21.12.2013 Views

Life as a Low-Mass Star What are the life stages of a low mass star?

Life as a Low-Mass Star What are the life stages of a low mass star?

Life as a Low-Mass Star What are the life stages of a low mass star?

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>Life</strong> <strong>as</strong> a <strong>Low</strong>-M<strong>as</strong>s <strong>Star</strong><br />

<strong>What</strong> <strong>are</strong> <strong>the</strong> <strong>life</strong> <strong>stages</strong> <strong>of</strong> a <strong>low</strong><br />

m<strong>as</strong>s <strong>star</strong>?<br />

High-M<strong>as</strong>s <strong>Star</strong>s<br />

(> 8 M Sun )<br />

Intermediate-<br />

M<strong>as</strong>s <strong>Star</strong>s<br />

<strong>Low</strong>-M<strong>as</strong>s <strong>Star</strong>s<br />

(< 2 M Sun )<br />

A <strong>star</strong> remains<br />

on <strong>the</strong> main<br />

sequence <strong>as</strong> long<br />

<strong>as</strong> it can fuse<br />

hydrogen into<br />

helium in its<br />

core.<br />

Brown Dwarfs<br />

Thought Question<br />

<strong>What</strong> happens when a <strong>star</strong> can no longer fuse<br />

hydrogen to helium in its core?<br />

A. Core cools <strong>of</strong>f.<br />

B. Core shrinks and heats up.<br />

C. Core expands and heats up.<br />

D. Helium fusion immediately begins.<br />

Thought Question<br />

<strong>What</strong> happens when a <strong>star</strong> can no longer fuse<br />

hydrogen to helium in its core?<br />

A. Core cools <strong>of</strong>f.<br />

B. Core shrinks and heats up.<br />

C. Core expands and heats up.<br />

D. Helium fusion immediately begins.<br />

1


Thought Question<br />

Helium fusion requires higher temperatures (around 100<br />

million Kelvin) than hydrogen fusion, because larger charge<br />

leads to greater electromagnetic repulsion.<br />

Fusion <strong>of</strong> two helium nuclei does not work, so helium fusion<br />

must combine three He nuclei to make carbon.<br />

<strong>What</strong> happens <strong>as</strong> a <strong>star</strong>’s inert helium core <strong>star</strong>ts<br />

to shrink?<br />

A. Hydrogen fuses in shell around core.<br />

B. Helium fusion s<strong>low</strong>ly begins.<br />

C. Helium fusion rate rapidly rises.<br />

D. Core pressure sharply drops.<br />

Thought Question<br />

<strong>What</strong> happens <strong>as</strong> a <strong>star</strong>’s inert helium core <strong>star</strong>ts<br />

to shrink?<br />

A. Hydrogen fuses in shell around core.<br />

B. Helium fusion s<strong>low</strong>ly begins.<br />

C. Helium fusion rate rapidly rises.<br />

D. Core pressure sharply drops.<br />

Broken <strong>the</strong>rmostat: rising fusion rate in shell does not<br />

expand core, so <strong>star</strong>’s luminosity continues to rise.<br />

Thought Question<br />

<strong>What</strong> happens in a <strong>low</strong>-m<strong>as</strong>s <strong>star</strong> when core temperature<br />

rises enough for helium fusion to begin?<br />

A. Helium fusion s<strong>low</strong>ly <strong>star</strong>ts up.<br />

B. Hydrogen fusion stops.<br />

C. Helium fusion rises very sharply.<br />

Thought Question<br />

<strong>What</strong> happens in a <strong>low</strong>-m<strong>as</strong>s <strong>star</strong> when core temperature<br />

rises enough for helium fusion to begin?<br />

A. Helium fusion s<strong>low</strong>ly <strong>star</strong>ts up.<br />

B. Hydrogen fusion stops.<br />

C. Helium fusion rises very sharply.<br />

Hint: Degeneracy pressure is <strong>the</strong> main form <strong>of</strong> pressure in<br />

<strong>the</strong> inert helium core.<br />

2


Helium Fl<strong>as</strong>h<br />

• Thermostat is broken in <strong>low</strong>-m<strong>as</strong>s red giant,<br />

because degeneracy pressure supports core.<br />

• Core temperature rises rapidly when helium fusion<br />

begins.<br />

• Helium fusion rate skyrockets until <strong>the</strong>rmal<br />

pressure takes over and expands core again.<br />

Helium burning <strong>star</strong>s nei<strong>the</strong>r shrink nor grow,<br />

because <strong>the</strong>rmostat is temporarily fixed.<br />

Thought Question<br />

<strong>What</strong> happens when <strong>the</strong> <strong>star</strong>’s core runs out <strong>of</strong><br />

helium?<br />

A. The <strong>star</strong> explodes.<br />

B. Carbon fusion begins.<br />

C. The core cools <strong>of</strong>f.<br />

D. Helium fuses in a shell around <strong>the</strong> core.<br />

Thought Question<br />

<strong>What</strong> happens when <strong>the</strong> <strong>star</strong>’s core runs out <strong>of</strong><br />

helium?<br />

A. The <strong>star</strong> explodes.<br />

B. Carbon fusion begins.<br />

C. The core cools <strong>of</strong>f.<br />

D. Helium fuses in a shell around <strong>the</strong> core.<br />

How does a <strong>low</strong> m<strong>as</strong>s <strong>star</strong> die?<br />

A <strong>star</strong> like our<br />

Sun dies by<br />

puffing <strong>of</strong>f its<br />

outer layers,<br />

creating a<br />

planetary nebula.<br />

Only a white<br />

dwarf is left<br />

behind.<br />

3


A <strong>star</strong> like our<br />

Sun dies by<br />

puffing <strong>of</strong>f its<br />

outer layers,<br />

creating a<br />

planetary nebula.<br />

A <strong>star</strong> like our<br />

Sun dies by<br />

puffing <strong>of</strong>f its<br />

outer layers,<br />

creating a<br />

planetary nebula.<br />

Only a white<br />

dwarf is left<br />

behind.<br />

Only a white<br />

dwarf is left<br />

behind.<br />

A <strong>star</strong> like our<br />

Sun dies by<br />

puffing <strong>of</strong>f its<br />

outer layers,<br />

creating a<br />

planetary nebula.<br />

Only a white<br />

dwarf is left<br />

behind.<br />

Evolutionary track <strong>of</strong> a <strong>low</strong>-m<strong>as</strong>s <strong>star</strong> on <strong>the</strong> H-R diagram.<br />

<strong>Life</strong> <strong>as</strong> a High-M<strong>as</strong>s <strong>Star</strong><br />

<strong>What</strong> <strong>are</strong> <strong>the</strong> <strong>life</strong> <strong>stages</strong> <strong>of</strong> a<br />

high-m<strong>as</strong>s <strong>star</strong>?<br />

4


High-M<strong>as</strong>s <strong>Star</strong>s<br />

(> 8 M Sun )<br />

Intermediate-<br />

M<strong>as</strong>s <strong>Star</strong>s<br />

<strong>Low</strong>-M<strong>as</strong>s <strong>Star</strong>s<br />

(< 2 M Sun )<br />

Brown Dwarfs<br />

High-M<strong>as</strong>s <strong>Star</strong>’s <strong>Life</strong><br />

Early <strong>stages</strong> <strong>are</strong> similar to those <strong>of</strong> <strong>low</strong>-m<strong>as</strong>s <strong>star</strong>:<br />

• Main Sequence: H fuses to He in core (CNO cycle)<br />

• Red Supergiant: H fuses to He in shell around inert<br />

He core<br />

• Helium Core Burning: He fuses to C in core (no<br />

helium fl<strong>as</strong>h)<br />

CNO cycle is just ano<strong>the</strong>r<br />

way to fuse H into He,<br />

using carbon, nitrogen, and<br />

oxygen <strong>as</strong> catalysts.<br />

CNO cycle is <strong>the</strong> main<br />

mechanism for H fusion in<br />

high-m<strong>as</strong>s <strong>star</strong>s (>2 M Sun ),<br />

because core temperature is<br />

higher.<br />

High-m<strong>as</strong>s <strong>star</strong>s<br />

become supergiants<br />

after core H runs<br />

out.<br />

Luminosity does<br />

not change much,<br />

but radius gets far<br />

larger!<br />

How do high-m<strong>as</strong>s <strong>star</strong>s make <strong>the</strong><br />

elements necessary<br />

for <strong>life</strong>?<br />

5


Big Bang made 75% H, 25% He – <strong>star</strong>s make everything else!<br />

Helium fusion can make carbon in <strong>low</strong>-m<strong>as</strong>s <strong>star</strong>s.<br />

Helium-capture reactions add two protons at a time.<br />

CNO cycle can change C into N and O.<br />

Advanced nuclear fusion reactions require extremely high<br />

temperatures.<br />

Helium-capture reactions build C into O, Ne, Mg, etc.<br />

Only high-m<strong>as</strong>s <strong>star</strong>s can attain high enough core temperatures<br />

before degeneracy pressure stops gravitational contraction.<br />

6


Advanced reactions make heavier elements<br />

in high-m<strong>as</strong>s <strong>star</strong>s.<br />

Advanced nuclear burning occurs in multiple shells.<br />

Iron is a dead<br />

end for fusion,<br />

because nuclear<br />

reactions<br />

involving iron do<br />

not rele<strong>as</strong>e<br />

energy.<br />

Evidence for heliumcapture<br />

reactions:<br />

Higher abundances <strong>of</strong><br />

elements with even<br />

numbers <strong>of</strong> protons.<br />

Fe h<strong>as</strong> <strong>the</strong> <strong>low</strong>est<br />

m<strong>as</strong>s per nuclear<br />

particle.<br />

How does a high-m<strong>as</strong>s <strong>star</strong> die?<br />

Fe builds up in core<br />

until degeneracy pressure<br />

can no longer resist<br />

gravity.<br />

Core <strong>the</strong>n suddenly<br />

collapses, creating<br />

supernova explosion.<br />

7


Core degeneracy<br />

pressure goes away,<br />

because electrons<br />

combine with<br />

protons, making<br />

neutrons and neutrinos.<br />

Neutrons collapse to<br />

<strong>the</strong> center, forming a<br />

neutron <strong>star</strong>.<br />

Energy and neutrons produced in supernova explosion<br />

enable elements heavier than Fe to form.<br />

Elements made<br />

during supernova<br />

explosion<br />

Crab Nebula: Remnant <strong>of</strong> supernova observed in 1054 A.D.<br />

The next<br />

nearby<br />

supernova?<br />

before<br />

after<br />

Supernova 1987A is <strong>the</strong> ne<strong>are</strong>st supernova<br />

observed in <strong>the</strong> l<strong>as</strong>t 400 years.<br />

8


<strong>Low</strong>-M<strong>as</strong>s <strong>Star</strong> Summary<br />

1. Main Sequence: H fuses to He<br />

in core.<br />

How does a <strong>star</strong>’s m<strong>as</strong>s<br />

determine its <strong>life</strong> story?<br />

2. Red Giant: H fuses to He in<br />

shell around He core.<br />

3. Helium Core Burning:<br />

He fuses to C in core while H<br />

fuses to He in shell.<br />

4. Double-Shell Burning:<br />

H and He both fuse in shells.<br />

Not to scale!<br />

5. Planetary Nebula leaves white<br />

dwarf behind.<br />

Re<strong>as</strong>ons for <strong>Life</strong> Stages<br />

<strong>Life</strong> Stages <strong>of</strong> High-M<strong>as</strong>s <strong>Star</strong><br />

Core shrinks and heats until it’s<br />

hot enough for fusion.<br />

1. Main Sequence: H fuses to He in<br />

core<br />

Nuclei with larger charge require<br />

higher temperature for fusion.<br />

2. Red Supergiant: H fuses to He in<br />

shell around He core<br />

Core <strong>the</strong>rmostat is broken while<br />

core is not hot enough for<br />

fusion (shell burning).<br />

3. Helium Core Burning:<br />

He fuses to C in core while H fuses<br />

to He in shell<br />

Not to scale!<br />

Core fusion can’t happen if<br />

degeneracy pressure prevents<br />

core from shrinking.<br />

Not to scale!<br />

4. Multiple-Shell Burning:<br />

Many elements fuse in shells<br />

5. Supernova leaves neutron <strong>star</strong> or<br />

black hole behind.<br />

How <strong>are</strong> <strong>the</strong> lives <strong>of</strong> <strong>star</strong>s with<br />

close companions different?<br />

<strong>Life</strong> <strong>of</strong> a 20M Sun <strong>star</strong><br />

<strong>Life</strong> <strong>of</strong> a 1M Sun <strong>star</strong><br />

9


Thought Question<br />

The binary <strong>star</strong> Algol consists <strong>of</strong> a 3.7 M Sun main<br />

sequence <strong>star</strong> and a 0.8 M Sun subgiant <strong>star</strong>.<br />

<strong>What</strong>’s strange about this pairing?<br />

How did it come about?<br />

<strong>Star</strong>s in Algol <strong>are</strong> close<br />

enough that matter can f<strong>low</strong><br />

from subgiant onto mainsequence<br />

<strong>star</strong>!<br />

> <strong>Star</strong> that is now a<br />

subgiant w<strong>as</strong> originally<br />

more m<strong>as</strong>sive.<br />

> As it reached <strong>the</strong> end <strong>of</strong><br />

its <strong>life</strong> and <strong>star</strong>ted to grow,<br />

it began to transfer m<strong>as</strong>s to<br />

its companion.<br />

> Now <strong>the</strong> companion <strong>star</strong><br />

is more m<strong>as</strong>sive.<br />

10

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!