19.11.2013 Views

STACY Code and its Application to the HTR-Module and HTTR

STACY Code and its Application to the HTR-Module and HTTR

STACY Code and its Application to the HTR-Module and HTTR

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

meinschaft<br />

Mitglied der Helmholtz-Gem<br />

Development of an Integrated Fission Product Release<br />

<strong>and</strong> Transport <strong>Code</strong> for Spatially Resolved Full-Core<br />

Calculations of V/<strong>HTR</strong>s<br />

A. Xhonneux<br />

Forschungszentrum Jülich, Germany<br />

Technical Meeting on Re-evaluation of Maximum Operating Temperatures<br />

g p g p<br />

<strong>and</strong> Accident Conditions for <strong>HTR</strong> Fuel <strong>and</strong> Structural Materials<br />

IAEA Headquarters,Vienna, June 10-12 2013


Overview<br />

• Overview of Fission Product <strong>Code</strong>s at FZJ<br />

• Introduction <strong>to</strong> <strong>STACY</strong><br />

• Exemplary results for <strong>HTR</strong>-<strong>Module</strong><br />

• Exemplary results for <strong>HTTR</strong><br />

• Summary <strong>and</strong> outlook<br />

A. Xhonneux Technical Meeting on Re-evaluation of Maximum Operating Temperatures <strong>and</strong> Accident Conditions for<br />

2<br />

<strong>HTR</strong> Fuel <strong>and</strong> Structural Materials, Vienna,10-12 June 2013


Overview<br />

• Overview of Fission Product <strong>Code</strong>s at FZJ<br />

• Introduction <strong>to</strong> <strong>STACY</strong><br />

• Exemplary results for <strong>HTR</strong>-<strong>Module</strong><br />

• Exemplary results for <strong>HTTR</strong><br />

• Summary <strong>and</strong> outlook<br />

A. Xhonneux Technical Meeting on Re-evaluation of Maximum Operating Temperatures <strong>and</strong> Accident Conditions for<br />

3<br />

<strong>HTR</strong> Fuel <strong>and</strong> Structural Materials, Vienna,10-12 June 2013


Overview of Fission Product <strong>Code</strong>s at FZJ<br />

FP release rate from one FE<br />

(NOC <strong>and</strong> accident Conditions)<br />

•Fickean diffusion of FPs<br />

in defective <strong>and</strong> intact<br />

CPs / FEs<br />

•Recoil<br />

•SiC layer thinning<br />

Release from FEs <strong>and</strong><br />

transport under<br />

accident conditions<br />

•FP transport in core<br />

due <strong>to</strong> convection<br />

•Deposition on reflec<strong>to</strong>r<br />

surfaces<br />

Fuel Performance<br />

• CP damage fractions<br />

• SiC layer thinning<br />

due <strong>to</strong> <strong>the</strong>rmal<br />

decompostion<br />

o<br />

Deposition / penetration<br />

metallic surfaces<br />

(primary loop)<br />

• Some features have been implemented multiple times in <strong>the</strong> separate codes<br />

• Not complete <strong>to</strong> describe all phenomena under NOC <strong>and</strong> accident conditions<br />

<strong>STACY</strong>: Source Term Analysis l i <strong>Code</strong> d System<br />

A. Xhonneux Technical Meeting on Re-evaluation of Maximum Operating Temperatures <strong>and</strong> Accident Conditions for<br />

4<br />

<strong>HTR</strong> Fuel <strong>and</strong> Structural Materials, Vienna,10-12 June 2013


Former Approach for FP Release Calculation<br />

• FRESCO-II: Fission product release calculation for one or<br />

several representative fuel element(s)<br />

• Time averaged release rate of sphere is multiplied with <strong>the</strong><br />

<strong>to</strong>tal number of fuel elements <strong>to</strong> determine core release rate<br />

„x“ cor re passes<br />

‣ Conservative approach<br />

‣ No spatial distribution of fission product release<br />

‣ More detailed calculation method necessary<br />

(Fuel temperature [°C]<br />

<strong>HTR</strong>-<strong>Module</strong>, VSOP)<br />

A. Xhonneux Technical Meeting on Re-evaluation of Maximum Operating Temperatures <strong>and</strong> Accident Conditions for<br />

5<br />

<strong>HTR</strong> Fuel <strong>and</strong> Structural Materials, Vienna,10-12 June 2013


Overview<br />

• Overview of Fission Product <strong>Code</strong>s at FZJ<br />

• Introduction <strong>to</strong> <strong>STACY</strong><br />

• Exemplary results for <strong>HTR</strong>-<strong>Module</strong><br />

• Exemplary results for <strong>HTTR</strong><br />

• Summary <strong>and</strong> outlook<br />

A. Xhonneux Technical Meeting on Re-evaluation of Maximum Operating Temperatures <strong>and</strong> Accident Conditions for<br />

6<br />

<strong>HTR</strong> Fuel <strong>and</strong> Structural Materials, Vienna,10-12 June 2013


Main Principles of <strong>STACY</strong><br />

• Calculation of CP failure fractions <strong>and</strong> FP release rates for a large number<br />

of individual tracer pebbles<br />

‣ Spatially resolved fission product release rates<br />

‣ More precise (less conservative) calculation of <strong>to</strong>tal release rate<br />

• Usage of st<strong>and</strong>-alone codes as an intermediate step:<br />

• VSOP: neutron flux <strong>and</strong> fluid temperature distributions under NOC<br />

• MGT: accident temperature distributions<br />

• Fuel shuffling is modelled so far after stream tube model in VSOP<br />

A. Xhonneux Technical Meeting on Re-evaluation of Maximum Operating Temperatures <strong>and</strong> Accident Conditions for<br />

7<br />

<strong>HTR</strong> Fuel <strong>and</strong> Structural Materials, Vienna,10-12 June 2013


Main Principles of <strong>STACY</strong><br />

• Tracer pebbles are added <strong>to</strong> <strong>the</strong> core according <strong>to</strong> a given<br />

distribution with <strong>the</strong> help of a r<strong>and</strong>om number genera<strong>to</strong>r<br />

• For each tracer pebble, an individual burnup <strong>and</strong> radial temperature<br />

profile calculation is performed<br />

• Simulation of FP release rate <strong>and</strong> CP damage fraction for each<br />

individual tracer pebble<br />

• Combining results <strong>to</strong> spatially resolved FP release distributions by<br />

determining average release rate of tracer pebbles within each region<br />

• FP release of tracer pebbles is representative for core in case<br />

distribution of tracer elements over core volume is representative<br />

A. Xhonneux Technical Meeting on Re-evaluation of Maximum Operating Temperatures <strong>and</strong> Accident Conditions for<br />

8<br />

<strong>HTR</strong> Fuel <strong>and</strong> Structural Materials, Vienna,10-12 June 2013


Former Fuel Shuffling Scheme in VSOP<br />

A. Xhonneux Technical Meeting on Re-evaluation of Maximum Operating Temperatures <strong>and</strong> Accident Conditions for<br />

9<br />

<strong>HTR</strong> Fuel <strong>and</strong> Structural Materials, Vienna,10-12 June 2013


Influence of Fuel Mixing on Burnup<br />

10<br />

9<br />

8<br />

7<br />

A]<br />

Burn nup [% FIM<br />

6<br />

5<br />

4<br />

3<br />

2<br />

1<br />

0<br />

Channel 1<br />

Channel 2<br />

Channel 3<br />

Channel 4<br />

Burnup Target<br />

15 x Channel 1<br />

15 x Channel 4<br />

1 3 5 7 9 11 13 15<br />

Number of completed core passes<br />

• In comparison <strong>to</strong> “VSOP batches”, tracer pebbles are not mixed<br />

• Tracer pebble is loaded <strong>to</strong> final s<strong>to</strong>rage if burnup target is<br />

reached, not after a predefined number of core passes<br />

A. Xhonneux Technical Meeting on Re-evaluation of Maximum Operating Temperatures <strong>and</strong> Accident Conditions for<br />

10<br />

<strong>HTR</strong> Fuel <strong>and</strong> Structural Materials, Vienna,10-12 June 2013


Screenshot of Tracer Pebbles within Eq. Core<br />

• 4,500 tracer fuel elements<br />

• Volumetric density of tracer fuel<br />

elements is constant<br />

• Colours indicate core pass number<br />

A. Xhonneux Technical Meeting on Re-evaluation of Maximum Operating Temperatures <strong>and</strong> Accident Conditions for<br />

11<br />

<strong>HTR</strong> Fuel <strong>and</strong> Structural Materials, Vienna,10-12 June 2013


Calculation of Fission Product Inven<strong>to</strong>ry<br />

• FRESCO-II:<br />

• Relative fission product release calculation with<br />

constant birth rate of fission product of interest<br />

• Neglecting space dependent d neutron fluxes<br />

• Birth rate during accident is neglected<br />

• <strong>STACY</strong>:<br />

• Coupling of <strong>STACY</strong> with newly developed burnup<br />

code TNT<br />

• Including precise calculation of inven<strong>to</strong>ry in fission<br />

product release calculation<br />

• Still condensed birth <strong>and</strong> removal rate<br />

A. Xhonneux Technical Meeting on Re-evaluation of Maximum Operating Temperatures <strong>and</strong> Accident Conditions for<br />

12<br />

<strong>HTR</strong> Fuel <strong>and</strong> Structural Materials, Vienna,10-12 June 2013


I-131 Inven<strong>to</strong>ry of a Tracer Pebble<br />

core pass<br />

1.8<br />

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15<br />

en<strong>to</strong>ry<br />

Relative iod dine-131 inv<br />

1.6<br />

1.4<br />

1.2<br />

1.0<br />

0.8<br />

0.6<br />

0.4<br />

0.2<br />

0.0<br />

0 100 200 300 400 500 600 700 800 900 1000<br />

Irradiation time [EFPD]<br />

Inven<strong>to</strong>ry, Q = var., TNT<br />

Inven<strong>to</strong>ry, Q = const<br />

A. Xhonneux Technical Meeting on Re-evaluation of Maximum Operating Temperatures <strong>and</strong> Accident Conditions for<br />

13<br />

<strong>HTR</strong> Fuel <strong>and</strong> Structural Materials, Vienna,10-12 June 2013


I-131 Release Rate of a Tracer Pebble<br />

core pass 1 2 3 4 5 1 2 3 4 5<br />

1.8<br />

3.0E-12 30<br />

Relative iod dine-131 inve en<strong>to</strong>ry<br />

1.6<br />

1.4<br />

1.2<br />

1.0<br />

0.8<br />

0.6<br />

0.4<br />

0.2<br />

[mol/s]<br />

release rate<br />

Iodine 131<br />

2.5E-12<br />

2.0E-12<br />

1.5E-12<br />

1.0E-12<br />

5.0E-13<br />

0.0<br />

0 100 200 300<br />

0.0E+00<br />

0 100 200 300<br />

Irradiation time [EFPD]<br />

Irradiation time [EFPD]<br />

Inven<strong>to</strong>ry, Q = var., TNT<br />

Inven<strong>to</strong>ry, Q = const<br />

Rel. Rate = f(t), 15x inner, Q = var., TNT<br />

Rel. Rate = f(t), 15x inner, Q = const<br />

A. Xhonneux Technical Meeting on Re-evaluation of Maximum Operating Temperatures <strong>and</strong> Accident Conditions for<br />

14<br />

<strong>HTR</strong> Fuel <strong>and</strong> Structural Materials, Vienna,10-12 June 2013


Overview<br />

• Overview of Fission Product <strong>Code</strong>s at FZJ<br />

• Introduction <strong>to</strong> <strong>STACY</strong><br />

• Exemplary results for <strong>HTR</strong>-<strong>Module</strong><br />

• Exemplary results for <strong>HTTR</strong><br />

• Summary <strong>and</strong> outlook<br />

A. Xhonneux Technical Meeting on Re-evaluation of Maximum Operating Temperatures <strong>and</strong> Accident Conditions for<br />

15<br />

<strong>HTR</strong> Fuel <strong>and</strong> Structural Materials, Vienna,10-12 June 2013


Intera<strong>to</strong>m Safety Analysis of <strong>HTR</strong>-<strong>Module</strong> (1)<br />

• Normal operating conditions<br />

• FP release calculation of one representative<br />

fuel element<br />

• <strong>Code</strong>s being applied:<br />

‣ SLIPPER for condensable fission i products<br />

(cesium, strontium, silver species)<br />

‣ STADIF for noble gases <strong>and</strong> iodine species<br />

• Accident conditions<br />

• Rudimentary calculation of fission product<br />

inven<strong>to</strong>ry distribution at start of <strong>the</strong> accident<br />

• <strong>Code</strong> being applied:<br />

‣ FRESCO-I for all nuclides<br />

(e.g. cesium, strontium, silver <strong>and</strong> iodine species)<br />

A. Xhonneux Technical Meeting on Re-evaluation of Maximum Operating Temperatures <strong>and</strong> Accident Conditions for<br />

16<br />

<strong>HTR</strong> Fuel <strong>and</strong> Structural Materials, Vienna,10-12 June 2013


Intera<strong>to</strong>m Safety Analysis of <strong>HTR</strong>-<strong>Module</strong> (2)<br />

• <strong>Application</strong> of so-called Trumpet Curve for coated particle failure fraction<br />

1.0E-03<br />

Co oated particle<br />

failure frac ction<br />

1.0E-04<br />

Fresh fuel element<br />

Fuel element (50% target burnup)<br />

Fuel element (100% target burnup)<br />

1.0E-05<br />

1000 1100 1200 1300 1400 1500 1600<br />

Fuel temperature [°C]<br />

A. Xhonneux Technical Meeting on Re-evaluation of Maximum Operating Temperatures <strong>and</strong> Accident Conditions for<br />

17<br />

<strong>HTR</strong> Fuel <strong>and</strong> Structural Materials, Vienna,10-12 June 2013


Comparison of Main Parameters<br />

• Neutron flux <strong>and</strong> fuel temperature distribution<br />

in good agreement<br />

• Influence of cone modeling <strong>and</strong> realistic pebble flow<br />

pattern on parameters negligible<br />

fur<strong>the</strong>r use of model without cone <strong>and</strong> parallel<br />

pebble flow<br />

VSOP model of <strong>HTR</strong>-<strong>Module</strong> incl. cone<br />

A. Xhonneux Technical Meeting on Re-evaluation of Maximum Operating Temperatures <strong>and</strong> Accident Conditions for<br />

18<br />

<strong>HTR</strong> Fuel <strong>and</strong> Structural Materials, Vienna,10-12 June 2013


Fission Product Release Fractions during DLOFC<br />

1.0E-04<br />

10E-05<br />

1.0E 05<br />

Re<br />

elative releas<br />

se fraction<br />

1.0E-06<br />

1.0E-07<br />

1.0E-08<br />

08<br />

FRESCO-I<br />

(Intera<strong>to</strong>m)<br />

<strong>STACY</strong><br />

1.0E-09<br />

1.0E-10<br />

0 20 40 60 80 100 120 140 160 180 200<br />

Accident time [h]<br />

FRESCO-I, Cs-137 FRESCO-I, I-131 FRESCO-I, Sr-90<br />

FRESCO-I, Cs-137 FRESCO-I, I-131 FRESCO-I, Sr-90<br />

<strong>STACY</strong>, Cs-137 <strong>STACY</strong>, I-131 <strong>STACY</strong>, Sr-90<br />

1: N. N.: Aktivitätsfreisetzung und Strahlenexposition bei der <strong>HTR</strong>-Modul-Kraftwerksanlage Teil II: Störfälle,<br />

<strong>HTR</strong>-Modul Kraftwerk Konzeptbegutachtungsunterlagen, B<strong>and</strong> 4, Siemens Intera<strong>to</strong>m, 1988<br />

A. Xhonneux Technical Meeting on Re-evaluation of Maximum Operating Temperatures <strong>and</strong> Accident Conditions for<br />

19<br />

<strong>HTR</strong> Fuel <strong>and</strong> Structural Materials, Vienna,10-12 June 2013


Comparison of <strong>STACY</strong> <strong>and</strong> Intera<strong>to</strong>m Results<br />

Equilibrium core: Output power specific release values [Bq/(MW th·h)]<br />

Design<br />

Nuclide <strong>STACY</strong> SLIPPER<br />

(Intera<strong>to</strong>m)<br />

<strong>STACY</strong><br />

Expected<br />

SLIPPER<br />

(Intera<strong>to</strong>m)<br />

Cs‐137 2.67×10 3 5.9×10 4 6.76×10 2 3.0×10 4<br />

I‐131 51×10 5.1×10 7 38×10 3.8×10 6 13×10 1.3×10 7 95×10 9.5×10 5<br />

DLOFC: Cumulative relative release fraction of core inven<strong>to</strong>ry after 200 h<br />

Design<br />

Expected<br />

Nuclide<br />

+90°C Nom. temperature +90°C Nom. temperature<br />

<strong>STACY</strong> FRESCO‐I <strong>STACY</strong> FRESCO‐I <strong>STACY</strong> FRESCO‐I <strong>STACY</strong> FRESCO‐I<br />

(Intera<strong>to</strong>m)<br />

(Intera<strong>to</strong>m)<br />

(Intera<strong>to</strong>m)<br />

(Intera<strong>to</strong>m)<br />

Cs‐137 2.62x10 ‐5 8.44x10 ‐5 4.76x10 ‐6 8.44x10 ‐5 7.81x10 ‐6 5.09x10 ‐5 6.01x10 ‐7 8.98x10 ‐6<br />

I‐131 5.31x10 ‐55 2.86x10 ‐55 2.05x10 ‐55 1.16x1016x10 ‐55 4.96x10 ‐66 9.13x10 ‐66 3.24x10 ‐66 1.12x1012x10 ‐66<br />

1<br />

: N. N. :Aktivitätsfreisetzung und Strahlenexposition bei der <strong>HTR</strong>-Modul-Kraftwerksanlage Teil I: Bestimmungsgemäßer Betrieb,<br />

<strong>HTR</strong>-Modul Kraftwerk Konzeptbegutachtungsunterlagen, B<strong>and</strong> 4, Siemens Intera<strong>to</strong>m, 1987<br />

2<br />

: N. N.: Aktivitätsfreisetzung und Strahlenexposition bei der <strong>HTR</strong>-Modul-Kraftwerksanlage Teil II: Störfälle,<br />

<strong>HTR</strong>-Modul Kraftwerk Konzeptbegutachtungsunterlagen, B<strong>and</strong> 4, Siemens Intera<strong>to</strong>m, 1988<br />

A. Xhonneux Technical Meeting on Re-evaluation of Maximum Operating Temperatures <strong>and</strong> Accident Conditions for<br />

20<br />

<strong>HTR</strong> Fuel <strong>and</strong> Structural Materials, Vienna,10-12 June 2013


Comparison of <strong>STACY</strong> <strong>and</strong> Intera<strong>to</strong>m Results<br />

<strong>STACY</strong> results in comparison <strong>to</strong> Intera<strong>to</strong>m results (<strong>STACY</strong> / Intera<strong>to</strong>m):<br />

DLOFC: Cumulative relative release fraction of core inven<strong>to</strong>ry after 200 h<br />

• Iodine-131: Fac<strong>to</strong>r of 2 higher<br />

• Cesium-137: Fac<strong>to</strong>r of 3 (design) <strong>to</strong> 6 (expected) lower<br />

A. Xhonneux Technical Meeting on Re-evaluation of Maximum Operating Temperatures <strong>and</strong> Accident Conditions for<br />

21<br />

<strong>HTR</strong> Fuel <strong>and</strong> Structural Materials, Vienna,10-12 June 2013


Influence of Core Pass Number on Fuel Temp.<br />

mperature DLOFC [°C]<br />

Max. fuel te<br />

1650<br />

1600<br />

1550<br />

1500<br />

1450<br />

1400<br />

VSOP, nominelle NZL<br />

ZIRKUS, nominelle NZL<br />

VSOP, +10% NZL<br />

ZIRKUS, +10 % NZL<br />

VSOP, +10 % NZL, -10 % WL, -10 % WK<br />

1350<br />

5 6 7 8 9 10 11 12 13 14 15<br />

Core pass number<br />

Source of ZIRKUS data : Bernnat W., Feltes W., Model for reac<strong>to</strong>r physics calculation for <strong>HTR</strong> pebble bed modular reac<strong>to</strong>rs, Nuclear Engineering <strong>and</strong> Design 222 (2003)<br />

A. Xhonneux Technical Meeting on Re-evaluation of Maximum Operating Temperatures <strong>and</strong> Accident Conditions for<br />

22<br />

<strong>HTR</strong> Fuel <strong>and</strong> Structural Materials, Vienna,10-12 June 2013


Influence of Core Pass Number on Cs-137 Release<br />

lease rate [m mol/s]<br />

Cs-137 rel<br />

6.0E-10<br />

5.0E-10<br />

4.0E-10<br />

3.0E-10<br />

2.0E-10<br />

1.0E-10<br />

55 Durchläufe core passes<br />

66 Durchläufe core passes<br />

77 Durchläufe core passes<br />

10 10 Durchläufe core passes<br />

15 15 Durchläufe<br />

core passes<br />

Kurve Curve maximaler of max. releases Freisetzungsraten<br />

0.0E+00<br />

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200<br />

Accident time [h]<br />

Calculation with <strong>STACY</strong><br />

A. Xhonneux Technical Meeting on Re-evaluation of Maximum Operating Temperatures <strong>and</strong> Accident Conditions for<br />

23<br />

<strong>HTR</strong> Fuel <strong>and</strong> Structural Materials, Vienna,10-12 June 2013


Overview<br />

• Overview of Fission Product <strong>Code</strong>s at FZJ<br />

• Introduction <strong>to</strong> <strong>STACY</strong><br />

• Exemplary results for <strong>HTR</strong>-<strong>Module</strong><br />

• Exemplary results for <strong>HTTR</strong><br />

• Summary <strong>and</strong> outlook<br />

A. Xhonneux Technical Meeting on Re-evaluation of Maximum Operating Temperatures <strong>and</strong> Accident Conditions for<br />

24<br />

<strong>HTR</strong> Fuel <strong>and</strong> Structural Materials, Vienna,10-12 June 2013


Fission product release calculation of <strong>HTTR</strong><br />

• Improvements in fission product release code:<br />

• Fickean diffusion within (hollow) cylindrical bodies<br />

• Usage of Monte-Carlo method <strong>to</strong> r<strong>and</strong>omize particle failure<br />

• Usage of burnup calculation <strong>to</strong> determine nuclide inven<strong>to</strong>ries instead of<br />

using simplified analytical equation<br />

→ Spatial resolved fission product release rates<br />

(so far, only block‐wise)<br />

• Burnup calculation with SERPENT<br />

• Monte-Carlo neutronics code incl. burnup calculation<br />

• Developed at VTT Technical Research Centre<br />

• Applied <strong>to</strong> <strong>HTTR</strong>, <strong>HTR</strong>-10, Konvoi (1300 MW class)<br />

etc. at FZJ<br />

A. Xhonneux Technical Meeting on Re-evaluation of Maximum Operating Temperatures <strong>and</strong> Accident Conditions for<br />

25<br />

<strong>HTR</strong> Fuel <strong>and</strong> Structural Materials, Vienna,10-12 June 2013


Serpent Model of <strong>HTTR</strong><br />

Layer 2: 1: 4: 5: 6: 7: 3: 9: 8: Top Fuel Bot<strong>to</strong>m reflec<strong>to</strong>r<br />

layer<br />

reflec<strong>to</strong>r<br />

A. Xhonneux Technical Meeting on Re-evaluation of Maximum Operating Temperatures <strong>and</strong> Accident Conditions for<br />

26<br />

<strong>HTR</strong> Fuel <strong>and</strong> Structural Materials, Vienna,10-12 June 2013


Cesium-137 release rates after 660 days<br />

Example:Layer 2 (blocks containing fuel only)<br />

-150<br />

-100<br />

5.64044E-11<br />

5.61247E-11<br />

5.61489E-11<br />

[mol/s]<br />

5.69754E-11<br />

5.56938E-11<br />

-50<br />

5.60440E-11<br />

6.64296E-11<br />

6.63254E-11<br />

5.51433E-11<br />

6.99919E-11<br />

Positio on 2<br />

0<br />

5.61235E-11 7.00011E-11 6.98107E-11 5.60894E-11<br />

6.64607E-1164607E 6.57313E-11<br />

11<br />

5.61670E-11 7.05264E-11 6.98409E-11 5.52424E-11<br />

6.98319E-11<br />

50<br />

5.55644E-11<br />

6.58100E-11<br />

6.55939E-11<br />

5.58302E-11<br />

5.55661E-11<br />

5.61413E-11<br />

5.58089E-11 5.58945E-11<br />

100<br />

5.55622E-11<br />

• Temperature input by JAEA<br />

• Fission product 150<br />

-150 calculation -100 -50 of one 0 representative 50 100 compact 150 per fuel block<br />

Position 1<br />

during “st<strong>and</strong>ard operation plan” of 660 days<br />

A. Xhonneux Technical Meeting on Re-evaluation of Maximum Operating Temperatures <strong>and</strong> Accident Conditions for<br />

27<br />

<strong>HTR</strong> Fuel <strong>and</strong> Structural Materials, Vienna,10-12 June 2013


Cesium-137 release rates under NOC<br />

Relative Cesium-13 37-release fraction<br />

1.0E-01<br />

1.0E-02<br />

1.0E-03<br />

1.0E-04<br />

1.0E-05<br />

1.0E-06<br />

HT‐Phase<br />

FRESCO-II, Layer1<br />

FRESCO-II, Layer2<br />

FRESCO-II, Layer3<br />

FRESCO-II, Layer5<br />

<strong>STACY</strong>, Layer 1<br />

<strong>STACY</strong>, Layer 2<br />

<strong>STACY</strong>, Layer 3<br />

<strong>STACY</strong>, Layer 5<br />

0 110 220 330 440 550 660<br />

Time [d]<br />

A. Xhonneux Technical Meeting on Re-evaluation of Maximum Operating Temperatures <strong>and</strong> Accident Conditions for<br />

28<br />

<strong>HTR</strong> Fuel <strong>and</strong> Structural Materials, Vienna,10-12 June 2013


Overview<br />

• Overview of Fission Product <strong>Code</strong>s at FZJ<br />

• Introduction <strong>to</strong> <strong>STACY</strong><br />

• Exemplary results for <strong>HTR</strong>-<strong>Module</strong><br />

• Summary <strong>and</strong> outlook<br />

A. Xhonneux Technical Meeting on Re-evaluation of Maximum Operating Temperatures <strong>and</strong> Accident Conditions for<br />

29<br />

<strong>HTR</strong> Fuel <strong>and</strong> Structural Materials, Vienna,10-12 June 2013


Summary<br />

• Original codes have been modernized <strong>and</strong> merged <strong>to</strong> form one<br />

consistent code module <strong>STACY</strong><br />

• <strong>STACY</strong> has been extended <strong>and</strong> coupled with <strong>the</strong> code system<br />

VSOP, MGT-3D <strong>and</strong> <strong>the</strong> burnup code TNT <strong>to</strong> enable detailed<br />

spatially resolved fission product release calculations<br />

• Fission product release rate of short-living respectively long-<br />

living i nuclides are higher h respectively lower in comparison <strong>to</strong><br />

former calculation methods<br />

• <strong>STACY</strong> has been coupled <strong>to</strong> <strong>the</strong> backbone of <strong>the</strong> <strong>HTR</strong> <strong>Code</strong><br />

Package (currently being tested)<br />

A. Xhonneux Technical Meeting on Re-evaluation of Maximum Operating Temperatures <strong>and</strong> Accident Conditions for<br />

30<br />

<strong>HTR</strong> Fuel <strong>and</strong> Structural Materials, Vienna,10-12 June 2013


Outlook<br />

• Fission product release of Cs-137, Sr-90, I-131, Ag-110m of<br />

<strong>HTR</strong>-10 (ARCHER Project)<br />

• VSOP model simulating running-in-phase is based on <strong>HTR</strong>-10<br />

model being developed as a contribution <strong>to</strong> CRP 5<br />

(prediction of first criticality)<br />

• Calibration of control rods (2D VSOP model)<br />

• Modeling of fluid mechanics in VSOP (THERMIX)<br />

• Development of irregular fuel shuffling scheme<br />

A. Xhonneux Technical Meeting on Re-evaluation of Maximum Operating Temperatures <strong>and</strong> Accident Conditions for<br />

31<br />

<strong>HTR</strong> Fuel <strong>and</strong> Structural Materials, Vienna,10-12 June 2013


Thermal power during running-in phase <strong>HTR</strong>-10<br />

10<br />

9<br />

8<br />

Measured<br />

7<br />

Pow wer [MW]<br />

6<br />

5<br />

4<br />

3<br />

Condensed<br />

power<br />

his<strong>to</strong>ry<br />

2<br />

1<br />

0<br />

0 500 1000 1500<br />

Operation days<br />

Source: Fu LI, The <strong>HTR</strong>-10, operation performance <strong>and</strong> data collected, IAEA Consultancy Meeting, Vienna, 5-7 December 2011<br />

A. Xhonneux Technical Meeting on Re-evaluation of Maximum Operating Temperatures <strong>and</strong> Accident Conditions for<br />

32<br />

<strong>HTR</strong> Fuel <strong>and</strong> Structural Materials, Vienna,10-12 June 2013


Calculated reactivity values by using VSOP<br />

• Calculated reactivity values during operation <strong>and</strong> zero power phase<br />

• Fine-tuning of <strong>the</strong> reactivity k eff = 1.0 would be easily possible with <strong>the</strong><br />

control rods margins<br />

operation<br />

zero power<br />

phase<br />

A. Xhonneux Technical Meeting on Re-evaluation of Maximum Operating Temperatures <strong>and</strong> Accident Conditions for<br />

33<br />

<strong>HTR</strong> Fuel <strong>and</strong> Structural Materials, Vienna,10-12 June 2013


Comparison of FRESCO-I <strong>and</strong> <strong>STACY</strong><br />

A. Xhonneux Technical Meeting on Re-evaluation of Maximum Operating Temperatures <strong>and</strong> Accident Conditions for<br />

34<br />

<strong>HTR</strong> Fuel <strong>and</strong> Structural Materials, Vienna,10-12 June 2013

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!