25.12.2013 Views

choosing regularization parameters in iterative methods for ... - DRUM

choosing regularization parameters in iterative methods for ... - DRUM

choosing regularization parameters in iterative methods for ... - DRUM

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

CHOOSINGREGULARIZATIONPARAMETERSINITERATIVE METHODSFORILL-POSEDPROBLEMS<br />

andwepresentnumericalexamples. (projectionontoanitedimensionalsubspace)followedby<strong>regularization</strong>.Ifthediscreteproblem hashighdimension,though,typicallywecomputeanapproximatesolutionbyprojectionontoan evensmallerdimensionalspace,via<strong>iterative</strong><strong>methods</strong>basedonKrylovsubspaces.Inthisworkwe presentecientalgorithmsthatregularizeafterthissecondprojectionratherthanbe<strong>for</strong>eit.We provesomeresultsontheapproximateequivalenceofthisapproachtoother<strong>for</strong>msof<strong>regularization</strong> Abstract.Numericalsolutionofill-posedproblemsisoftenaccomplishedbydiscretization MISHAE.KILMERyANDDIANNEP.O'LEARYz<br />

curve,Tikhonov,TSVD,projection,Krylovsubspace Keywords.ill-posedproblems,<strong>regularization</strong>,discrepancypr<strong>in</strong>ciple,<strong>iterative</strong><strong>methods</strong>,L-<br />

65R30,65F20 Runn<strong>in</strong>gTitle:Choos<strong>in</strong>gRegularizationParameters 1.Introduction.L<strong>in</strong>ear,discreteill-posedproblemsofthe<strong>for</strong>m<br />

andoccur<strong>in</strong>avarietyofapplications.Weshallassumethatthefull-rankmatrixA ismn,withmn<strong>in</strong>(2)andm=n<strong>in</strong>(1).Indiscreteill-posedproblems,Aisill-<br />

arise,<strong>for</strong>example,fromthediscretizationofrst-k<strong>in</strong>dFredholm<strong>in</strong>tegralequations (1)<br />

m<strong>in</strong> xkAxbk2;orequivalently,AAx=Ab Ax=b<br />

toolargetosolveexactly.Inthatcase,wetypicallycomputeanapproximatesolution solution.Regularization<strong>methods</strong>replacetheorig<strong>in</strong>aloperatorbyabetter-conditioned butrelatedone<strong>in</strong>ordertodim<strong>in</strong>ishtheeectsofnoise<strong>in</strong>thedataandproducea regularizedsolutiontotheorig<strong>in</strong>alproblem.Sometimesthisregularizedproblemis usea<strong>regularization</strong>methodtodeterm<strong>in</strong>easolutionthatapproximatesthenoise-free (1)or(2)haslittlerelationshiptothenoise-freesolutionandisworthless.Instead,we noise,<strong>in</strong>comb<strong>in</strong>ationwiththeill-condition<strong>in</strong>gofA,meansthattheexactsolutionof handsidebconta<strong>in</strong>snoiseduetomeasurementand/orapproximationerror.This conditionedandthereisnogap<strong>in</strong>thes<strong>in</strong>gularvaluespectrum.Typically,theright<br />

thenewoperatorisapoorapproximationtoA.Asmall<strong>regularization</strong>parameter basedonKrylovsubspaces. byprojectionontoanevensmallerdimensionalspace,perhapsvia<strong>iterative</strong><strong>methods</strong><br />

CCR-97-32022andbytheArmyResearchOce,MURIGrantDAAG55-97-1-0013. generallyyieldsasolutionveryclosetothenoise-contam<strong>in</strong>atedexactsolutionof(1) or(2),andhenceitsdistancefromthenoise-freesolutionalsocanbelarge.Thus, conditionedproblem,butitssolutionmaybefarfromthenoise-freesolutions<strong>in</strong>ce <strong>parameters</strong>specictothemethod.Alarge<strong>regularization</strong>parameteryieldsanewwell-<br />

ThisworkwassupportedbytheNationalScienceFoundationunderGrantsCCR95-03126and Thecondition<strong>in</strong>gofthenewproblemiscontrolledbyoneormore<strong>regularization</strong><br />

(mkilmer@ece.neu.edu) land,CollegePark,MD20742(oleary@cs.umd.edu). yDept.ofComputerandElectricalEng<strong>in</strong>eer<strong>in</strong>g,NortheasternUniversity,Boston,MA02115 zDept.ofComputerScienceandInstitute<strong>for</strong>AdvancedComputerStudies,UniversityofMary-<br />

1


akeyissue<strong>in</strong><strong>regularization</strong><strong>methods</strong>istochoosea<strong>regularization</strong>parameterthat<br />

balancestheerrorduetonoisewiththeerrordueto<strong>regularization</strong>.<br />

Awisechoiceof<strong>regularization</strong>parameterisobviouslycrucialtoobta<strong>in</strong><strong>in</strong>guseful<br />

approximatesolutionstoill-posedproblems.Forproblemssmallenoughthatarankreveal<strong>in</strong>gfactorizationors<strong>in</strong>gularvaluedecompositionofAcanbecomputed,there<br />

arewell-studiedtechniques<strong>for</strong>comput<strong>in</strong>gagood<strong>regularization</strong>parameter.These<br />

techniques<strong>in</strong>cludetheDiscrepancyPr<strong>in</strong>ciple[8],generalizedcross-validation(GCV)<br />

[9],andtheL-curve[15].Forlargerproblemstreatedby<strong>iterative</strong><strong>methods</strong>,though,<br />

theparameterchoiceismuchlessunderstood.If<strong>regularization</strong>isappliedtothe<br />

projectedproblemthatisgeneratedbythe<strong>iterative</strong>method,thenthereareessentially<br />

two<strong>regularization</strong><strong>parameters</strong>:one<strong>for</strong>thestandard<strong>regularization</strong>algorithms,such<br />

asTikhonovortruncatedSVD,andonecontroll<strong>in</strong>gthenumberofiterationstaken.<br />

Onesubtleissueisthatthestandard<strong>regularization</strong>parameterthatiscorrect<strong>for</strong>the<br />

discretizedproblemmaynotbetheoptimalone<strong>for</strong>thelower-dimensionalproblem<br />

actuallysolvedbytheiteration,andthisobservationleadstotheresearchdiscussed<br />

<strong>in</strong>thispaper.Atrstglance,therecanappeartobealotofworkassociatedwith<br />

theselectionofagood<strong>regularization</strong>parameter,andmanyalgorithmsproposed<strong>in</strong><br />

theliteratureareneedlesslycomplicated.Butbyregulariz<strong>in</strong>gafterprojectionbythe<br />

<strong>iterative</strong>method,sothatweareregulariz<strong>in</strong>gthelowerdimensionalproblemthatis<br />

actuallybe<strong>in</strong>gsolved,muchofthisdicultyvanishes.<br />

Thepurposeofthispaperistopresent<strong>parameters</strong>electiontechniquesdesigned<br />

toreducethe<strong>regularization</strong>work<strong>for</strong><strong>iterative</strong><strong>methods</strong>suchasKrylovsubspacetechniques.Ourpaperisorganizedasfollows.Inx2,wewillgiveanoverviewofthe<br />

<strong>regularization</strong><strong>methods</strong>wewillbeconsider<strong>in</strong>g,andwefollowup<strong>in</strong>x3bysurvey<strong>in</strong>g<br />

some<strong>methods</strong><strong>for</strong><strong>choos<strong>in</strong>g</strong>thecorrespond<strong>in</strong>g<strong>regularization</strong><strong>parameters</strong>.Inx4,we<br />

showhow<strong>parameters</strong>electiontechniques<strong>for</strong>theorig<strong>in</strong>alproblemcanbeapplied<strong>in</strong>steadtoaprojectedproblemobta<strong>in</strong>edfroman<strong>iterative</strong>method,greatlyreduc<strong>in</strong>gthe<br />

costwithoutmuchdegradation<strong>in</strong>thesolution.Wegiveexperimentalresults<strong>in</strong>x5<br />

andconclusionsandfuturework<strong>in</strong>x6.<br />

2.Regularizationbackground.Inthefollow<strong>in</strong>gweshallassumethatb=<br />

btrue+e,wherebtruedenotestheunperturbeddatavectorandedenoteszero-mean<br />

whitenoise.WewillalsoassumethatbtruesatisesthediscretePicardcondition;<br />

thatis,thespectralcoecientsofbtruedecayfaster,onaverage,thanthes<strong>in</strong>gular<br />

values.<br />

Undertheseassumptions,itiseasytoseewhytheexactsolutionto(1)or(2)is<br />

hopelesslycontam<strong>in</strong>atedbynoise.Let^U^Vdenotethes<strong>in</strong>gularvaluedecomposition<br />

ofA,wherethecolumnsof^Uand^Varethes<strong>in</strong>gularvectors,andthes<strong>in</strong>gularvalues<br />

areorderedas12:::n.Thenthesolutionto(1)or(2)isgivenby<br />

x=nXi=1^uib<br />

i^vi=nXi=1^uibtrue<br />

i+^uie<br />

i^vi:<br />

(3)<br />

Asaconsequenceofthewhitenoiseassumption,j^uiejisroughlyconstant<strong>for</strong>alli,<br />

whilethediscretePicardconditionguaranteesthatj^uibtruejdecreaseswithifaster<br />

thanidoes.ThematrixAisill-conditioned,sosmalls<strong>in</strong>gularvaluesmagnifythe<br />

correspond<strong>in</strong>gcoecients^uie<strong>in</strong>thesecondsum,anditisthislargecontributionof<br />

noisefromtheapproximatenullspaceofAthatrenderstheexactsolutionxdened<br />

<strong>in</strong>(3)worthless.Thefollow<strong>in</strong>g<strong>regularization</strong><strong>methods</strong>try<strong>in</strong>dierentwaystolessen<br />

thecontributionofnoisetothesolution.Forfurther<strong>in</strong><strong>for</strong>mationonthese<strong>methods</strong>,<br />

see,<strong>for</strong>example,[17]. 2


2.1.Tikhonov<strong>regularization</strong>.Oneofthemostcommon<strong>methods</strong>of<strong>regularization</strong>isTikhonov<strong>regularization</strong>[34].Inthismethod,theproblem(1)or(2)is<br />

replacedwiththeproblemofsolv<strong>in</strong>g<br />

m<strong>in</strong><br />

xkAxbk2+2kLxk2<br />

(4)<br />

whereLdenotesamatrix,oftenchosentobetheidentitymatrixIoradiscrete<br />

derivativeoperator,andisapositivescalar<strong>regularization</strong>parameter.Forease<strong>in</strong><br />

notation,wewillassumethatL=I.Solv<strong>in</strong>g(4)isequivalenttosolv<strong>in</strong>g<br />

(AA+2I)x=Ab:<br />

(5)<br />

Inanalogywith(3)wehave<br />

x=nXi=1i^uibtrue<br />

2i+2+i^uie<br />

2i+2^vi:<br />

(6)<br />

Inthissolution,thecontributionsfromnoisecomponents^uie<strong>for</strong>valuesof<strong>in</strong>`.<br />

Analternative,yetrelated,approachtoTSVDisanapproach<strong>in</strong>troducedbyRust<br />

[31]wherethetruncationstrategyisbasedonthevalueofeachspectralcoecient<br />

^uibitself.Thestrategyisto<strong>in</strong>clude<strong>in</strong>thesum(3)onlythosetermscorrespond<strong>in</strong>gto<br />

aspectralcoecient^uibwhosemagnitudeisgreaterthanorequaltosometolerance<br />

,whichcanberegardedasthe<strong>regularization</strong>parameter.<br />

2.3.Projectionand<strong>iterative</strong><strong>methods</strong>.Solv<strong>in</strong>g(5)or(7)canbeimpractical<br />

ifnislarge,but<strong>for</strong>tunately,<strong>regularization</strong>canbeachievedthroughprojectiononto<br />

asubspace;see,<strong>for</strong>example,[7].ThetruncatedSVDisanexampleofonesuch<br />

projection:thesolutionisconstra<strong>in</strong>edtolie<strong>in</strong>thesubspacespannedbythes<strong>in</strong>gular<br />

vectorscorrespond<strong>in</strong>gtothelargestn`s<strong>in</strong>gularvalues.Otherprojectionscanbe<br />

moreeconomical.Ingeneral,weconstra<strong>in</strong>ourregularizedsolutiontolie<strong>in</strong>some<br />

k-dimensionalsubspaceofCn,spannedbythecolumnsofannkmatrixQ(k).For<br />

example,wechoosex(k)<br />

reg=Q(k)y(k)wherey(k)solves<br />

m<strong>in</strong><br />

y2CkkAQ(k)ybk2<br />

(8) 3


orequivalently (Q(k))AAQ(k)y=(Q(k))Ab:<br />

(9)<br />

Theideaisthatwithanappropriatelychosensubspace,theoperator(Q(k))AAQ(k)<br />

willbebetterconditionedthantheorig<strong>in</strong>aloperatorandhencethatx(k)<br />

regwillapproximatextruewellonthatsubspace.<br />

Thisprojectionisoftenachievedthroughtheuseof<strong>iterative</strong><strong>methods</strong>suchasconjugategradients,GMRES,QMR,andotherKrylovsubspace<strong>methods</strong>.Thematrix<br />

Q(k)thenconta<strong>in</strong>sorthonormalcolumnsgeneratedviaaLanczostridiagonalizationor<br />

bidiagonalizationprocess[27,1].Inthiscase,Q(k)isabasis<strong>for</strong>somek-dimensional<br />

Krylovsubspace(i.e.,thesubspaceKk(c;K)spannedbythevectorsc;Kc;:::;Kk1c<br />

<strong>for</strong>somematrixKandvectorc).Theregularizedsolutionsx(k)<br />

regaregenerated<strong>iterative</strong>lyasthesubspacesarebuilt.KrylovsubspacealgorithmssuchasCG,CGLS,<br />

GMRES,andLSQRtendtoproduce,atearlyiterations,solutionsthatresemblextrue<br />

<strong>in</strong>thesubspacespannedby(right)s<strong>in</strong>gularvectorsofAcorrespond<strong>in</strong>gtothelargest<br />

s<strong>in</strong>gularvalues.Atlateriterations,however,these<strong>methods</strong>starttoreconstruct<strong>in</strong>creas<strong>in</strong>gamountsofnoise<strong>in</strong>tothesolution.Thisisduetothefactthat<strong>for</strong>largek,<br />

theoperator(Q(k))AAQ(k)approachestheill-conditionedoperatorAA.There<strong>for</strong>e,thechoiceofthe<strong>regularization</strong>parameterk,thestopp<strong>in</strong>gpo<strong>in</strong>t<strong>for</strong>theiteration<br />

andthedimensionofthesubspace,isveryimportant.1<br />

2.4.Hybrid<strong>methods</strong>:projectionplus<strong>regularization</strong>.Anotherimportant<br />

familyof<strong>regularization</strong><strong>methods</strong>,oftenreferredtoashybrid<strong>methods</strong>[17],was<strong>in</strong>troducedbyO'LearyandSimmons[27].These<strong>methods</strong>comb<strong>in</strong>eaprojectionmethod<br />

withadirect<strong>regularization</strong><strong>methods</strong>uchasTSVDorTikhonov<strong>regularization</strong>.The<br />

problemisprojectedontoaparticularsubspaceofdimensionk,buttypicallythe<br />

restrictedoperator<strong>in</strong>(9)isstillill-conditioned.There<strong>for</strong>e,a<strong>regularization</strong>method<br />

isappliedtotheprojectedproblem.S<strong>in</strong>cethedimensionkisusuallysmallrelative<br />

ton,<strong>regularization</strong>oftherestrictedproblemismuchlessexpensive.Yet,withan<br />

appropriatelychosensubspace,theendresultscanbeverysimilartothoseachieved<br />

byapply<strong>in</strong>gthesamedirect<strong>regularization</strong>techniquetotheorig<strong>in</strong>alproblem.Wewill<br />

becomemorepreciseabouthow\similar"thesolutionsare<strong>in</strong>x4.5.Becausetheprojectedproblemsareusuallygenerated<strong>iterative</strong>lybyaLanczosmethod,thisapproach<br />

isusefulwhenAissparseorstructured<strong>in</strong>suchawaythatmatrix-vectorproducts<br />

canbehandledecientlywithm<strong>in</strong>imalstorage.<br />

3.Exist<strong>in</strong>g<strong>parameters</strong>election<strong>methods</strong>.Inthissection,wediscussasampl<strong>in</strong>gofthe<strong>parameters</strong>electiontechniquesthathavebeenproposed<strong>in</strong>theliterature.<br />

Theydier<strong>in</strong>theamountofapriori<strong>in</strong><strong>for</strong>mationrequiredaswellas<strong>in</strong>thedecision<br />

criteria.<br />

3.1.TheDiscrepancyPr<strong>in</strong>ciple.Ifsomeextra<strong>in</strong><strong>for</strong>mationisavailable{<strong>for</strong><br />

example,anestimateofthevarianceofthenoisevectore{thenthe<strong>regularization</strong><br />

parametercanbechosenrathereasily.Morozov'sDiscrepancyPr<strong>in</strong>ciple[25]saysthat<br />

ifistheexpectedvalueofkek2,thenthe<strong>regularization</strong><strong>parameters</strong>houldbechosen<br />

sothatthenormoftheresidualcorrespond<strong>in</strong>gtotheregularizedsolutionxregis;<br />

thatis, kAxregbk2=;<br />

(10)<br />

1Usually,smallvaluesofthe<strong>regularization</strong>parametercorrespondtoaclosersolutiontothenoisy<br />

equation,butdespitethis,wewillcallk,ratherthan1=k,the<strong>regularization</strong>parameter.<br />

4


10 3<br />

<strong>parameters</strong>electionmethoddoesnotdependonaprioriknowledgeaboutthenoise Other<strong>methods</strong>basedonknowledgeofthevariancearegiven,<strong>for</strong>example,<strong>in</strong>[12,5]. <strong>regularization</strong>totheproblem<strong>in</strong>Example2 where>1issomepredeterm<strong>in</strong>edrealnumber.Notethatas!0;xreg!xtrue. 3.2.GeneralizedCross-Validation.TheGeneralizedCross-Validation(GCV) Fig.1.ExampleofatypicalL-curve.ThisparticularL-curvecorrespondstoapply<strong>in</strong>gTikhonov<br />

10 2<br />

10 1<br />

10 −3 10 −2 10 −1 10 0 10 1<br />

|| r λ<br />

||<br />

solutionx.InTikhonov<strong>regularization</strong>,<strong>for</strong>example,A]is variance.ThisideaofGolub,Heath,andWahba[9]istondtheparameterthat m<strong>in</strong>imizestheGCVfunctional<br />

GCVchoosesa<strong>regularization</strong>parameterthatisnottoodependentonanyonedata (11) whereA]denotesthematrixthatmapstherighthandsidebontotheregularized G()=k(IAA])bk2 (AA+2I)1A: (trace(IAA]))2;<br />

measurement[11,12.1.3]. erroranderrorduetonoiseistoplotthenormoftheregularizedsolutionversus 3.3.TheL-Curve.Onewaytovisualizethetradeobetween<strong>regularization</strong><br />

2<br />

s<strong>in</strong>ce<strong>for</strong>valueshigherthanthis,theresidual<strong>in</strong>creaseswithoutreduc<strong>in</strong>gthenorm <strong>in</strong>creasesrapidlywithoutmuchdecrease<strong>in</strong>residual.Inpractice,onlyafewpo<strong>in</strong>ts ontheL-curvearecomputedandthecornerislocatedbyapproximate<strong>methods</strong>, ofthesolutionmuch,while<strong>for</strong>valuessmallerthanthis,thenormofthesolution thecorrespond<strong>in</strong>gresidualnorm<strong>for</strong>eachofasetof<strong>regularization</strong>parametervalues.<br />

estimat<strong>in</strong>gthepo<strong>in</strong>tofmaximumcurvature[19]. TheresultistheL-curve,<strong>in</strong>troducedbyLawsonandpopularizedbyHansen[15]. SeeFigure1<strong>for</strong>atypicalexample.Asthe<strong>regularization</strong>parameter<strong>in</strong>creases,noise Intuitively,thebest<strong>regularization</strong><strong>parameters</strong>houldlieonthecorneroftheL-curve, isdamped,sothatthenormofthesolutiondecreaseswhiletheresidual<strong>in</strong>creases.<br />

dicultproblem,andeachmethodhassevereaws. atechoiceof<strong>regularization</strong>parameter{especially<strong>for</strong>projectionalgorithms{isa pendonspecicknowledgeaboutthenoisevector. 3.4.Disadvantagesoftheseparameterchoicealgorithms.Theappropri-<br />

LikeGCV,thismethodofdeterm<strong>in</strong><strong>in</strong>ga<strong>regularization</strong>parameterdoesnotde-<br />

5<br />

|| x λ<br />

|| 2


egularization<strong>methods</strong>withvarious<strong>parameters</strong>electiontechniques.Notation: Summaryofadditionalopsneededtocomputethe<strong>regularization</strong>parameter<strong>for</strong>eachfour Tikhonov Rust'sTSVDO(mn2)O(mlogm)O(mlogm)O(mlogm) ProjectionBasiccost O(mn2)O(p(m+n))O(p(n+m))O(p(m+n))<br />

O(m) Disc. AddedCost<br />

qisthecostofmultiplicationofavectorbyA. O(qk) Table1 0 O(m) GCV O(q) O(m+n) L-curve<br />

kisthedimensionoftheprojection. pisthenumberofdiscrete<strong>parameters</strong>thatmustbetried; mandnareproblemdimensions. O(q)<br />

correctestimateofthevariance,thesolutionstendtobeoversmoothed[20,pg.96] itdiculttodeterm<strong>in</strong>etheoptimalnumerically[35]. orastheerrornormgoestozero[6].All<strong>methods</strong>thatassumenoknowledgeofthe nonideal.Thesolutionestimatesfailtoconvergetothetruesolutionasn!1[36] (seealsothediscussion<strong>in</strong>x6.1of[15]). know<strong>in</strong>g<strong>in</strong><strong>for</strong>mationthatisoftenunavailableor<strong>in</strong>correctlyestimated.Evenwitha TheL-curveisusuallymoretractablenumerically,butitslimit<strong>in</strong>gpropertiesare OnenoteddicultywithGCVisthatGcanhaveaveryatm<strong>in</strong>imum,mak<strong>in</strong>g TheDiscrepancyPr<strong>in</strong>cipleisconvergentasthenoisegoestozero,butitrelieson<br />

thesesystemsus<strong>in</strong>gprojection<strong>methods</strong>. glance,itappearsthat<strong>for</strong>Tikhonov<strong>regularization</strong>,multiplesystemsofthe<strong>for</strong>m (5)mustbesolved<strong>in</strong>ordertoevaluatecandidatevaluesof<strong>for</strong>theDiscrepancy Pr<strong>in</strong>cipleortheL-curve.Techniqueshavebeensuggested<strong>in</strong>theliterature<strong>for</strong>solv<strong>in</strong>g errornorm{<strong>in</strong>clud<strong>in</strong>gGCV{havethislatterproperty[6]. Thecostofthese<strong>methods</strong>istabulated<strong>in</strong>Table1. Forfurtherdiscussionandreferencesaboutparameterchoice<strong>methods</strong>,see[5,17].<br />

matricesmatricesC()=AA+I,andtheysuggestsolv<strong>in</strong>gthesystemssimultaneouslyus<strong>in</strong>gaGalerk<strong>in</strong>projectionmethodonasequenceof\seed"systems.Although<br />

thisiseconomical<strong>in</strong>storage,itcanbeunnecessarilyexpensive<strong>in</strong>timebecausethey ChanandNg[4],<strong>for</strong>example,notethatthesystems<strong>in</strong>volvethecloselyrelated 3.5.Previousworkonparameterchoice<strong>for</strong>hybrid<strong>methods</strong>.Atrst<br />

redundancy<strong>in</strong>generat<strong>in</strong>gtheKrylov-subspaces<strong>for</strong>eachi.Thesecondmethod <strong>for</strong>laterproblems.LikeChanandNg,thisalgorithmdoesnotexploitanyofthe the<strong>iterative</strong>processearly<strong>for</strong>largeandus<strong>in</strong>gprevioussolutionsasstart<strong>in</strong>gguesses theypropose,however,doesexploittheredundancysothattheCGiterates<strong>for</strong>allk donotexploitthefactthat<strong>for</strong>eachxedk,theKrylovsubspaceKk(Ab;C())is<br />

systemscanbeupdatedsimultaneouslywithnoextramatrix-vectorproducts.They thesame<strong>for</strong>allvaluesof.<br />

stoptheir\shiftedcg"algorithmwhenkAxbk2<strong>for</strong>oneoftheirvalues. whichtheyuseconjugategradientstosolveksystemsofthe<strong>for</strong>m(5),truncat<strong>in</strong>g satisestheDiscrepancyPr<strong>in</strong>ciple(10).Therstisa\truncatedcg"approach<strong>in</strong> FrommerandMaass[8]proposetwoalgorithms<strong>for</strong>approximat<strong>in</strong>gthethat<br />

<strong>for</strong>thisparticularsystemtoconverge.Wenotethatwhilethealgorithmswepropose <strong>in</strong>x4<strong>for</strong>nd<strong>in</strong>gagoodvalueofarebasedonthesamekeyobservationregard<strong>in</strong>g Thusthenumberofmatrix-vectorproductsrequiredistwicethenumberofiterations 6


theKrylovsubspace,our<strong>methods</strong>willusuallyrequirelessworkthantheshiftedcg algorithm. generatedbythematricesC()us<strong>in</strong>gaLanczosbidiagonalizationprocess.Fromthis, proach<strong>for</strong>theTikhonovL-curveproblem.Theirmethodismorecomplicatedthanthe problemthatisactuallybe<strong>in</strong>gused. izationontheprojectedproblem,s<strong>in</strong>cethisistheapproximationtothecont<strong>in</strong>uous theyapproximatethebestparameter<strong>for</strong>Tikhonov<strong>regularization</strong>withoutprojection. Inx4,wechoose<strong>in</strong>steadtoapproximatethebestparameter<strong>for</strong>Tikhonovregular-<br />

<strong>methods</strong>weproposebecausetheyma<strong>in</strong>ta<strong>in</strong>nonnegativityconstra<strong>in</strong>tsonthevariables. Calvetti,Golub,andReichel[3]computeupperandlowerboundsontheL-curve KaufmanandNeumaier[21]suggestanenvelopeguidedconjugategradientap-<br />

[27].Forexample,<strong>in</strong>placeof(4),wesolve soweimplicitlyassumethattheproblemhasbeenleft-preconditionedor\ltered" numberofiterationsisunnecessary.Thatviewpo<strong>in</strong>tisechoed<strong>in</strong>thiscurrentwork, viewpo<strong>in</strong>tthattheproblemshouldbepreconditionedappropriatelysothatamassive po<strong>in</strong>t<strong>for</strong>theprojectedSVD.Theiremphasisisonstablewaystoma<strong>in</strong>ta<strong>in</strong>anaccurate problems.Bjorck,Grimme,andvanDooren[2]useGCVtodeterm<strong>in</strong>ethetruncation factorizationwhenmanyiterationsareneeded,andtheyusefullreorthogonalization andimplicitrestartstrategies.O'LearyandSimmons[27]takeasomewhatdierent SubstantialworkhasalsobeendoneonTSVD<strong>regularization</strong>oftheprojected<br />

rightprecondition<strong>in</strong>g,whichamountstosolv<strong>in</strong>g,<strong>in</strong>theTikhonovcase, <strong>for</strong>asquarepreconditionerM.See[14,26,24,23]<strong>for</strong>preconditionersappropriate<strong>for</strong> certa<strong>in</strong>typesofill-posedproblems.Notethatwecouldalternatelyhaveconsidered m<strong>in</strong> xkM1AxM1bk2+2kxk2<br />

eectivelychangesthebalancebetweenthetwoterms<strong>in</strong>them<strong>in</strong>imization. <strong>for</strong>ythensett<strong>in</strong>gx=M1y.Notethateitherleftorrightprecondition<strong>in</strong>g ofPaigeandSaunders[29]andtheGMRESalgorithmofSaadandSchultz[33]. proachesto<strong>regularization</strong>us<strong>in</strong>gKrylov<strong>methods</strong>.ManyKrylov<strong>methods</strong>havebeen proposed;<strong>for</strong>easeofexpositionwefocusonjusttwoofthese:theLSQRalgorithm 4.Regulariz<strong>in</strong>gtheprojectedproblem.Inthissectionwedevelopn<strong>in</strong>eap-<br />

m<strong>in</strong> ykAIM1yb0k;<br />

onalization<strong>in</strong>troducedbyGolubandKahan[10].Givenavectorb,thealgorithmis asfollows[29,Alg.Bidiag1]: TheLSQRalgorithmofPaigeandSaunders[29]<strong>iterative</strong>lycomputesthebidiag-<br />

Computeascalar1andavectoru1oflengthonesothat1u1=b.<br />

algorithmcanberewritten<strong>in</strong>matrix<strong>for</strong>mbyrstden<strong>in</strong>gthematrices Thevectorsui;viarecalledtheleftandrightLanczosvectorsrespectively.The Fori=1,2,... Similarly,determ<strong>in</strong>e1andv1sothat1v1=ATu1. End<strong>for</strong> Leti+1ui+1=Aviiuiandi+1vi+1=ATui+1i+1vi, wherethenon-negativescalarsi+1andi+1arechosen sothatui+1andvi+1havelengthone. Uk[u1;:::;uk];Vk[v1;:::;vk]; 7


Witheidenot<strong>in</strong>gtheithunitvector,thefollow<strong>in</strong>grelationscanbeestablished: Bk2641<br />

(12) 22<br />

(13) AVk=Uk+1Bk; b=1u1=1Uk+1e1; 3... ...k k+1 3 75:<br />

(14) (15) wherethesubscriptonIdenotesthedimensionoftheidentity. (16) whereSdenotesthek-dimensionalsubspacespannedbytherstkLanczosvectors Nowsupposewewanttosolvem<strong>in</strong> V kVk=Ik; ATUk+1=VkBTk+k+1vk+1eTk+1;<br />

vi.Thesolutionweseekisofthe<strong>for</strong>mx(k)=Vky(k)<strong>for</strong>somevectory(k)oflengthk. Dener(k)=bAx(k)tobethecorrespond<strong>in</strong>gresidual.Fromtherelationsabove, x2SkbAxk2 Uk+1Uk+1=Ik+1;<br />

observethat<strong>in</strong>exactarithmetic<br />

(18) (17) There<strong>for</strong>e,theprojectedproblemwewishtosolveis S<strong>in</strong>ceUk+1has,<strong>in</strong>exactarithmetic,orthonormalcolumns,wehave r(k)=1u1AVky(k) kr(k)k2=k1e1Bky(k)k2:<br />

y(k)k1e1Bky(k)k2: =Uk+1(1e1Bky(k))<br />

(19) Typicallykissmall,soreorthogonalizationtocombattheeectsof<strong>in</strong>exactarithmetic volv<strong>in</strong>gthebidiagonalmatrix:BkBky(k)=1Bke1: Solv<strong>in</strong>gthism<strong>in</strong>imizationproblemisequivalenttosolv<strong>in</strong>gthenormalequations<strong>in</strong>-<br />

ofitss<strong>in</strong>gularvaluesapproximatesomeofthesmalls<strong>in</strong>gularvaluesofA.There<strong>for</strong>e discussoptions<strong>in</strong>detailbelow.Asalludedto<strong>in</strong>x4,theideaistogeneratey(k) mightormightnotbenecessary.ThematrixBkmaybeill-conditionedbecausesome regularizedsolutionto(18),andthentocomputearegularizedsolutionto(16)as solv<strong>in</strong>gtheprojectedproblemmightnotyieldagoodsolutiony(k).However,we canuseanyofthe<strong>methods</strong>ofSection3toregularizethisprojectedproblem;we x(k) relationships. relations.Here,though,theUandVmatricesareidenticalandtheBmatrixis upperHessenbergratherthanbidiagonal.Conjugategradientswouldyieldsimilar reg=Vky(k) IfweusedthealgorithmGMRES<strong>in</strong>steadofLSQR,wewouldderivesimilar Forcostcomparisons<strong>for</strong>these<strong>methods</strong>,seeTables1and2.Storagecomparisons reg. reg,the<br />

aregiven<strong>in</strong>Tables3and4. 8


4.1.Regularizationbyprojection.Asmentionedearlier,ifweterm<strong>in</strong>atethe<br />

iterationafterksteps,wehaveprojectedthesolutionontoakdimensionalsubspace<br />

andthishasaregulariz<strong>in</strong>geectthatissometimessucient.Determ<strong>in</strong><strong>in</strong>gthebest<br />

valueofkcanbeaccomplished,<strong>for</strong><strong>in</strong>stance,byoneofourthree<strong>methods</strong>ofparameter<br />

choice:<br />

1.DiscrepancyPr<strong>in</strong>ciple.<br />

Inthiscase,westoptheiteration<strong>for</strong>thesmallestvalueofk<strong>for</strong>whichkrkk<br />

.BothLSQRandGMREShaverecurrencerelations<strong>for</strong>determ<strong>in</strong><strong>in</strong>gkrkk<br />

us<strong>in</strong>gscalarcomputations,withoutcomput<strong>in</strong>geitherrkorxk[29,32].<br />

2.GCV.<br />

Fortheprojectedproblems(seex4.1)denedbyeitherLSQRorGMRES,<br />

theoperatorAA]isgivenbyUk+1BkBykUk+1<br />

whereBykisthepseudo-<strong>in</strong>verseofthematrixBk.Thusfrom(11),theGCV<br />

functionalis[17] G(k)=kr(k)k2<br />

(mk)2:<br />

Wenotethatthereare<strong>in</strong>facttwodist<strong>in</strong>ctdenitions<strong>for</strong>Bykandhencetwo<br />

denitions<strong>for</strong>thedenom<strong>in</strong>ator<strong>in</strong>G(k);<strong>for</strong>smallenoughk,thetwoare<br />

comparable,andthedenitionweusehereislessexpensivetocalculate[18,<br />

x7.4].<br />

3.L-Curve.<br />

Todeterm<strong>in</strong>etheL-curveassociatedwithLSQRorGMRES,estimatesof<br />

krkk2andkxkk2areneeded<strong>for</strong>severalvaluesofk.Us<strong>in</strong>geitheralgorithm,<br />

wecancomputekrkk2withonlyafewscalarcalculations.PaigeandSaunders<br />

giveasimilarmethod<strong>for</strong>comput<strong>in</strong>gkxkk2[29],but,withGMRES,thecost<br />

<strong>for</strong>comput<strong>in</strong>gkxkk2isO(k2).Inus<strong>in</strong>gthismethodorGCV,onemustgoa<br />

fewiterationsbeyondtheoptimalk<strong>in</strong>ordertoverifytheoptimum[19].<br />

4.2.RegularizationbyprojectionplusTSVD.Ifprojectionalonedoesnot<br />

regularize,thenwecancomputetheTSVDregularizedsolutiontotheprojected<br />

problem(19).WeneedtheSVDofthe(k+1)kmatrixBk.ThisrequiresO(k3)<br />

operations,butcanalsobecomputedfromtheSVDofBk1<strong>in</strong>O(k2)operations[13].<br />

Clearly,westillneedtousesometypeof<strong>parameters</strong>electiontechniquetonda<br />

goodvalueof`(k).First,noticethatitiseasytocomputethenormsoftheresidual<br />

andthesolutionresult<strong>in</strong>gfromneglect<strong>in</strong>gthe`smallests<strong>in</strong>gularvalues.Ifjkisthe<br />

componentofe1<strong>in</strong>thedirectionofthej-thlefts<strong>in</strong>gularvectorofBk,andifjis<br />

thej-ths<strong>in</strong>gularvalue(orderedlargesttosmallest),thentheresidualandsolution<br />

2-normsare10@k+1<br />

X<br />

j=k`(k)+12jk1A1=2and10@k`(k)<br />

Xj=1jk<br />

j21A1=2:<br />

(20)<br />

Us<strong>in</strong>gthisfact,wecanuseanyofourthreesample<strong>methods</strong>:<br />

1.DiscrepancyPr<strong>in</strong>ciple.<br />

Letr(k)<br />

`denotethequantitybAx(k)<br />

`andnotethatby(13)andorthonormality,kr(k)<br />

`k2isequaltotherstquantity<strong>in</strong>(20).There<strong>for</strong>e,wechoose<br />

`(k)tobethelargestvalue<strong>for</strong>whichkr(k)<br />

`k,ifsuchavalueexists.<br />

9


2.GCV.<br />

Anotheralternative<strong>for</strong><strong>choos<strong>in</strong>g</strong>`(k)istouseGCVtocompute`(k)<strong>for</strong><br />

theprojectedproblem.TheGCVfunctional<strong>for</strong>thekthprojectedproblem<br />

isobta<strong>in</strong>edbysubstitut<strong>in</strong>gBk<strong>for</strong>AandB]k<strong>for</strong>A],andsubstitut<strong>in</strong>gthe<br />

expressionoftheresidual<strong>in</strong>(20)<strong>for</strong>thenumerator<strong>in</strong>(11):<br />

Gk(`)=21Pk+1<br />

j=k`+12jk<br />

(`+1)2:<br />

3.L-Curve.<br />

WenowhavemanyL-curves,one<strong>for</strong>eachvalueofk.Thecoord<strong>in</strong>atevalues<br />

<strong>in</strong>(20)<strong>for</strong>mthediscreteL-curve<strong>for</strong>agivenk,fromwhichthedesiredvalue<br />

of`(k)canbechosenwithout<strong>for</strong>m<strong>in</strong>gtheapproximatesolutionsorresiduals.<br />

Ask<strong>in</strong>creases,thevalue`(k)chosenbytheDiscrepancyPr<strong>in</strong>ciplewillbemonotonicallynondecreas<strong>in</strong>g.<br />

4.3.RegularizationbyprojectionplusRust'sTSVD.As<strong>in</strong>standardTSVD,<br />

touseRust'sversionofTSVD<strong>for</strong><strong>regularization</strong>oftheprojectedproblemrequires<br />

thatwecomputetheSVDofthe(k+1)kmatrixBk.Us<strong>in</strong>gthepreviousnotation,<br />

Rust'sstrategyistoset y(k)<br />

=X<br />

i2I(k)<br />

ik<br />

iq(k)<br />

i<br />

whereq(k)<br />

jaretherights<strong>in</strong>gularvectorsofBkandI(k)<br />

=fig.We<br />

focusonthreewaystodeterm<strong>in</strong>e:<br />

1.DiscrepancyPr<strong>in</strong>ciple.<br />

Us<strong>in</strong>gthenotationfromtheprevioussection,thenormoftheregularizedsolutionisgivenby1(Pi62I(k)<br />

2ik)1=2=kr(k)<br />

k2:Accord<strong>in</strong>gtothediscrepancy<br />

pr<strong>in</strong>ciple,wemustchoosesothattheresidualislessthan.Inpractice,<br />

thiswouldrequirethattheresidualbeevaluatedbysort<strong>in</strong>gthevaluesjikj<br />

andadd<strong>in</strong>gterms<strong>in</strong>thatorderuntiltheresidualnormislessthan.<br />

2.GCV.<br />

Letusdenotebycard(I(k)<br />

)thecard<strong>in</strong>alityofthesetI(k)<br />

.From(11),itis<br />

easytoshowthattheGCVfunctionalcorrespond<strong>in</strong>gtotheprojectedproblem<br />

<strong>for</strong>this<strong>regularization</strong>techniqueisgivenby<br />

Gk()=21Pi2I(k)<br />

2ik<br />

(k+1card(I(k)<br />

))2:<br />

Inpractice,<strong>for</strong>eachkwerstsortthevaluesjikj;i=1;:::;kfromsmallest<br />

tolargest.Thenwedenekdiscretevaluesjtobeequaltothesevalues<br />

with1be<strong>in</strong>gthesmallest.Weset0=0.Notethatbecausethevaluesof<br />

j;j=1;:::;karethesortedmagnitudesoftheSVDexpansioncoecients,<br />

wehaveGk(j)=21(j(k+1);kj2+Pji=12j)<br />

(j+1)2 ;j=0;:::;k:<br />

F<strong>in</strong>ally,wetakethe<strong>regularization</strong>parametertobethej<strong>for</strong>whichGk(j)<br />

isam<strong>in</strong>imum. 10


3.L-Curve.<br />

AswithstandardTSVD,wenowhaveoneL-curve<strong>for</strong>eachvalueofk.For<br />

xedk,ifwedenethej;j=0;:::;kaswedid<strong>for</strong>GCVaboveandwe<br />

reorderthei<strong>in</strong>thesamewaythatthejikjwerereorderedwhensorted,<br />

thenwehave<br />

kx(k)<br />

jk2=21kX<br />

i=j+1i<br />

i2;kr(k)<br />

jk2=21(j(k+1);kj2+jXi=12j)j=0;:::;k:<br />

Whenthesesolutionandresidualnormsareplottedaga<strong>in</strong>steachotheras<br />

functionsof,thevalueofjcorrespond<strong>in</strong>gtothecornerisselectedasthe<br />

<strong>regularization</strong>parameter.<br />

4.4.RegularizationbyprojectionplusTikhonov.F<strong>in</strong>ally,letusconsider<br />

us<strong>in</strong>gTikhonov<strong>regularization</strong>toregularizetheprojectedproblem(18)<strong>for</strong>some<strong>in</strong>tegerk.Thus,<strong>for</strong>agiven<strong>regularization</strong>parameter,wewouldliketosolve<br />

m<strong>in</strong><br />

yk1e1Bkyk2+2kyk2;<br />

(21)<br />

or,equivalently, m<strong>in</strong><br />

yk1e1<br />

0Bk<br />

Iyk2:<br />

(22)<br />

Thesolutiony(k)<br />

toeither<strong>for</strong>mulationsatises<br />

(BkBk+2I)y(k)<br />

=1Bke1:<br />

(23)<br />

Us<strong>in</strong>g(13)and(15),weseethaty(k)<br />

alsosatises<br />

(V<br />

kAAVk+2I)y(k)<br />

=V<br />

kAb:<br />

(24)<br />

There<strong>for</strong>e, y(k)<br />

=argm<strong>in</strong>ykAIVkyb0k2:<br />

Us<strong>in</strong>gx(k)<br />

=Vky(k)<br />

,wehave<br />

x(k)<br />

=argm<strong>in</strong>x2SkAxbk2+2kxk2:<br />

Thusask!n,thebackprojectedregularizedsolutionx(k)<br />

approachesthesolution<br />

to(4).<br />

Weneedtoaddresshowtochooseasuitablevalueof.<br />

1.DiscrepancyPr<strong>in</strong>ciple.<br />

Notethat<strong>in</strong>exactarithmetic,wehave<br />

r(k)<br />

=bAx(k)<br />

=Uk+1(1e1Bky(k)<br />

):<br />

(25)<br />

HencekBky(k)<br />

1e1k2=kr(k)<br />

k2.There<strong>for</strong>e,tousetheDiscrepancyPr<strong>in</strong>ciplerequireswechoosesothatkr(k)<br />

k2,withpdiscretetrialvaluesj.<br />

Foragivenk,wetaketobethelargestvaluej<strong>for</strong>whichkr(k)<br />

k2


2.GCV.<br />

Letusdene(Bk)ytobetheoperatormapp<strong>in</strong>gtherighthandsideofthe<br />

projectedproblemontotheregularizedsolutionoftheprojectedproblem:<br />

(Bk)y=(BkBk+2I)1Bk:<br />

GiventheSVDofBkasabove,thedenom<strong>in</strong>ator<strong>in</strong>theGCVfunctional<br />

dened<strong>for</strong>theprojectedproblem(referto(11))is<br />

0@k+1kXj=12j<br />

2j+21A2:<br />

Thenumeratorissimplykr(k)<br />

k2.Forvaluesofkn,itisfeasibletocompute<br />

thes<strong>in</strong>gularvaluesofBk.<br />

3.L-Curve.<br />

TheL-curveiscomprisedofthepo<strong>in</strong>ts(kBky(k)<br />

1e1k2;ky(k)<br />

k2).Butus<strong>in</strong>g<br />

(25)andtheorthonormalityofthecolumnsofVk,weseethesepo<strong>in</strong>tsare<br />

precisely(kr(k)<br />

k2;kx(k)<br />

k2).Forpdiscretevaluesof,i;1ip,the<br />

quantitieskr(k)<br />

ik2andkx(k)<br />

ik2canbeobta<strong>in</strong>edbyupdat<strong>in</strong>gtheirrespective<br />

estimatesatthe(k1)stiteration.2<br />

4.5.CorrespondencebetweenDirectRegularizationandProjection<br />

PlusRegularization.Inthissection,wearguewhytheprojectionplus<strong>regularization</strong>approachescanbeexpectedtoyieldregularizedsolutionsnearlyequivalentto<br />

thedirect<strong>regularization</strong>counterpart.Thefollow<strong>in</strong>gtheoremestablishesthedesired<br />

result<strong>for</strong>thecaseofTikhonovvs.projectionplusTikhonov.<br />

Theorem4.1.Fix>0anddenex(k)<br />

tobethekthiterateofconjugate<br />

gradientsappliedtotheTikhonovproblem<br />

(AA+2I)x=Ab:<br />

Lety(k)<br />

betheexactsolutiontotheregularizedprojectedproblem<br />

(BkBk+2I)y=Bk(e1)<br />

whereBk;Vkarederivedfromtheorig<strong>in</strong>alproblemAA=Ab,andsetz(k)<br />

=Vky(k)<br />

.<br />

Thenz(k)<br />

=x(k)<br />

.<br />

Proof:Bythediscussionatthebeg<strong>in</strong>n<strong>in</strong>gofx4.4andequations(23)and(24),it<br />

followsthaty(k)<br />

solvesV<br />

k(AA+2I)Vky=V<br />

kAb:<br />

NowthecolumnsofVkaretheLanczosvectorswithrespecttothematrixAAand<br />

right-handsideAb.ButthesearethesameastheLanczosvectorsgeneratedwith<br />

respecttothematrixAA+2Iandright-handsideAb.There<strong>for</strong>eVky(k)<br />

isprecisely<br />

thekthiterateofconjugategradientsappliedto(AA+2I)x=Ab[11,pg.495].<br />

Hencez(k)<br />

=x(k)<br />

.2<br />

2Thetechnicaldetailsoftheapproacharefound<strong>in</strong>[28,pp.197-198],fromwhichweobta<strong>in</strong><br />

kr(k)<br />

k=qkr(k)<br />

k2+2kx(k)<br />

k2.Theimplementationdetails<strong>for</strong>estimat<strong>in</strong>gkx(k)<br />

kandkr(k)<br />

kwere<br />

takenfromthePaigeandSaundersalgorithmathttp://www.netlib.org/l<strong>in</strong>alg/lsqr.<br />

12


Projectionplus{Disc.GCVL-curve<br />

Tikhonov O(pk)O(k3)O(pk)<br />

TSVD O(k3)O(k3)O(k3)<br />

Rust's O(k3)O(k3)O(k3)<br />

Table2<br />

Summaryofops<strong>for</strong>projectionplus<strong>in</strong>ner<strong>regularization</strong>withvarious<strong>parameters</strong>election<br />

techniques,<strong>in</strong>additiontotheO(qk)opsrequired<strong>for</strong>projectionitself.Herekisthenumberof<br />

iterations(ie.thesizeoftheprojection)takenandpisthenumberofdiscrete<strong>parameters</strong>thatmust<br />

betried.<br />

LetusturntothecaseofTSVD<strong>regularization</strong>appliedtotheorig<strong>in</strong>alproblem<br />

vs.theprojectionplusTSVDapproach.Directcomputationconv<strong>in</strong>cesusthatthe<br />

two<strong>methods</strong>computethesameregularizedsolutionifk=nandarithmeticisexact.<br />

Anapproximateresultholds<strong>in</strong>exactarithmeticwhenwetakekiterations,with<br />

n`=j


<strong>parameters</strong>electiontechniques.Theorig<strong>in</strong>almatrixismnwithqnonzeros,pisthenumberof Summaryofadditionalstorage<strong>for</strong>eachoffour<strong>regularization</strong><strong>methods</strong>undereachofthree Tikhonov Rust'sTSVDO(^q)O(m)O(m)O(m) ProjectionBasiccost O(kn)O(1)O(k)O(k) O(^q)O(1)O(p)O(p) O(^q)O(1)O(m)O(m) Table3Disc.GCVL-curve<br />

AddedCost<br />

assumedtotake^qstorage. discrete<strong>parameters</strong>thatmustbetried,kiterationsareused<strong>in</strong>projection,andthefactorizationsare<br />

izationapproach,various<strong>parameters</strong>electiontechniques.Herepdenotesthenumberofdiscrete <strong>parameters</strong>tried.Eachofthese<strong>regularization</strong><strong>methods</strong>alsorequiresustosavethebasisVorelse regenerateit<strong>in</strong>ordertoreconstructx. Summaryofstorage,not<strong>in</strong>clud<strong>in</strong>gstorage<strong>for</strong>thematrix,<strong>for</strong>projectionplus<strong>in</strong>nerregular-<br />

Projectionplus{Disc.GCVL-curve Tikhonov Rust'sTSVDO(k)O(k+p)O(k+p) O(1)O(p)O(p) O(1)O(k)O(k)<br />

experimentswerecarriedoutus<strong>in</strong>gMatlabandHansen'sRegularizationTools[16], 5.Numericalresults.Inthissection,wepresenttwonumericalexamples.All Table4<br />

normdierencebetweentheregularizedsolutionsandtheexactsolutions.Inboth tobethemagnitudesofthespectralcoecientsofbsorted<strong>in</strong><strong>in</strong>creas<strong>in</strong>gorder. solutionswereknown<strong>in</strong>bothexamples,weevaluatedthe<strong>methods</strong>us<strong>in</strong>gthetwo-<br />

exampleswhenweappliedRust'smethodtotheorig<strong>in</strong>alproblem,theiweretaken withIEEEdoubleprecisionoat<strong>in</strong>gpo<strong>in</strong>tarithmetic.S<strong>in</strong>cetheexact,noise-free<br />

techniqueswereappliedtogetherwithoneofthefour<strong>regularization</strong><strong>methods</strong>onthe valuesofthe<strong>regularization</strong><strong>parameters</strong>chosenwhenthethree<strong>parameters</strong>election generatedbtrue=Axtrueandthencomputedthenoisyvectorbasb+e,whereewas weregeneratedus<strong>in</strong>gthefunctionbaart<strong>in</strong>Hansen'sRegularizationToolbox.We generatedus<strong>in</strong>gtheMatlabrandnfunctionandwasscaledsothatthenoiselevel, kbtruek,was103.TheconditionnumberofAwasontheorderof1019.<br />

Manyvaluesofweretested:log10=6;5:9;:::;2.Table5displaysthe 5.1.Example1.The200200matrixAandtruesolutionxtrue<strong>for</strong>thisexample<br />

orig<strong>in</strong>alproblem.S<strong>in</strong>cekek2=5:3761E4,wesetthatdenesthediscrepancy pr<strong>in</strong>cipleastheverycloseapproximation5:5E4. solution.Therelativeerrorvalues<strong>for</strong>regularizedsolutionscorrespond<strong>in</strong>gtothe regularizedsolutionwiththem<strong>in</strong>imumrelativeerrorwhencomparedaga<strong>in</strong>stthetrue correspond<strong>in</strong>gtosolutionnormsgreaterthan106<strong>for</strong>theTSVD<strong>methods</strong>werenot weredeterm<strong>in</strong>edus<strong>in</strong>gHansen'slcornerfunction,withthemodicationthatpo<strong>in</strong>ts <strong>parameters</strong><strong>in</strong>Table5aregiven<strong>in</strong>Table6.Notethatus<strong>in</strong>gGCVtodeterm<strong>in</strong>ea <strong>regularization</strong>parameter<strong>for</strong>Rust'sTSVDresulted<strong>in</strong>anextremelynoisysolution withhugeerror. Thelastcolumn<strong>in</strong>thetablegivesthevalueoftheparameterthatyieldeda ThecornersoftheL-curves<strong>for</strong>theTikhonov,projection,andTSVD<strong>methods</strong> 14


Tikhonov1:259E31:995E42:512E4 TSVD` Rust'sTSVD1:223E49:645E71:223E41:259E4or1:223E4 Projectionk Disc. 197 197 196 5:012E5 optimal<br />

Tikhonov.1330.1110.1084.0648 Example1:parametervaluesselected<strong>for</strong>eachmethod. 4Disc.GCVL-curveoptimal<br />

4Table56 196<br />

Rust'sTSVD.12137E+14.1213.1213 .1663.1213.1663.12136<br />

theorig<strong>in</strong>alproblem,wherethe<strong>regularization</strong>methodwaschosenus<strong>in</strong>g<strong>methods</strong><strong>in</strong>dicated. oneofthethree<strong>regularization</strong><strong>methods</strong>considered.Foreachofthethree<strong>methods</strong>, considered(otherwise,afalsecornerresulted). Example1:comparisonofkxtruexregk2=kxtruek2<strong>for</strong>eachof4<strong>regularization</strong><strong>methods</strong>on Next,weprojectedus<strong>in</strong>gLSQRandthenregularizedtheprojectedproblemwith Projection.1134.1207.1134.1134 Table6<br />

wecomputed<strong>regularization</strong><strong>parameters</strong><strong>for</strong>theprojectedproblemus<strong>in</strong>gDiscrepancy, GCV,andL-curve,thencomputedthecorrespond<strong>in</strong>gregularizedsolutions;the<strong>parameters</strong>thatwereselected<strong>in</strong>eachcaseatiterations10and40aregiven<strong>in</strong>Tables7<br />

andprojectionplusRust'sTSVD.Weshouldalsonotethat<strong>for</strong>Tikhonov,withand viaprojectionplusTikhonov<strong>for</strong>projectionsizeof10us<strong>in</strong>geithertheDiscrepancy thosetechniqueshadbeenusedwithTikhonovontheorig<strong>in</strong>alproblemtodeterm<strong>in</strong>e aregularizedsolution.Similarstatementscanbemade<strong>for</strong>projectionplusTSVD Pr<strong>in</strong>cipleortheL-curvetondthe<strong>regularization</strong>parametergivesresultsasgoodasif and9respectively.Asbe<strong>for</strong>e,thelcornerrout<strong>in</strong>ewasusedtodeterm<strong>in</strong>ethecorners oftherespectiveL-curves. withoutprojection,noneoftheerrors<strong>in</strong>thetablesisoptimal;thatis,noparameter selectiontechniquesevergavetheparameter<strong>for</strong>whichtheerrorwasm<strong>in</strong>imal. Compar<strong>in</strong>gTable6and8,weobservethatcomput<strong>in</strong>gtheregularizedsolution<br />

was1:65107. truesolutionvectorxtrueisdisplayedasthetoppicture<strong>in</strong>Figure2.Wegenerated Toeplitzmatrixwithbandwidth16andexponentialdecayacrosstheband.3The 103.Thevectorbisshown<strong>in</strong>thebottomofFigure2.TheconditionnumberofA btrue=Axtrueandthencomputedthenoisyvectorbasb+e,whereewasgenerated us<strong>in</strong>gtheMatlabrandnfunctionandwasscaledsothatthenoiselevel,kek 5.2.Example2.The255255matrixA<strong>for</strong>thisexamplewasasymmetric<br />

rorof9:48E2,andseveralmoreiterationswereneeded<strong>for</strong>theL-curvemethodto pr<strong>in</strong>cipletobe8:00E2. noisevectorwas7:16E2,sowetookthevalueofthatdenesthediscrepancy Wegeneratedourdiscreteius<strong>in</strong>glog10=5;4:9;:::;1.Thenormofthe Inthisexample,ittook61iterations<strong>for</strong>LSQRtoreacham<strong>in</strong>imumrelativeer-<br />

kbtruek,was<br />

sigma=5andt=[exp(([0:band1]:^2)=(2sigma^2));zeros(1;Nband)]withband=16. 3Itwasgeneratedus<strong>in</strong>gtheMatlabcommandA=(1=(2pisigma))toeplitz(t);where 15


TSVD,andRust'sTSVD. Example1,iteration10:<strong>regularization</strong><strong>parameters</strong>selected<strong>for</strong>projectionplusTikhonov, Tikhonov(k)1:259E31:995E31:995E45:012E5 TSVD`(k) Rust'sTSVD(k)1:679E41:773E41:679E51:679E5 Disc. 2 GCVL-curveoptimal<br />

Tikhonov.1330.1486.1084.0648 Disc.GCVL-curveoptimal Table73 2 2<br />

TSVD,andRust'sTSVD. Example1,iteration10:comparisonofkxtruexregk2=kxtruek2<strong>for</strong>projectionplusTikhonov,<br />

Rust'sTSVD.1213.1663.1213.1213 Disc. .1663.3451.1663.1213 Table8<br />

TSVD,andRust'sTSVD. Example1,iteration40:<strong>regularization</strong><strong>parameters</strong>selected<strong>for</strong>projectionplusTikhonov, Tikhonov(k)1:259E31:995E31:995E45:012E5 TSVD`(k) Rust'sTSVD(k)9:201E51:225E49:201E59:201E5 10 GCVL-curveoptimal<br />

Tikhonov.1330.1486.1084.0648 Disc.GCVL-curveoptimal Table913 8 9<br />

TSVD,andRust'sTSVD. Example1,iteration40:comparisonofkxtruexregk2=kxtruek2<strong>for</strong>projectionplusTikhonov,<br />

Rust'sTSVD.1162.1162.1162.1162 .1679.1986.1206.1165 Table10<br />

exact solution<br />

12<br />

10<br />

8<br />

6<br />

4<br />

2<br />

0<br />

−2<br />

6<br />

4<br />

2<br />

0<br />

−2<br />

Fig.2.Example2:Top:exactsolution.Bottom:noisyrighthandsideb. 16<br />

50 100 150 200 250<br />

b<br />

50 100 150 200 250


preconditionedsystem. Example2:parametervaluesselected<strong>for</strong>eachmethod.Theprojectionwasper<strong>for</strong>medonaleft Tikhonov1:259E21:259E21:995E33:9811E3 TSVD` Rust'sTSVD2:183E22:586E61:477E21:527E2 Projectionk Disc. 216 2Table11<br />

GCVL-curveoptimal 254 201 5 201<br />

Tikhonov9:909E29:909E21:050E29:394E2<br />

1:102E18:121E19:074E29:0744E2 Disc. GCVL-curveoptimal 5<br />

theorig<strong>in</strong>alproblem. estimateastopp<strong>in</strong>gparameter.Likewise,thedimensionkoftheprojectedproblem hadtobearound60toobta<strong>in</strong>goodresultswiththeprojection-plus-<strong>regularization</strong>approaches,andmuchlargerthan60<strong>for</strong>theL-curveappliedtotheprojected,Tikhonov<br />

Projection1:030E19:85E21:15E19:479E2 Table12 Example2:comparisonofkxtruexregk2=kxtruek2<strong>for</strong>eachof4<strong>regularization</strong><strong>methods</strong>on Rust'sTSVD1:025E122:671:011E11:011E1<br />

selectiontechniqueswereappliedtogetherwithoneofthefour<strong>regularization</strong><strong>methods</strong> ontheorig<strong>in</strong>alproblemaregiven<strong>in</strong>Table11.Thelastcolumn<strong>in</strong>thetablegivesthe tionerwastakentobem=50. valueoftheparameterthatgavearegularizedsolutionwiththem<strong>in</strong>imumrelative toworkwithaleftpreconditionedsystem(refertothediscussionattheendofx3.5). Ourpreconditionerwaschosenas<strong>in</strong>[22]wheretheparameterden<strong>in</strong>gtheprecondi-<br />

regularizedorig<strong>in</strong>alproblem.There<strong>for</strong>e,<strong>for</strong>theprojectionbasedtechniques,wechose regularizedproblemtogiveagoodestimateofthecornerwithrespecttotheTikhonov<br />

errorovertherangeofdiscretevaluestested,withrespecttothetruesolution.The <strong>in</strong>eective. relativeerrorsthatresultedfromcomput<strong>in</strong>gsolutionsaccord<strong>in</strong>gtothe<strong>parameters</strong><strong>in</strong> Table11are<strong>in</strong>Table12.WenotethatGCVwithTSVDandRust'sTSVDwere Thevaluesofthe<strong>regularization</strong><strong>parameters</strong>chosenwhenthethreeparameter<br />

weresymmetric,wecouldhaveusedMINRESas<strong>in</strong>[22])andthenregularizedthe projectedproblemwithoneofthethree<strong>methods</strong>considered.Foreachofthethree crepancy,GCV,andL-curve,thencomputedthecorrespond<strong>in</strong>gregularizedsolutions; <strong>methods</strong>,wecomputed<strong>regularization</strong><strong>parameters</strong><strong>for</strong>theprojectedproblemus<strong>in</strong>gDis-<br />

correspond<strong>in</strong>gtothelargestsolutionnorms<strong>for</strong>theTSVD<strong>methods</strong>werenotconsidered(otherwise,afalsecornerwasdetectedbythelcornerrout<strong>in</strong>e).<br />

weredeterm<strong>in</strong>edus<strong>in</strong>gHansen'slcornerfunction,withthemodicationthatpo<strong>in</strong>ts Next,weprojectedus<strong>in</strong>gLSQR(notethats<strong>in</strong>cethematrixandpreconditioner ThecornersoftheL-curves<strong>for</strong>theTikhonov,projection,andTSVD<strong>methods</strong><br />

the<strong>parameters</strong>thatwereselected<strong>in</strong>eachcaseatiterations15and25aregiven<strong>in</strong>Tables13and15,respectively.Therelativeerrorsoftheregularizedsolutionsgenerated<br />

accord<strong>in</strong>glyaregiven<strong>in</strong>Tables14and16. L-curves,except<strong>in</strong>thecaseofRust'sTSVDmethod.Inthelattercase,therewas Aga<strong>in</strong>,weusedthelcornerrout<strong>in</strong>etodeterm<strong>in</strong>ethecornersoftherespective 17


TSVD,andRust'sTSVD.Disc. Example2,iteration15:<strong>regularization</strong><strong>parameters</strong>selected<strong>for</strong>projectionplusTikhonov, Tikhonov(k)2:512E21:585E21:9953E33:981E3 TSVD`(k) Rust'sTSVD(k)3:558E23:558E23:558E23:558E2 Disc. 5 GCVL-curveoptimal<br />

Tikhonov1:0001E19:9511E21:061E19:530E2 Table13 GCVL-curveoptimal 5 4 1<br />

TSVD,andRust'sTSVD. alwaysaverysharpcornerthatcouldbepickedoutvisually. Example2,iteration15:comparisonofkxtruexregk2=kxtruek2<strong>for</strong>projectionplusTikhonov,<br />

Rust'sTSVD1:004E11:004E11:004E11:004E1 9:595E19:595E11:004E19:357E2<br />

byapply<strong>in</strong>gtheL-curvemethodtoprojected-plus-Tikhonovproblemwasthesame Compar<strong>in</strong>gTable11withTables13and15,weseethattheparameterchosen Table14<br />

nalproblemwiththatsameparameter.Similarresultsareshown<strong>for</strong>theothercases, withtheexceptionthatthediscrepancypr<strong>in</strong>cipledidnotworkwell<strong>for</strong>theprojectionplus-TSVDproblems,andGCVwasnoteective<strong>for</strong>theprojectedproblemswheparisonofTable12withTables14and16showsthatrelativeerrorsoftheregularized<br />

parameterchosenbyapply<strong>in</strong>gtheL-curvetotheorig<strong>in</strong>alproblem.Moreover,acom-<br />

solutionscomputedaccord<strong>in</strong>glyarecomparabletoapply<strong>in</strong>gTikhonovtotheorigiularizationparameterandregularizedsolutiontotheorig<strong>in</strong>alproblembasedonregulariz<strong>in</strong>gaprojectedproblem.Theproposedapproachofapply<strong>in</strong>g<strong>regularization</strong><br />

and<strong>parameters</strong>electiontechniquestoaprojectedproblemiseconomical<strong>in</strong>time k=25. andstorage.Wepresentedresultsthat<strong>in</strong>facttheregularizedsolutionobta<strong>in</strong>edby equivalenttoapply<strong>in</strong>gTSVDorTikhonovtotheorig<strong>in</strong>alproblem,where\almost" backproject<strong>in</strong>gtheTSVDorTikhonovsolutiontotheprojectedproblemisalmost dependsonthesizeofk.Theexamples<strong>in</strong>dicatethepracticalityofthemethod,and illustratethatourregularizedsolutionsareusuallyasgoodasthosecomputedus<strong>in</strong>g 6.Conclusions.Inthisworkwehavegiven<strong>methods</strong><strong>for</strong>determ<strong>in</strong><strong>in</strong>gthereg-<br />

theorig<strong>in</strong>alsystemandcanbecomputed<strong>in</strong>afractionofthetime,us<strong>in</strong>gafractionof thestorage.Wenotethatsimilarapproachesarevalidus<strong>in</strong>gotherKrylovsubspace <strong>methods</strong><strong>for</strong>comput<strong>in</strong>gtheprojectedproblem. astheiterationsprogress.Inthisdiscussion,wedid,however,assumethateitherk wasnaturallyverysmallcomparedtonorthatprecondition<strong>in</strong>ghadbeenappliedto <strong>parameters</strong>chosenviatheprojection-<strong>regularization</strong>andthecorrespond<strong>in</strong>gregularized solutionswerecomparabletothosechosenandgenerated<strong>for</strong>theorig<strong>in</strong>aldiscretized en<strong>for</strong>cethiscondition.Possibly<strong>for</strong>thisreason,wefoundthat<strong>for</strong>modestk,round-o didnotappeartodegradeeithertheLSQRestimatesoftheresidualandsolution normsorthecomputedregularizedsolution<strong>in</strong>thefollow<strong>in</strong>gsense:the<strong>regularization</strong> problem. Inthiswork,wedidnotaddresspotentialproblemsfromlosso<strong>for</strong>thogonality<br />

FortheTikhonovapproach<strong>in</strong>thispaper,wehaveassumedthatthe<strong>regularization</strong> 18


TSVD,andRust'sTSVD.Disc. Example2,iteration25:<strong>regularization</strong><strong>parameters</strong>selected<strong>for</strong>projectionplusTikhonov, Tikhonov(k)2:512E21:259E21:995E33:982E3 TSVD`(k) Rust'sTSVD(k)4:828E27:806E34:828E24:828E2 Disc. 9 GCVL-curveoptimal<br />

Tikhonov1:000E19:909E21:061E19:530E2 Table15 GCVL-curveoptimal 9 8 3<br />

Rust'sTSVD1:004E12.7281:004E11:004E1 9:164E19:595E11:004E19:145E2<br />

IfLisnottheidentitybutis<strong>in</strong>vertible,wecanrstimplicitlytrans<strong>for</strong>mtheproblem ustoecientlycomputekr(k) TSVD,andRust'sTSVD. operatorLwastheidentityorwasrelatedtotheprecondition<strong>in</strong>goperator;thisallowed Example2,iteration25:comparisonofkxtruexregk2=kxtruek2<strong>for</strong>projectionplusTikhonov, kandkx(k) k<strong>for</strong>multiplevaluesofeciently<strong>for</strong>eachk. Table16<br />

to\standard<strong>for</strong>m"[17].WithA=AL1,x=Lx,wecansolvetheequivalentsystem problem.Clearlytheprojectionbasedschemeswillbeusefulaslongassolv<strong>in</strong>gsystems <strong>in</strong>volv<strong>in</strong>gLcanbedoneeciently.REFERENCES Thentheprojectionplus<strong>regularization</strong>schemesmaybeappliedtothistrans<strong>for</strong>med m<strong>in</strong>x=kAxbk2+2kxk2:<br />

[5]L.DesbatandD.Girard,The`m<strong>in</strong>imumreconstructionerror'choiceof<strong>regularization</strong><strong>parameters</strong>:Somemoreecient<strong>methods</strong>andtheirapplicationtodeconvolutionproblems,<br />

Report96-31,ComputationalandAppliedMathematicsDept.,UCLA,LosAngeles,CA, 1996. ization,Tech.ReportSCCM-97-12,ScienticComput<strong>in</strong>gandComputationalMathematics Program,ComputerScienceDepart.,Stan<strong>for</strong>dUniversity,1997. ill-posedsystems,BIT,34(1994),pp.510{534. l<strong>in</strong>earequations,BIT,28(1988),pp.659{670. [4]T.ChanandM.Ng,Galerk<strong>in</strong>projectionmethod<strong>for</strong>solv<strong>in</strong>gmultiplel<strong>in</strong>earsystems,Tech. [3]D.Calvetti,G.Golub,andL.Reichel,EstimationoftheL-curveviaLanczosbidiagonal-<br />

[1]A.Bjorck,Abidiagonalizationalgorithm<strong>for</strong>solv<strong>in</strong>glargeandsparseill-posedsystemsof [2]A.Bjorck,E.Grimme,andP.V.Dooren,Animplicitshiftbidiagonalizationalgorithm<strong>for</strong><br />

[10]G.GolubandW.Kahan,Calculat<strong>in</strong>gthes<strong>in</strong>gularvaluesandpseudo-<strong>in</strong>verseofamatrix, [6]H.W.EnglandW.Grever,Us<strong>in</strong>gtheL-curve<strong>for</strong>determ<strong>in</strong><strong>in</strong>goptimal<strong>regularization</strong><strong>parameters</strong>,Numer.Math.,69(1994),pp.25{31.<br />

imagereconstructionproblems,L<strong>in</strong>.Alg.andApplics.,130(1990),pp.133{150. SIAMJ.Numer.Anal.,2(SeriesB)(1965),pp.205{224. SIAMJ.Sci.Comput.,(toappear). agoodridgeparameter,Technometrics,21(1979),pp.215{223. [7]H.E.Flem<strong>in</strong>g,Equivalenceof<strong>regularization</strong>andtruncatediteration<strong>in</strong>thesolutionofill-posed [8]A.FrommerandP.Maass,FastCG-based<strong>methods</strong><strong>for</strong>Tikhonov-Phillips<strong>regularization</strong>, [9]G.Golub,M.Heath,andG.Wahba,Generalizedcross-validationasamethod<strong>for</strong><strong>choos<strong>in</strong>g</strong> SIAMJ.Sci.Comput.,16(1995),pp.1387{1403.


[11]G.GolubandC.V.Loan,MatrixComputations,TheJohnsHopk<strong>in</strong>sUniversityPress,Baltimore,MD,1989.<br />

[12]W.Groetsch,TheoryofTikhonovRegularization<strong>for</strong>FredholmequationsoftheFirstK<strong>in</strong>d,<br />

PitmanPublish<strong>in</strong>gLimited,1984.<br />

[13]M.GuandS.Eisenstat,Astableandfastalgorithm<strong>for</strong>updat<strong>in</strong>gthes<strong>in</strong>gularvaluedecomposition,Tech.ReportRR-939,YaleUniversity,DepartmentofComputerScience,New<br />

Haven,CT,1993.<br />

[14]M.Hanke,J.Nagy,andR.Plemmons,Preconditioned<strong>iterative</strong><strong>regularization</strong><strong>for</strong>ill-posed<br />

problems,NumericalL<strong>in</strong>earAlgebraandSci.Comput<strong>in</strong>g,(1993),pp.141{163.L.Reichel,<br />

A.Ruttan,andR.S.Varga,editors.<br />

[15]P.C.Hansen,Analysisofdiscreteill-posedproblemsbymeansoftheL-curve,SIAMReview,<br />

34(1992),pp.561{580.<br />

[16]P.C.Hansen,Regularizationtools:aMatlabpackage<strong>for</strong>analysisandsolutionofdiscrete<br />

ill-posedproblems,Numer.Algo.,6(1994),pp.1{35.<br />

[17],Rank-DecientandDiscreteIll-PosedProblems,SIAMPress,Philadelphia,1998.<br />

[18],RankDecientandDiscreteIll-PosedProblems,PhDthesis,TechnicalUniversityof<br />

Denmark,July1995.UNICReportUNIC-95-07.<br />

[19]P.C.HansenandD.P.O'Leary,TheuseoftheL-curve<strong>in</strong>the<strong>regularization</strong>ofdiscrete<br />

ill-posedproblems,SIAMJ.Sci.Comput.,14(1993),pp.1487{1503.<br />

[20]B.Hofmann,Regularization<strong>for</strong>AppliedInverseandIll-PosedProblems,Teubner-Texte<br />

Mathe.,Teubner,Leipzig,1986.<br />

[21]L.KaufmanandA.Neumaier,Regularizationofill-posedproblemsbyenvelopeguidedconjugategradients,JournalofComputationalandGraphicalStatistics,(1997).<br />

[22]M.Kilmer,SymmetricCauchy-likepreconditioners<strong>for</strong>theregularizedsolutionof1-dill-posed<br />

problems,Tech.ReportCS-TR-3851,UniversityofMaryland,CollegePark,1997.<br />

[23],Cauchy-likepreconditioners<strong>for</strong>2-dimensionalill-posedproblems,SIAMJ.Matrix<br />

Anal.,(1998).toappear.<br />

[24]M.KilmerandD.P.O'Leary,PivotedCauchy-likepreconditioners<strong>for</strong>regularizedsolution<br />

ofill-posedproblems,SIAMJ.Sci.Stat.Comput.,(1998).toappear.<br />

[25]V.A.Morozov,Onthesolutionoffunctionalequationsbythemethodof<strong>regularization</strong>,Soviet<br />

Math.Dokl.,7(1966),pp.414{417.cited<strong>in</strong>[17].<br />

[26]J.Nagy,R.Plemmons,andT.Torgersen,Iterativeimagerestorationus<strong>in</strong>gapproximate<br />

<strong>in</strong>verseprecondition<strong>in</strong>g,IEEETrans.ImageProc.,5(96),pp.1151{1163.<br />

[27]D.P.O'LearyandJ.A.Simmons,Abidiagonalization-<strong>regularization</strong>procedure<strong>for</strong>largescale<br />

discretizationofill-posedproblems,SIAMJ.Sci.Stat.Comput.,2(1981),pp.474{489.<br />

[28]C.C.PaigeandM.A.Saunders,Algorithm583,LSQR:Sparsel<strong>in</strong>earequationsandleast<br />

squaresproblems,ACMTransactionsonMathematicalSoftware,8(1982),pp.43{71.<br />

[29],LSQR:Analgorithm<strong>for</strong>sparsel<strong>in</strong>earequationsandsparseleastsquares,ACMTransactionsonMathematicalSoftware,8(1982),pp.43{71.<br />

[30]B.N.Parlett,TheSymmetricEigenvalueProblem,Prentice-Hall,EnglewoodClis,NJ,<br />

1980.<br />

[31]B.W.Rust,Truncat<strong>in</strong>gthes<strong>in</strong>gularvaluedecomposition<strong>for</strong>ill-posedproblems,Tech.Report<br />

NISTIR6131,MathematicalandComputationalSciencesDivision,NationalInstituteof<br />

StandardsandTechnology,Gaithersburg,MD,1998.<br />

[32]Y.Saad,IterativeMethods<strong>for</strong>SparseL<strong>in</strong>earSystems,PWSPublish<strong>in</strong>gCompany,Boston,<br />

1996.<br />

[33]Y.SaadandM.H.Schultz,GMRES:Ageneralizedm<strong>in</strong>imalresidualalgorithm<strong>for</strong>solv<strong>in</strong>g<br />

nonsymmetricl<strong>in</strong>earsystems,SIAMJ.Sci.Stat.Comput.,7(1986),pp.856{869.<br />

[34]A.N.TikhonovandV.Y.Arsen<strong>in</strong>,SolutionsofIll-PosedProblems,Wiley,NewYork,1977.<br />

[35]J.M.Varah,Pitfalls<strong>in</strong>thenumericalsolutionofl<strong>in</strong>earill-posedproblems,SIAMJ.Sci.Stat.<br />

Comput.,4(1983),pp.164{176.<br />

[36]C.R.Vogel,Non-convergenceoftheL-curve<strong>regularization</strong><strong>parameters</strong>electionmethod,InverseProblems,12(1996),pp.535{547.<br />

20

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!