress (Reuss)<br />

And ε=ε 1 V 1 +ε 2 V 2<br />

Thus 1/M a =V 1 /M 1 +V 2 /M 2


(b) Deformation is parallel to layers.<br />

We define M b =(σ/ε) b<br />

We have σ=σ 1 V 1 +σ 2 V 2<br />

And ε=ε 1 =ε 2 homogeneous strain (Voigt)<br />

Thus M b =V 1 M 1 +V 2 M 2


The effective medium constant has the property<br />

M a < M < M b<br />

Hill proposed to average M a and M b which is<br />

known as the Voigt-Reuss-Hill average<br />

M=(M a +M b )/2<br />

In general, 1/M a = Σ V i /M i and M b = Σ V i M i<br />

Tighter bounds are possible, but require the<br />

knowledge <strong>of</strong> the geometry (Hashin-Shtrikman)

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!