23.11.2013 Views

Numerical Analysis of Defects Caused by Thermolysis in an Infinite ...

Numerical Analysis of Defects Caused by Thermolysis in an Infinite ...

Numerical Analysis of Defects Caused by Thermolysis in an Infinite ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Pert<strong>an</strong>ika J. Sci. & Techno!. 7(1): 13 - 24 (1999)<br />

ISS : 0128-7680<br />

© Universiti Putra Malaysia Press<br />

<strong>Numerical</strong> <strong>Analysis</strong> <strong>of</strong> <strong>Defects</strong> <strong>Caused</strong> <strong>by</strong> <strong>Thermolysis</strong> <strong>in</strong> <strong>an</strong><br />

Inf<strong>in</strong>ite Cyl<strong>in</strong>drical Ceramic Mould<strong>in</strong>g<br />

Received 26 February 1999<br />

A.B. Gumel <strong>an</strong>d E.H. Twizell*<br />

Department <strong>of</strong> Mathematics <strong>an</strong>d Statistics<br />

Brunei University<br />

Uxbridge, Middlesex, Engl<strong>an</strong>d UB83PH<br />

ABSTRAK<br />

Atur<strong>an</strong>-kedua persama<strong>an</strong> parabolik (resap<strong>an</strong>) y<strong>an</strong>g menentuk<strong>an</strong> kepekat<strong>an</strong><br />

monomer semasa pirolisis pembentuk<strong>an</strong> sil<strong>in</strong>der seramik, meng<strong>an</strong>dungi polimer<br />

y<strong>an</strong>g merendahk<strong>an</strong> monomer sahaja diselesaik<strong>an</strong>: sil<strong>in</strong>der y<strong>an</strong>g tidak boleh<br />

diukur diberi perhati<strong>an</strong>. Kaedah garis<strong>an</strong> digunak<strong>an</strong> untuk mengubah sebahagi<strong>an</strong><br />

persama<strong>an</strong> pembeza<strong>an</strong> kepada sistem l<strong>in</strong>ear atur<strong>an</strong>-pertama persama<strong>an</strong><br />

pembeza<strong>an</strong> biasa, suatu penyelesai<strong>an</strong> y<strong>an</strong>g terbukti dapat meyak<strong>in</strong>k<strong>an</strong> hubung<strong>an</strong><br />

berul<strong>an</strong>g<strong>an</strong>. Pr<strong>of</strong>il kepekat<strong>an</strong> pada tempoh y<strong>an</strong>g diberik<strong>an</strong> ditaksir deng<strong>an</strong><br />

mengg<strong>an</strong>tik<strong>an</strong> istilah-istilah eksponen matrik dalam hubung<strong>an</strong> berul<strong>an</strong>g<strong>an</strong><br />

deng<strong>an</strong> taksir<strong>an</strong> Pade atur<strong>an</strong>-t<strong>in</strong>ggi. Algoritma selari menggunak<strong>an</strong> dua<br />

pempro es, dib<strong>an</strong>gunk<strong>an</strong> deng<strong>an</strong> mengambil sebahagi<strong>an</strong> pecah<strong>an</strong> pengurai<strong>an</strong><br />

<strong>an</strong>ggar<strong>an</strong> Pade d<strong>an</strong> gambar<strong>an</strong> rasional (matriks) dalam hubung<strong>an</strong> berul<strong>an</strong>g<strong>an</strong>.<br />

ABSTRACT<br />

The second-order parabolic (diffusion) equation, which governs the<br />

concentration <strong>of</strong> monomer dur<strong>in</strong>g pyrolysis <strong>of</strong> a cyl<strong>in</strong>drical ceramic mould<strong>in</strong>g<br />

conta<strong>in</strong><strong>in</strong>g a polymer which degrades to monomer only, is solved: <strong>an</strong> <strong>in</strong>f<strong>in</strong>ite<br />

cyl<strong>in</strong>der is considered. The method <strong>of</strong> l<strong>in</strong>es is used to tr<strong>an</strong>sform the partial<br />

differential equation <strong>in</strong>to a system <strong>of</strong> first-order l<strong>in</strong>ear ord<strong>in</strong>ary differential<br />

equations, the solution <strong>of</strong> which is seen to satisfy a recurrence relation. The<br />

concentration pr<strong>of</strong>ile at a given time is computed <strong>by</strong> replac<strong>in</strong>g the matrix<br />

exponential terms <strong>in</strong> this recurrence relation <strong>by</strong> a high-order Pade approxim<strong>an</strong>t.<br />

A parallel algorithm us<strong>in</strong>g two processors is developed <strong>by</strong> tak<strong>in</strong>g the partialfraction<br />

decomposition <strong>of</strong> the Pade approxim<strong>an</strong>t <strong>an</strong>d a (matrix) rational<br />

expression <strong>in</strong> the recurrence relation.<br />

Keywords:<br />

mould<strong>in</strong>g<br />

numerical <strong>an</strong>alysis defects, thermolysis, <strong>in</strong>Hnite cyl<strong>in</strong>drical ceramic<br />

INTRODUCTION<br />

The solution <strong>of</strong> the tr<strong>an</strong>sport problem <strong>in</strong> geometries such as the cyl<strong>in</strong>der is<br />

import<strong>an</strong>t to the technologically signific<strong>an</strong>t problem <strong>of</strong> form<strong>in</strong>g <strong>of</strong> eng<strong>in</strong>eer<strong>in</strong>g<br />

ceramics. M<strong>an</strong>ufactur<strong>in</strong>g techniques result<strong>in</strong>g from polymer process<strong>in</strong>g c<strong>an</strong><br />

now be applied to the fabrication <strong>of</strong> eng<strong>in</strong>eer<strong>in</strong>g ceramic components <strong>by</strong> a<br />

powder route. The most versatile <strong>of</strong> such techniques is <strong>in</strong>jection mould<strong>in</strong>g<br />

(Ediris<strong>in</strong>ghe <strong>an</strong>d Ev<strong>an</strong>s 1986a, b). These processes <strong>in</strong>corporate the powder <strong>in</strong><br />

* To whom correspondence should be addressed


A.B. Cumel <strong>an</strong>d E.H. Twizell<br />

<strong>an</strong> org<strong>an</strong>ic vehicle, preferably a polymer, <strong>in</strong> order to effect shap<strong>in</strong>g. The org<strong>an</strong>ic<br />

matter is then removed, usually <strong>by</strong> controlled thermolysis, before s<strong>in</strong>ter<strong>in</strong>g the<br />

powder assembly. Attempts have been made to qu<strong>an</strong>tify the thermolysis stage,<br />

<strong>an</strong>d these have been reviewed <strong>by</strong> Shaw <strong>an</strong>d Ediris<strong>in</strong>ghe (1995).<br />

Calvert <strong>an</strong>d Cima (1990) <strong>an</strong>d Ev<strong>an</strong>s et al. (1991) addressed the critical<br />

mech<strong>an</strong>ism <strong>of</strong> thermal degradation <strong>of</strong> the org<strong>an</strong>ic phase at <strong>an</strong> early stage <strong>of</strong> the<br />

pyrolysis when all pores are filled. Mass tr<strong>an</strong>sport occurs <strong>by</strong> diffusion <strong>of</strong><br />

degradation product <strong>in</strong> the parent polymer which forms the cont<strong>in</strong>uous phase<br />

<strong>in</strong> the crowded two-phase composite at the critical stage. These models predict<br />

the <strong>in</strong>cidence <strong>of</strong> defects <strong>by</strong> apply<strong>in</strong>g the criterion <strong>of</strong> boil<strong>in</strong>g to the solution <strong>of</strong><br />

the degradation product <strong>in</strong> the parent polymer. Matar et al. (1993) <strong>an</strong>d Shaw<br />

<strong>an</strong>d Ediris<strong>in</strong>ghe (1995) extended the modell<strong>in</strong>g to consider the effect <strong>of</strong><br />

porosity development on mass tr<strong>an</strong>sport.<br />

Experimentally, the determ<strong>in</strong>ation <strong>of</strong> the critical heat<strong>in</strong>g rate, which is the<br />

fastest l<strong>in</strong>ear heat<strong>in</strong>g rate result<strong>in</strong>g <strong>in</strong> a defect-free thermolysis product, is<br />

laborious as it <strong>in</strong>volves thermolysis at different rates for a large number <strong>of</strong><br />

samples for each section size. In the present paper the heat tr<strong>an</strong>sfer (diffusion)<br />

equation for <strong>an</strong> <strong>in</strong>f<strong>in</strong>ite cyl<strong>in</strong>der will be solved us<strong>in</strong>g a parallel algorithm. The<br />

variation <strong>of</strong> vapour pressure <strong>of</strong> monomer over solution dur<strong>in</strong>g a l<strong>in</strong>ear<br />

temperature ramp is determ<strong>in</strong>ed <strong>by</strong> f<strong>in</strong>d<strong>in</strong>g the centre concentration <strong>of</strong><br />

monomer <strong>in</strong> the cyl<strong>in</strong>der. A bubble forms when the vapour pressure exceeds<br />

the ambient pressure, <strong>an</strong>d if this happens the ceramic component will be<br />

defective. However, if the rate <strong>of</strong> heat<strong>in</strong>g is sufficiently low to prevent the<br />

vapour pressure ris<strong>in</strong>g to ambience, the ceramic will be free from related<br />

defects.<br />

THE MATHEMATICAL MODEL<br />

The problem modelled is that <strong>of</strong>ceramic fabrication <strong>in</strong> which the decomposition<br />

<strong>of</strong> polymer yields <strong>an</strong> <strong>in</strong>ternal source <strong>of</strong> monomer only. Monomer evaporates<br />

from the surface <strong>an</strong>d hence a concentration pr<strong>of</strong>ile develops. The objective is<br />

to f<strong>in</strong>d the centre concentration <strong>an</strong>d apply the criterion for boil<strong>in</strong>g.<br />

An <strong>in</strong>f<strong>in</strong>ite cyl<strong>in</strong>der <strong>of</strong> radius B, <strong>in</strong>jection-moulded us<strong>in</strong>g ceramic-polymer<br />

suspension, is uniformly heated along its length at a const<strong>an</strong>t rate Z Ks-'. Assum<strong>in</strong>g<br />

radial symmetry, the concentration pr<strong>of</strong>ile <strong>of</strong> monomer, c = c(r,t), throughout the<br />

cyl<strong>in</strong>der at a given time t satisfies the partial differential equation (PDE)<br />

oc (1 oC 02C)<br />

- = D - - + - + Q; 0 :=:; r < B, t > 0<br />

ot r or or 2 (1)<br />

(Ev<strong>an</strong>s et al. 1991) <strong>in</strong> which D is the diffusion coefficient <strong>of</strong> the material. In<br />

practice, D = D (c, T), where T represents temperature at time t, <strong>an</strong>d c<strong>an</strong> vary<br />

<strong>by</strong> a factor <strong>of</strong> 105, but for the purpose <strong>of</strong> the <strong>an</strong>alysis its (updated) value at time<br />

t will be used (effectively treat<strong>in</strong>g D as a const<strong>an</strong>t at time t). Such a localized<br />

14 Pert<strong>an</strong>ikaJ. Sci. & Techno!. Vo!. 7 0.1,1999


umerical <strong>Analysis</strong> <strong>of</strong> <strong>Defects</strong> <strong>Caused</strong> <strong>by</strong> <strong>Thermolysis</strong><br />

value <strong>of</strong> a variable is <strong>of</strong>ten referred to <strong>by</strong> numerical <strong>an</strong>alysts as the frozen value<br />

<strong>of</strong> the variable. Clearly, symmetry requires this PDE to be solved only <strong>in</strong> the<br />

half <strong>in</strong>terval °::; r::; B. This, <strong>in</strong> turn, imposes the flux boundary condition<br />

dC(O,t) = ° t > °.r = °<br />

dr ' ,<br />

(2)<br />

on the axis <strong>of</strong> the cyl<strong>in</strong>der <strong>an</strong>d the assumption <strong>of</strong> zero concentration on the<br />

surface gives rise to the boundary condition<br />

c(B, T) = 0, t > ° (3)<br />

Initially it will be assumed that the concentration throughout the cyl<strong>in</strong>der is c*<br />

;;f. 0, giv<strong>in</strong>g rise to the <strong>in</strong>titial condition<br />

c(r,O) = C*, 0::; r::; B (4)<br />

Note, there is a discont<strong>in</strong>uity between <strong>in</strong>itial <strong>an</strong>d boundry conditions.<br />

In (l), Q is the rate <strong>of</strong> production <strong>of</strong> monomer caused <strong>by</strong> pyrolysis based<br />

on the total volume <strong>of</strong> ceramic-powder suspension <strong>an</strong>d is given <strong>by</strong><br />

Q. = K exp [-E/(RT)] p (1 - V)H<br />

ope<br />

(5)<br />

(Ev<strong>an</strong>s et al. 1991), where H is the mass fraction <strong>of</strong> polymer rema<strong>in</strong><strong>in</strong>g after a<br />

given absolute temperature is reached <strong>an</strong>d is given <strong>by</strong><br />

KoRT2exP[-E/(RT)]{ 2RT 6(RT 2 )}]<br />

H = exp<br />

[<br />

ZE 1 - -E- + --'--E-'2,.-------'- (6)<br />

The parameters <strong>in</strong> (5) <strong>an</strong>d (6) are described <strong>in</strong> the nomenclature. Clearly, Q,<br />

which is a function <strong>of</strong> T, is not const<strong>an</strong>t but at a given time t its (frozen) value<br />

at that time will be used <strong>in</strong> the algorithm.<br />

The PDE (l) c<strong>an</strong>not be solved on the axis <strong>of</strong> the cyl<strong>in</strong>der (r=O). Us<strong>in</strong>g the<br />

boundary condition (2) <strong>in</strong> the Maclaur<strong>in</strong> exp<strong>an</strong>sion<br />

dc(r,t) dC(O,t) d 2 C(0,t) r 2 d 3 C(0,t)<br />

---=---+ +- + ...<br />

dr dr dr 2 2 dr 3<br />

(7)<br />

it<br />

is easily seen that<br />

lim 1 dc(r,t)<br />

r~O ~~<br />

(8)<br />

=<br />

Pert<strong>an</strong>ikaJ. Sci. & Techno!. Vo!. 7 No.1, 1999 15


A.B. Gumel <strong>an</strong>d E.H. Twizell<br />

so that the alternative PDE<br />

(9)<br />

must be solved when r = 0.<br />

THE NUMERICAL SOLUTION<br />

Discretization <strong>an</strong>d the Method <strong>of</strong> L<strong>in</strong>es<br />

The space <strong>in</strong>terval °~ r ~ B is subdivided <strong>in</strong>to M + 1 parts each <strong>of</strong> width h so<br />

that (M + 1) h = B <strong>an</strong>d the time variable t ~ °is <strong>in</strong>cremented <strong>in</strong> steps <strong>of</strong> length<br />

1 so that t may be wirtten <strong>in</strong> the form t = t n<br />

= n 1 where n is <strong>an</strong> <strong>in</strong>teger. The<br />

region n <strong>in</strong> (r,t) space <strong>in</strong> which the concentration is to be computed <strong>an</strong>d its<br />

boundary on consist<strong>in</strong>g <strong>of</strong> the l<strong>in</strong>es r = 0, r = a <strong>an</strong>d t = °have thus been covered<br />

<strong>by</strong> a grid <strong>of</strong> po<strong>in</strong>ts (r m , t) = (mh, n 1) where m = 0, 1, ... M, M + 1 <strong>an</strong>d n =<br />

0, 1, 2, ...<br />

The space derivative <strong>in</strong> (20) is approximated <strong>by</strong> the second-order centraldifference<br />

replacement<br />

oc~~,t)<br />

(2hf'[c(r + h,t) - c(r - h,t)] + 0(h 2 ) as h~O<br />

(10)<br />

with r<br />

= r o<br />

= 0, to give<br />

<strong>in</strong> which upper case C is used to dist<strong>in</strong>guish the solution <strong>of</strong> differential<br />

equation. Us<strong>in</strong>g this notation, C:;' is <strong>an</strong> approximation to the concentration<br />

c(r , t) = c(mh, n 1) with m = 0, 1, ..., M, M + 1 <strong>an</strong>d n = 0, 1, 2, .... Thus m<br />

=


<strong>Numerical</strong> <strong>Analysis</strong> <strong>of</strong> <strong>Defects</strong> <strong>Caused</strong> <strong>by</strong> <strong>Thermolysis</strong><br />

to the po<strong>in</strong>ts r = r m<br />

(m = 1, 2, ..., M) at time t = tn = n 1 leads to the (semidiscrete)<br />

l<strong>in</strong>ear, <strong>in</strong>itial-value problem (IVP) given <strong>by</strong><br />

dC(t)<br />

-- = AC(t) + q" t> 0, C(O) = g<br />

dt<br />

(13)<br />

[ . .]T [ ]T .<br />

<strong>in</strong> which qt = Q l'·· .,Q t ,g = C~,...C* are vectors <strong>of</strong> order M + 1 with Q t<br />

denot<strong>in</strong>g the (frozen) value <strong>of</strong> Q at time t (see §2). It is appropriate to treat<br />

the vector qt as a const<strong>an</strong>t vector at <strong>an</strong>y time t because Q, given <strong>in</strong> equation<br />

(5), is not a function <strong>of</strong> t. The temperature, T, <strong>in</strong> (5) is a measured value <strong>an</strong>d<br />

is not a known function <strong>of</strong> t. In (13) A is the tridiagonal matrix <strong>of</strong> order M +<br />

1 given <strong>by</strong><br />

-4 4<br />

(Xl -2 ~l<br />

(14)<br />

with (X = 1 - 1/(2m) for m = 1,2, ..., M <strong>an</strong>d ~ = 1 + 1/(2m) for m = 1,2,...,<br />

m<br />

m<br />

M-l. It may be shown us<strong>in</strong>g Brauer's theorem (Gerschgor<strong>in</strong>'s circle theorem)<br />

that the eigenvalues <strong>of</strong> matrix A have negative real parts (Twizell 1984).<br />

A Recurrence Relation<br />

Treat<strong>in</strong>g qt = q as a const<strong>an</strong>t vector at time t, the solution <strong>of</strong> the IVP (13) is<br />

given <strong>by</strong><br />

C(t) = -A -lq + A -lexp(tA) (q + A -lg) (15)<br />

Which may be shown to satisfy the<br />

recurrence relation<br />

C(t +1) = -A -lq + exp( lA)[C(t) + A -lq] (16)<br />

It is this recurrence relation which may be used to develop a numerical method<br />

for the solution <strong>of</strong> (13) <strong>an</strong>d thus <strong>of</strong> (9), (1-4). umerical methods may be<br />

derived <strong>by</strong> mak<strong>in</strong>g approximations to exp ( lA) <strong>in</strong> (16). The reader is referred<br />

to the papers <strong>by</strong> Lawson (1972), Lawson <strong>an</strong>d Swayne (1976), Swayne (1987,<br />

1988), Twizell et al. (1996) <strong>an</strong>d Taj <strong>an</strong>d Twizell (1997) for a recurrence relation<br />

which may be used when the vector q is a function <strong>of</strong> t.<br />

Pert<strong>an</strong>ikaJ. Sci. & Techno!. Vo!. 7 No.1, 1999 17


A.B. Cumel <strong>an</strong>d E.H. Twizell<br />

A Parallel Algorithm<br />

Approximat<strong>in</strong>g the exponential term <strong>in</strong> (16) <strong>by</strong> its (4, 0) Pad€: approxim<strong>an</strong>t<br />

gives<br />

The approxim<strong>an</strong>t is chosen because <strong>of</strong> its known high-order accuracy (Khaliq<br />

1983). Pre-multiply<strong>in</strong>g <strong>by</strong> (I - lA+X 1 2 A 2 - ~13A3 + ~414A4) <strong>an</strong>d rearr<strong>an</strong>g<strong>in</strong>g<br />

gives<br />

(I - lA +~ 1 2 A 2 - ~13A3 + ~414A4)C(t+1)<br />

= C(t) + (I - ~ lA 2 + ~12A2 + ~413A3)<br />

(18)<br />

It is easy to show that the order <strong>of</strong> (18) is 0(h 2 + 1 4 ) as h, 1 ~ O<strong>an</strong>d that,<br />

when q == 0, the method is L-stable.<br />

To achieve parallel implementation, (18) must first be written <strong>in</strong> the form<br />

C(t+1) = (I - lA +~ 1 2 A 2 - ~13A 3 + ~414A 4r'C(t) (19)<br />

+ (I -lA+~ 1 2 A 2 - ~13A3 + X4 14A4 r'(1 - ~ lA- ~12A2 + ~413A3)lq<br />

follow<strong>in</strong>g which partial-fraction decomposition <strong>of</strong> the (4, 0) Pad€: approxim<strong>an</strong>t<br />

to exp ( lA) itself <strong>an</strong>d <strong>of</strong> the matrix rational expression (the coefficient <strong>of</strong> 1q)<br />

<strong>in</strong> (19) gives<br />

4<br />

C(t+1) = I. h(1 - bjlAflC(t) + k/I - bjlAfllq], (20)<br />

J = I<br />

<strong>in</strong> which<br />

b l = b 2 = 0.42626656502702 3 10- 1 + i 0.39463295317211,<br />

b 3<br />

= 04 = 0.45737334349730 + i 0.23510048799854,<br />

Sj = 52 = -0.12116960248677 - i 0.20306415938099,<br />

S3 = 54 = 0.62116960248677 - i 0.59941529409522,<br />

k l<br />

= ~ = -0.51650550237725 3 10- 2 - i 0.86559461699437 3 10- 2 ,<br />

k 3<br />

= k 4<br />

= 0.28410641796826 - i 0.27415657720375.<br />

Closed-form expressions for the complex const<strong>an</strong>ts b., S., k U=<br />

J J J<br />

not available.<br />

1, 2, 3, 4) are<br />

18 Pert<strong>an</strong>ikaJ. Sci. & Techno!. Vo!. 7 No.1, 1999


<strong>Numerical</strong> <strong>Analysis</strong> <strong>of</strong> <strong>Defects</strong> <strong>Caused</strong> <strong>by</strong> <strong>Thermolysis</strong><br />

The solution vector c(t + 1) may then be comuted us<strong>in</strong>g the parallel algorithm<br />

Processor 1:<br />

Processor 2:<br />

(I - r3lA)W4 = k3C(t)<br />

Then: C(t + 1) = 2[Re(W 1<br />

) + Re(W 2<br />

) + Re(W 3 ) + Re(W 4 )]<br />

q: = [Q,+l,...,Ql+lf, t: = t + 1<br />

<strong>in</strong> which both coefficient matrices are tridiagonal.<br />

The once-only decompositions <strong>of</strong> the tridiagonal matrices I - r 1<br />

lA <strong>an</strong>d<br />

I - r 3<br />

lA are carried out <strong>by</strong> processors 1 <strong>an</strong>d 2, respectively. Each processor<br />

employs a tridiagonal solver based on L -decomposition employ<strong>in</strong>g forward<br />

<strong>an</strong>d backward substitution, to compute the <strong>in</strong>termediate vector W (j = 1,2,3,4)<br />

J<br />

at every time step.<br />

This parallel algorithm is to be preferred to the sequential algorithm based<br />

on (18) which requires higher powers <strong>of</strong> the matrix A, because the <strong>in</strong>creased<br />

b<strong>an</strong>d-width <strong>of</strong> the coefficient matrix I - 1A +X 1 2 A 2 _ ~13A 3 + X4 14A 4<br />

<strong>in</strong>creases comput<strong>in</strong>g costs <strong>an</strong>d storage requirements. An alternative O(h 2 + 1 4 )<br />

method which uses real arithmetic <strong>an</strong>d four processors, <strong>an</strong>d is also L-stable, was<br />

developed <strong>by</strong> Voss <strong>an</strong>d Khaliq (1996) <strong>an</strong>d could be adapted for solv<strong>in</strong>g (1) ­<br />

(4). Arguably the best-known, s<strong>in</strong>gle-processor method which could be adapted<br />

for solv<strong>in</strong>g (1 )-(4) is the Cr<strong>an</strong>k-Nicolson method (Cr<strong>an</strong>k <strong>an</strong>d icol on 1947).<br />

Unfortunately, this method is only O(h 2 + 1 2 ) accurate as h, l~O <strong>an</strong>d is only<br />

A-stable, whereas the method given <strong>by</strong> (18) is L-stable. Lawson <strong>an</strong>d Morris<br />

(1978) gave <strong>an</strong> excellent description <strong>of</strong> the short-com<strong>in</strong>gs <strong>of</strong> the Cr<strong>an</strong>kicolson<br />

method when used to solve problems which have a discont<strong>in</strong>uity<br />

between the boundary condition (3) <strong>an</strong>d the <strong>in</strong>itial condition (4). Lambert<br />

(1991), for <strong>in</strong>st<strong>an</strong>ce, lists the properties <strong>of</strong> approximations to exp( lA) <strong>in</strong> (16)<br />

which lead to A-stable or L-stable methods.<br />

The problem solved <strong>in</strong> the present paper given <strong>by</strong> (1 )-(4) is one-dimensional<br />

because <strong>of</strong> symmetry. M<strong>an</strong>ufactured, ceramic artefacts usually have some<br />

symmetric properties which should always be exploited <strong>in</strong> mak<strong>in</strong>g calculations.<br />

There will be occasions, however, when there will be a need to reta<strong>in</strong> more th<strong>an</strong><br />

one space variable <strong>an</strong>d <strong>in</strong> solv<strong>in</strong>g such problems parallelism <strong>in</strong> space should be<br />

taken <strong>in</strong>to account. Lawson <strong>an</strong>d Morris (1978) <strong>an</strong>d Swayne (1987, 1988)<br />

developed s<strong>in</strong>gle-processor algorithms for solv<strong>in</strong>g multi-dimensional PDEs while<br />

Twizell et al. (1996) <strong>an</strong>d Taj <strong>an</strong>d Twizell (1997) have developed multi-processor<br />

techniques for solv<strong>in</strong>g them.<br />

Pert<strong>an</strong>ikaJ. Sci. & Techno!. Vo!. 7 No.1, 1999 19


A.B. Cumel <strong>an</strong>d E.H. Twizell<br />

BOILING CRITERION: NUMERICAL RESULTS<br />

The vapour pressure at the base time level til is given <strong>by</strong><br />

P:' = exp[-Lllij(RT") + a] (21)<br />

(Ev<strong>an</strong>s et al. 1991), <strong>in</strong> which Tn is the temperature at time tn, <strong>an</strong>d this is<br />

updated at time t<br />

ll<br />

+ 1<br />

<strong>by</strong> the relation<br />

Where<br />

(22)<br />

V m<br />

= Cpp~+1 /[Cpv;'+1 + (1 - Cp)W+ 1 ]<br />

<strong>in</strong> which<br />

V;1+! = 0.001098[1 + 0.0009774 {en + 1)1 + 100}]<br />

V;+I = 0.0009595[1 + 0.0004985 {en + 1)1+ 49}]<br />

<strong>an</strong>d<br />

(23)<br />

(24)<br />

(25)<br />

(26)<br />

(Matar et al. 1993).<br />

A bubble forms when the vapour pre sure exceeds the atmospheric pressure.<br />

A plot <strong>of</strong> vapour pressure aga<strong>in</strong>st temperature computed us<strong>in</strong>g the procedure<br />

described above with the data given <strong>in</strong> Table 1 is depicted <strong>in</strong> Fig 1. Unfortunately,<br />

no closed-form solution <strong>of</strong> the problem (9, 1-4) is available aga<strong>in</strong>st which the<br />

TABLE 1<br />

Parameter values used for computation<br />

Parameter value Vit<br />

a 22.255<br />

0.5<br />

0.005<br />

0.000692<br />

222000<br />

38940<br />

1.67 3 10 16<br />

99<br />

8.3143<br />

0.5<br />

1075<br />

0.361<br />

Pa<br />

m<br />

m 2 s- 1<br />

J mol-I<br />

J mol-I<br />

S-I<br />

J mol-'K-'<br />

dimensionless<br />

kg m- 3<br />

dimensionless<br />

20 Pert<strong>an</strong>ikaJ. Sci. & Techno\. Vol. 7 No.1, 1999


<strong>Numerical</strong> <strong>Analysis</strong> <strong>of</strong> <strong>Defects</strong> <strong>Caused</strong> <strong>by</strong> <strong>Thermolysis</strong><br />

10menc1ature<br />

Parameter<br />

a<br />

<strong>by</strong> ~,<br />

bj,kj ~<br />

c<br />

g<br />

h<br />

1<br />

q" q<br />

r<br />

A<br />

B<br />

C<br />

C*<br />

D<br />

E<br />

H<br />

~H,<br />

I<br />

~<br />

M<br />

P,<br />

Q<br />

R<br />

T<br />

V c<br />

V m<br />

VI<br />

V 2<br />

W<br />

J<br />

Z<br />

P p<br />

X<br />

n<br />

<strong>an</strong><br />

o<br />

T<br />

Sj<br />

Description<br />

const<strong>an</strong>t<br />

const<strong>an</strong>ts <strong>in</strong> partial-fraction decmposition U=1,2,3,4)<br />

complex conjugates <strong>of</strong> <strong>by</strong> kj' Sj U = 1,2,3,4)<br />

concentration <strong>of</strong> monomer, c = c(r,t)<br />

vector <strong>of</strong> order M, g = [C*, ..., C*]T<br />

<strong>in</strong>crement <strong>in</strong> r<br />

i = +-,,/-1<br />

<strong>in</strong>crement <strong>in</strong> t<br />

vectors <strong>of</strong> order M, qt = q =<br />

space c


A.B. Gumel <strong>an</strong>d E.H. Twizell<br />

180000<br />

~<br />

:J CJ)<br />

e 100000<br />

0..<br />

~<br />

:J<br />

o 0..<br />

Cll<br />

><br />

20000<br />

400 500 600<br />

Temperature (K)<br />

Fig 1. A plot <strong>of</strong> vapour pressure computed aga<strong>in</strong>st temprature<br />

pr<strong>of</strong>ile <strong>in</strong> Fig 1 could be compared, though the pr<strong>of</strong>ile is <strong>in</strong> good agreement<br />

with other results <strong>in</strong> the literature (Matar et aL 1993). The parallel algorithm<br />

gave a speed-up figure <strong>of</strong> 1.02 <strong>an</strong>d <strong>an</strong> efficiency figure <strong>of</strong> 51 %; these figures are<br />

low because <strong>of</strong> the large number <strong>of</strong> operations which had to be carried out at<br />

each time step to update the qu<strong>an</strong>tities dif<strong>in</strong>ed <strong>by</strong> (21)-(26)<br />

CONCLUSION<br />

A parallel algorithm has been developed for solv<strong>in</strong>g the second-order parabolic<br />

partial differential equation which governs the concentration <strong>of</strong> monomer<br />

dur<strong>in</strong>g pyrolysis <strong>of</strong> a cyl<strong>in</strong>drical ceramic mould<strong>in</strong>g conta<strong>in</strong><strong>in</strong>g a polymer which<br />

degrades to monomer only.<br />

The <strong>in</strong>itial/boundary-value problem (IBVP) associated with the model was<br />

tr<strong>an</strong>sformed <strong>in</strong>to <strong>an</strong> <strong>in</strong>itial value problem (IVP) <strong>in</strong> system form us<strong>in</strong>g the<br />

method <strong>of</strong> l<strong>in</strong>es. The solution <strong>of</strong> the IVP was seen to satisfy a recurrence<br />

relation <strong>in</strong> which a matrix-exponential term was replaced <strong>by</strong> the (4,0) Pade<br />

approxim<strong>an</strong>t lead<strong>in</strong>g to <strong>an</strong> L-stable numerical method. The method was seen<br />

to be suitable for parallel implementation on <strong>an</strong> architecture with two processors.<br />

Comparisons were made with exist<strong>in</strong>g method from the literature.<br />

In a numerical experiment the concentration pr<strong>of</strong>ile was monitored at<br />

discrete po<strong>in</strong>ts along the radius <strong>of</strong> a cyl<strong>in</strong>der as the computation proceeded.<br />

The concentration on the central axis was used <strong>in</strong> the calculation <strong>of</strong> the vapour<br />

pressure, which is also known to depend on the temperature. A bubble forms<br />

when the vapour pressure exceeds the atmospheric pressure. 0 closed-form<br />

solution <strong>of</strong> the IBVP solved is available though the pr<strong>of</strong>ile <strong>of</strong> vapour pressure<br />

aga<strong>in</strong>st temperature, calculated us<strong>in</strong>g the parallel algorithm developed <strong>in</strong> the<br />

paper, was seen to be <strong>in</strong> good agreement with results appear<strong>in</strong>g <strong>in</strong> the<br />

literature.<br />

22 Pen<strong>an</strong>ikaJ. Sci. & Techno\. Vol. 7 No.1, 1999


<strong>Numerical</strong> <strong>Analysis</strong> <strong>of</strong> <strong>Defects</strong> <strong>Caused</strong> <strong>by</strong> <strong>Thermolysis</strong><br />

ACKNO~DGEMENTS<br />

The research reported <strong>in</strong> this paper was part <strong>of</strong> a project funded <strong>by</strong> the<br />

Eng<strong>in</strong>eer<strong>in</strong>g <strong>an</strong>d physical Sciences Research Council (EPSRC) <strong>of</strong> the United<br />

K<strong>in</strong>gdom. The authors are grateful to EPSRC for this support <strong>an</strong>d to Pr<strong>of</strong>essor<br />

JR.G. Ev<strong>an</strong>s <strong>of</strong> Queen Mary <strong>an</strong>d Westfield College London <strong>an</strong>d Dr MJ.<br />

Ediris<strong>in</strong>ghe <strong>of</strong> Loughborough University for their comments on the paper. The<br />

authors are also grateful to Ms M.E. demmar, Department <strong>of</strong> Mathematics <strong>an</strong>d<br />

Statistics, Brunei University, for her help <strong>in</strong> prepar<strong>in</strong>g the typescript.<br />

REFERENCES<br />

CALVERT. P. <strong>an</strong>d M. CIMA. 1990. Theoretical models for b<strong>in</strong>der burnout. lAmer. Ceram.<br />

Soc. 73: 575-579.<br />

CRANK, J. <strong>an</strong>d P. ICOLSON. 1947. A practical method for numerical <strong>in</strong>tegration <strong>of</strong><br />

solutions <strong>of</strong> partial differential equations <strong>of</strong> heat conduction type. Proc. Camb. Phil.<br />

Soc. 43: 50-67.<br />

EOIRJSINGHE, MJ. <strong>an</strong>d J.R.G. EVANS. 1986a. Review: Fabrication <strong>an</strong>d eng<strong>in</strong>eer<strong>in</strong>g ceramics<br />

<strong>by</strong> <strong>in</strong>jection mould<strong>in</strong>g. Int. I High Tech. Ceramics 2: 1-31.<br />

EOIRJSINGHE, MJ. <strong>an</strong>dJ.R.G. EVANS. 1986b. Review: Fabrication <strong>an</strong>d eng<strong>in</strong>eer<strong>in</strong>g ceramics<br />

<strong>by</strong> <strong>in</strong>jection mould<strong>in</strong>g. Int. I High Tech. Ceramics 2: 249-278.<br />

EVANS,J.R.G., MJ. EOIRJSINGHE,J.K. WRJGHT <strong>an</strong>dJ.VRANK. 1991. On the removal <strong>of</strong> org<strong>an</strong>ic<br />

vehicle from moulded ceramic bodies. Proc. Roy. Soc. Lond. A432: 321-340.<br />

KHALIQ, A.Q.M. 1983. Ph. D. Thesis, Brunei Univesity.<br />

LAMBERT, J.D. 1991. <strong>Numerical</strong> Methods for Ord<strong>in</strong>ary Differential Systems: The<br />

Problem. Chichester: Wiley.<br />

Initial Value<br />

LAWSON, J.D. 1972. Some numerical methods for stiff ord<strong>in</strong>ary <strong>an</strong>d partial differential<br />

equations. In Proc. Second M<strong>an</strong>itova Con! on Nemerical Mathematics, p. 27-34. W<strong>in</strong>nipeg,<br />

C<strong>an</strong>ada.<br />

LAWSON, J.D. <strong>an</strong>d J.L1. MORRJs. 1978. The extrapolation <strong>of</strong> first-order methods for<br />

parabolic partial differential equations I. SIAMI Numer. Anal. 15: 1212-1224.<br />

LAWSON, J.D. <strong>an</strong>d D.A. SWAYNE. 1976. A simple efficient algorithm for the solution <strong>of</strong><br />

heat conduction problems. In Utilitas Mathematica - Proceed<strong>in</strong>gs <strong>of</strong> Sixth M<strong>an</strong>itoba<br />

Conference on <strong>Numerical</strong> Mathematics, p. 239-250 W<strong>in</strong>nipeg, C<strong>an</strong>ada.<br />

MATAR, SA, MJ. EOIRJSINGHE,J.R.G. EVANS <strong>an</strong>d E.H. TWIZELL. 1993. The effect <strong>of</strong> porosity<br />

development on the removal <strong>of</strong> org<strong>an</strong>ic vehicle from ceramic <strong>an</strong>d metal mould<strong>in</strong>gs.<br />

I Mater. Res. 8: 617-625.<br />

SHAW, H.M. <strong>an</strong>d MJ. EOIRJSI GHE. 1995. A model for the diffusion <strong>of</strong> org<strong>an</strong>ic additives<br />

dur<strong>in</strong>g thermolysis <strong>of</strong> a ceramic body. Phil. Mag. 72(1): 267-280.<br />

SWAYNE, D.A. 1987. Time-dependent boundary conditions <strong>an</strong>d <strong>in</strong>terior forc<strong>in</strong>g <strong>in</strong> locally<br />

one-dimensional schemes. SIAMI Sci. Stat. Comput<strong>in</strong>g 8(5): 755-767.<br />

Pert<strong>an</strong>ikaJ. Sci. & Techno!. Vo!. 7 o. 1, 1999 23


A.B. Gumel <strong>an</strong>d E.H. Twizell<br />

SWAYNE, D.A. 1988. Time-dependent Dirichlet boundary conditions <strong>an</strong>d fractional step<br />

methods. <strong>Numerical</strong> Mathematics, S<strong>in</strong>gapore, p. 443-455. Basel: Birkhauser Verlag.<br />

TAJ. M.S.A. <strong>an</strong>d E.H. TWIZELL. 1997. A family <strong>of</strong> fourth-order parallel splitt<strong>in</strong>g methods<br />

for parabolic partial differential equations. Numer. Methods Patial Diff. Equations 13:<br />

357-373.<br />

TWIZELL, E.H. 1984. Computational Methods for Partial Differential Equations. Chichester:<br />

Ellis Horwood.<br />

T~1ZELL, E.H., A.B. GUMEL <strong>an</strong>d M.A. ARIeu. 1996. Second-order, Lo-stable methods for the<br />

heat equation with time-dependent boundary conditions. Adv<strong>an</strong>ces <strong>in</strong> Computational<br />

Mathematics 6: 333-352.<br />

Voss, D.A. <strong>an</strong>d A.Q.M. KJ-lALIQ 1996. Time-stepp<strong>in</strong>g algorithms for semidiscretized l<strong>in</strong>ear<br />

parabolic PDEs based on rational approxim<strong>an</strong>ts with dist<strong>in</strong>ct real poles. Adv<strong>an</strong>ces <strong>in</strong><br />

Computational Mathematics 6: 353-363.<br />

24 Pert<strong>an</strong>ikaJ. Sci. & Techno!. Vol. 7 0.1,1999

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!