25.12.2013 Views

Explicit inverses of some tridiagonal matrices - Estudo Geral ...

Explicit inverses of some tridiagonal matrices - Estudo Geral ...

Explicit inverses of some tridiagonal matrices - Estudo Geral ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Linear Algebra and its Applications 325 (2001) 7–21<br />

www.elsevier.com/locate/laa<br />

<strong>Explicit</strong> <strong>inverses</strong> <strong>of</strong> <strong>some</strong> <strong>tridiagonal</strong> <strong>matrices</strong><br />

C.M. da Fonseca, J. Petronilho ∗<br />

Depto. de Matematica, Faculdade de Ciencias e Technologia, Univ. Coimbra, Apartado 3008, 3000<br />

Coimbra, Portugal<br />

Received 28 April 1999; accepted 26 June 2000<br />

Submitted by G. Heinig<br />

Abstract<br />

We give explicit <strong>inverses</strong> <strong>of</strong> <strong>tridiagonal</strong> 2-Toeplitz and 3-Toeplitz <strong>matrices</strong> which generalize<br />

<strong>some</strong> well-known results concerning the inverse <strong>of</strong> a <strong>tridiagonal</strong> Toeplitz matrix. © 2001<br />

Elsevier Science Inc. All rights reserved.<br />

AMS classification:<br />

33C45; 42C05<br />

Keywords: Invertibility <strong>of</strong> <strong>matrices</strong>; r-Toeplitz <strong>matrices</strong>; Orthogonal polynomials<br />

1. Introduction<br />

In recent years the invertibility <strong>of</strong> nonsingular <strong>tridiagonal</strong> or block <strong>tridiagonal</strong><br />

<strong>matrices</strong> has been quite investigated in different fields <strong>of</strong> applied linear algebra (for<br />

historical notes see [8]). Several numerical methods, more or less efficient, have risen<br />

in order to give expressions <strong>of</strong> the entries <strong>of</strong> the inverse <strong>of</strong> this kind <strong>of</strong> <strong>matrices</strong>.<br />

Though, explicit <strong>inverses</strong> are known only in a few cases, in particular when the <strong>tridiagonal</strong><br />

matrix is symmetric with constant diagonals and subject to <strong>some</strong> restrictions<br />

(cf. [3,8,10]). Furthermore, Lewis [5] gave a different way to compute other<br />

explicit <strong>inverses</strong> <strong>of</strong> nonsymmetric <strong>tridiagonal</strong>s <strong>matrices</strong>.<br />

In [1], Gover defines a <strong>tridiagonal</strong> 2-Toeplitz matrix <strong>of</strong> order n, as a matrix A =<br />

(a ij ),wherea ij = 0if|i − j| > 1anda ij = a kl if (i, j) ≡ (k, l) mod 2, i.e.,<br />

∗ Corresponding author.<br />

E-mail addresses: cmf@mat.uc.pt (C.M. da Fonseca), josep@mat.uc.pt (J. Petronilho).<br />

0024-3795/01/$ - see front matter 2001 Elsevier Science Inc. All rights reserved.<br />

PII:S0024-3795(00)00289-5


8 C.M. da Fonseca, J. Petronilho / Linear Algebra and its Applications 325 (2001) 7–21<br />

⎛<br />

⎞<br />

a 1 b 1<br />

c 1 a 2 b 2<br />

c 2 a 1 b 1<br />

A =<br />

c 1 a 2 b 2<br />

. (1)<br />

⎜<br />

.<br />

⎝<br />

c 2 a ..<br />

1<br />

⎟<br />

⎠<br />

. .. . ..<br />

Similarly, a <strong>tridiagonal</strong> 3-Toeplitz matrix (n × n) is <strong>of</strong> the form<br />

⎛<br />

⎞<br />

a 1 b 1<br />

c 1 a 2 b 2<br />

c 2 a 3 b 3<br />

c 3 a 1 b 1<br />

B =<br />

c 1 a 2 b 2<br />

. (2)<br />

c 2 a 3 b 3<br />

⎜<br />

.<br />

⎝<br />

c 3 a ..<br />

1<br />

⎟<br />

⎠<br />

. .. . ..<br />

Making use <strong>of</strong> the theory <strong>of</strong> orthogonal polynomials, we will give the explicit inverse<br />

<strong>of</strong> <strong>tridiagonal</strong> 2-Toeplitz and 3-Toeplitz <strong>matrices</strong>, based on recent results from<br />

[1,6,7]. As a corollary, we will obtain the explicit inverse <strong>of</strong> a <strong>tridiagonal</strong> Toeplitz<br />

matrix, i.e., a <strong>tridiagonal</strong> matrix with constant diagonals (not necessarily symmetric).<br />

Different pro<strong>of</strong>s <strong>of</strong> the results by Kamps [3,4] involving the sum <strong>of</strong> all the entries <strong>of</strong><br />

the inverse can be simplified.<br />

Throughout this paper, it is assumed that all the <strong>matrices</strong> are invertible.<br />

n×n<br />

n×n<br />

2. Inverse <strong>of</strong> a <strong>tridiagonal</strong> matrix<br />

Let T be an n × n real nonsingular <strong>tridiagonal</strong> matrix<br />

⎛<br />

⎞<br />

a 1 b 1 0<br />

c 1 a 2 b 2<br />

T =<br />

. c .. . ..<br />

2 . (3)<br />

⎜<br />

⎝<br />

. .. . ⎟<br />

.. bn−1 ⎠<br />

0 c n−1 a n<br />

Denote T −1 = (α ij ). In [5] Lewis proved the following result.<br />

Lemma 2.1. Let T be the matrix (3) and assume that b l /= 0 for l = 1,...,n− 1.<br />

Then<br />

α ji = γ ij α ij when i


where<br />

C.M. da Fonseca, J. Petronilho / Linear Algebra and its Applications 325 (2001) 7–21 9<br />

γ ij =<br />

j−1<br />

∏<br />

l=i<br />

c l<br />

b l<br />

.<br />

Of course this reduces to α ij = α ji , when T is symmetric.<br />

Using this lemma, one can prove that there exist two finite sequences {u i } and<br />

{v i } (i = 1,...,n− 1) such that<br />

⎛<br />

⎞<br />

u 1 v 1 u 1 v 2 u 1 v 3 ··· u 1 v n<br />

γ 12 u 1 v 2 u 2 v 2 u 2 v 3 ··· u 2 v n<br />

T −1 =<br />

γ 13 u 1 v 3 γ 23 u 2 v 3 u 3 v 3 ··· u 3 v n<br />

. (4)<br />

⎜ . . .<br />

⎝<br />

.<br />

. . . ..<br />

. ⎟<br />

. ⎠<br />

γ 1,n u 1 v n γ 2,n u 2 v n γ 3,n u 3 v n ··· u n v n<br />

Since {u i } and {v i } are only defined up to a multiplicative constant, we make u 1 = 1.<br />

The following result shows how to compute {u i } and {v i }. The determination <strong>of</strong> these<br />

sequences is very similar to the particular case studied in [8], where the reader may<br />

check for details.<br />

Lemma 2.2. (i) The {v i } (i = 1,...,n− 1) can be computed from<br />

where<br />

v 1 = 1 d 1<br />

,<br />

v k =− b k−1<br />

d k<br />

v k−1 , k = 2,...,n,<br />

d n = a n , d i = a i − b ic i<br />

, i = n − 1,...,1.<br />

d i+1<br />

(ii) The {u i } (i = 1,...,n− 1) can be computed from<br />

u n = 1 ,<br />

δ n v n<br />

where<br />

δ 1 = a 1 ,<br />

u k =− b k<br />

δ k<br />

u k+1 , k = n − 1,...,1,<br />

δ i = a i − b i−1c i−1<br />

δ i−1<br />

, i = 2,...,n− 1.<br />

Notice that for centro-symmetric <strong>matrices</strong>, i.e., a ij = a n+1−i,n+1−j , we have<br />

v i = u n+1−i .<br />

The following proposition is known in the literature. We give a pro<strong>of</strong> based on the<br />

lecture <strong>of</strong> [8].<br />

Theorem 2.1. Let T be the n × n <strong>tridiagonal</strong> matrix defined in (3) and assume that<br />

b l /= 0 for l = 1,...,n− 1.Then


10 C.M. da Fonseca, J. Petronilho / Linear Algebra and its Applications 325 (2001) 7–21<br />

⎧<br />

(−1) ⎪⎨<br />

i+j d j+1 ···d n<br />

b i ···b j−1 if i j,<br />

δ i ···δ n<br />

(T −1 ) ij =<br />

⎪⎩ (−1) i+j d i+1 ···d n<br />

c j ···c i−1 if i>j<br />

δ j ···δ n<br />

(with the convention that empty product equals 1).<br />

Pro<strong>of</strong>. Let us assume that i j.Then<br />

But<br />

(T −1 ) ij = u i v j = (−1) n−i b i ···b n−1<br />

δ i ···δ n v n<br />

× (−1) j−1 b 1 ···b j−1<br />

d 1 ···d j<br />

.<br />

v n = (−1) n−1 b 1 ···b n−1<br />

.<br />

d 1 ···d n<br />

Therefore<br />

(T −1 ) ij =(−1) n−i b i ···b n−1<br />

δ i ···δ n<br />

× (−1) n−1 d 1 ···d n<br />

b 1 ···b n−1<br />

× (−1) j−1 b 1 ···b j−1<br />

d 1 ···d j<br />

=(−1) i+j b i ···b j−1<br />

d j+1 ···d n<br />

δ i ···δ n<br />

. □<br />

If we set<br />

δ i =<br />

θ i<br />

,<br />

θ i−1<br />

θ 0 = 1, θ 1 = a 1 , (5)<br />

we get the recurrence relation<br />

θ i = a i θ i−1 − b i−1 c i−1 θ i−2 ;<br />

and if we now put<br />

d i =<br />

φ i<br />

, φ n+1 = 1, φ n = a n , (6)<br />

φ i+1<br />

we get the recurrence relation<br />

φ i = a i φ i+1 − b i c i φ i+2 .<br />

As a consequence, we will achieve<br />

⎧<br />

⎨(−1) i+j b i ···b j−1 θ i−1 φ j+1 /θ n if i j,<br />

(T −1 ) ij =<br />

(7)<br />

⎩<br />

(−1) i+j c j ···c i−1 θ j−1 φ i+1 /θ n if i>j.<br />

These are the general relations given by Usmani [9], which we will use throghout<br />

this paper. Notice that<br />

θ n = δ 1 ···δ n = det T.


C.M. da Fonseca, J. Petronilho / Linear Algebra and its Applications 325 (2001) 7–21 11<br />

3. Chebyshev polynomials <strong>of</strong> the second kind<br />

In the next it is useful to consider the set <strong>of</strong> polynomials {U n } n0 , such that each<br />

U n is <strong>of</strong> degree exactly n, satisfying the recurrence relation<br />

U n+1 (x) = 2xU n (x) − U n−1 (x), n 1<br />

with initial conditions<br />

U 0 = 1 and U 1 = 2x.<br />

These polynomials are called Chebyshev polynomials <strong>of</strong> the second kind and they<br />

have the form<br />

sin(n + 1)θ<br />

U n (x) = , where cos θ = x,<br />

sin θ<br />

when |x| < 1. When |x| > 1, they have the form<br />

sinh(n + 1)θ<br />

U n (x) = , where cosh θ = x.<br />

sinh θ<br />

In particular<br />

U n (±1) = (±1) n (n + 1).<br />

In any case, if |x| /= 1, then<br />

U n (x) = rn+1 + − rn+1 −<br />

,<br />

r + − r −<br />

where<br />

r ± = x ±<br />

√<br />

x 2 − 1<br />

are the two solutions <strong>of</strong> the quadratic equation r 2 − 2xr + 1 = 0.<br />

The following proposition is a slight extension <strong>of</strong> Lemma 2.5 <strong>of</strong> Meurant [8].<br />

Lemma 3.1. Fix a positive integer number n and let a and b be nonzero real numbers<br />

such that U i (a/2b) /= 0 for all i = 1, 2,...,n. Consider the recurrence relation<br />

α 1 = a, α i = a − b2<br />

, i = 2,...,n.<br />

α i−1<br />

Under these conditions, if a =±2b, then<br />

α i =<br />

Otherwise<br />

±b(i + 1)<br />

.<br />

i<br />

α i = b ri+1 −<br />

r+ i − ri −<br />

+ − ri+1<br />

,


12 C.M. da Fonseca, J. Petronilho / Linear Algebra and its Applications 325 (2001) 7–21<br />

where<br />

r ± = a ± √ a 2 − 4b 2<br />

2b<br />

are the two solutions <strong>of</strong> the quadratic equation r 2 − (a/b)r + 1 = 0.<br />

Pro<strong>of</strong>. Let us assume that a/=±2b (otherwise it is trivial) and set α i = β i /β i−1 .<br />

Then<br />

β i − aβ i−1 + b 2 β i−2 = 0, β 0 = 1, β 1 = a,<br />

hence β i = b i U i (a/2b) and the conclusion follows.<br />

□<br />

4. Inverse <strong>of</strong> a <strong>tridiagonal</strong> 2-Toeplitz matrix<br />

In this section we will determine the explicit inverse <strong>of</strong> a matrix <strong>of</strong> type (1). By<br />

Theorem 2.1, this is equivalent to determine δ i and d i , i.e., by (7) and transformations<br />

(5) and (6), θ i and φ i . So, to evaluate θ i ,wehave<br />

θ 0 = 1, θ 1 = a 1 ,<br />

θ 2i = a 2 θ 2i−1 − b 1 c 1 θ 2i−2 ,<br />

θ 2i+1 = a 1 θ 2i − b 2 c 2 θ 2i−1 .<br />

Making the change<br />

z i = (−1) i θ i ,<br />

we get the relations<br />

z 0 = 1, z 1 =−a 1 ,<br />

z 2i =−a 2 z 2i−1 − b 1 c 1 z 2i−2 ,<br />

z 2i+1 =−a 1 z 2i − b 2 c 2 z 2i−1.<br />

According to the results in [6],<br />

z i = Q i (0),<br />

where Q i is a polynomial <strong>of</strong> degree exactly i, defined by the recurrence relation<br />

Q i+1 (x) = (x − ˜β i )Q i (x) −˜γ i Q i−1 (x), (8)<br />

where { ˜β 2j = a 1 ,<br />

˜β 2j+1 = a 2 ,<br />

and<br />

{<br />

˜γ2j = b 2 c 2 ,<br />

˜γ 2j+1 = b 1 c 1 ,<br />

(9)<br />

and initial conditions Q 0 (x) = 1andQ 1 (x) = x − ˜β 0 .


C.M. da Fonseca, J. Petronilho / Linear Algebra and its Applications 325 (2001) 7–21 13<br />

The solution <strong>of</strong> the recurrence relation (8) with coefficients (9) is<br />

Q 2i (x) = P i [π 2 (x)] , Q 2i+1 (x) = (x − a 1 )Pi ∗ [π 2 (x)] , (10)<br />

where<br />

π 2 (x) = (x − a 1 )(x − a 2 ), (11)<br />

(√ ) ( )<br />

i x −<br />

Pi ∗ (x) = b1 c 1 − b 2 c 2<br />

b1 b 2 c 1 c 2 Ui<br />

2 √ , (12)<br />

b 1 b 2 c 1 c 2<br />

and<br />

(√ ) [ ( )<br />

i x − b1 c 1 − b 2 c 2<br />

P i (x)= b1 b 2 c 1 c 2 U i<br />

2 √ b 1 b 2 c 1 c<br />

( )] 2<br />

x − b1 c 1 − b 2 c 2<br />

+ βU i−1<br />

2 √ , (13)<br />

b 1 b 2 c 1 c 2<br />

with β 2 = b 2 c 2 /b 1 c 1 . We may conclude that<br />

θ i = (−1) i Q i (0).<br />

Now, to evaluate φ i we put<br />

ψ i = φ n+1−i ,<br />

for i = 1,...,n, and we have to distinguish the cases when the order n <strong>of</strong> the matrix<br />

(1) is odd and when it is even.<br />

First let us suppose that n is odd. Then we have<br />

ψ 0 = 1, ψ 1 = a 1 ,<br />

ψ 2i = a 2 ψ 2i−1 − b 2 c 2 ψ 2i−2 ,<br />

ψ 2i+1 = a 1 ψ 2i − b 1 c 1 ψ 2i−1.<br />

Following the same steps as in the previous case, we obtain<br />

ψ i = (−1) i Q i (0),<br />

i.e.,<br />

φ i = (−1) i Q n+1−i (0),<br />

where Q i (x) is the same as (10) but with β 2 = b 1 c 1 /b 2 c 2 in (13). Notice that if<br />

b 1 c 1 = b 2 c 2 ,thenθ i = φ n+1−i .<br />

If n is even, we get<br />

ψ 0 = 1, ψ 1 = a 2 ,<br />

ψ 2i = a 1 ψ 2i−1 − b 1 c 1 ψ 2i−2 ,<br />

ψ 2i+1 = a 2 ψ 2i − b 2 c 2 ψ 2i−1 .<br />

Therefore<br />

ψ i = (−1) i Q i (0),


14 C.M. da Fonseca, J. Petronilho / Linear Algebra and its Applications 325 (2001) 7–21<br />

i.e.,<br />

φ i = (−1) i+1 Q n+1−i (0),<br />

where<br />

Q 2i (x) = P i [π 2 (x)] , Q 2i+1 (x) = (x − a 2 )Pi ∗ [π 2 (x)] ,<br />

with π 2 (x), P i (x) and Pi ∗ (x) the same as in (11), (13) and (12), respectively. Observe<br />

that if a 1 = a 2 , then θ i = φ n+1−i .<br />

We have determined completely the θ i ’s and φ i ’s <strong>of</strong> (7 ) – thus the inverse <strong>of</strong> the<br />

matrix – in the case <strong>of</strong> a <strong>tridiagonal</strong> 2-Toeplitz matrix (1).<br />

Theorem 4.1. Let A be the <strong>tridiagonal</strong> matrix (1), with a 1 a 2 /= 0 and b 1 b 2 c 1 c 2 > 0.<br />

Put<br />

π 2 (x):=(x − a 1 )(x − a 2 ), β := √ b 2 c 2 /b 1 c 1<br />

and let {Q i (·; α, γ )} be the sequence <strong>of</strong> polynomials defined by<br />

(√ ) [ ( )<br />

i π2 (x) − b 1 c 1 − b 2 c 2<br />

Q 2i (x; α, γ )= b1 b 2 c 1 c 2 U i<br />

2 √ b 1 b 2 c 1 c<br />

( )] 2<br />

π2 (x) − b 1 c 1 − b 2 c 2<br />

+γU i−1<br />

2 √ b 1 b 2 c 1 c 2<br />

(√ ) ( )<br />

i π2 (x) − b 1 c 1 − b 2 c 2<br />

Q 2i+1 (x; α, γ ) = (x − α) b1 b 2 c 1 c 2 Ui<br />

2 √ ,<br />

b 1 b 2 c 1 c 2<br />

where α and γ are <strong>some</strong> parameters. Under these conditions,<br />

⎧<br />

⎪⎨ (−1) i+j b<br />

(A −1 p ⌊(j−i)/2⌋<br />

i<br />

) ij =<br />

⎪⎩<br />

(−1) i+j c ⌊(j−i)/2⌋<br />

p j<br />

b ⌊(j−i+1)/2⌋<br />

q i<br />

θ i−1 φ j+1 /θ n if i j,<br />

c ⌊(j−i+1)/2⌋<br />

q j<br />

θ j−1 φ i+1 /θ n if i>j,<br />

(14)<br />

where p l = (3 − (−1) l )/2, q l = (3 + (−1) l )/2, ⌊z⌋ denotes the greater integer<br />

less or equal to the real number z,<br />

θ i = (−1) i Q i (0; a 1 ,β) , (15)<br />

and<br />

⎧<br />

⎨(−1) i Q n+1−i (0; a 1 , 1/β)<br />

φ i =<br />

⎩<br />

(−1) i+1 Q n+1−i (0; a 2 ,β)<br />

if n is odd,<br />

if n is even.<br />

Remark. As we already noticed, under the conditions <strong>of</strong> Theorem 4.1, if n is odd<br />

and b 1 c 1 = b 2 c 2 , then θ i = φ n+1−i ;andifn is even and a 1 = a 2 , then also θ i =<br />

φ n+1−i .


C.M. da Fonseca, J. Petronilho / Linear Algebra and its Applications 325 (2001) 7–21 15<br />

As a first application, let us consider a classical problem on the inverse <strong>of</strong> a <strong>tridiagonal</strong><br />

Toeplitz matrix. Suppose that a 1 = a 2 = a, b 1 = b 2 = b and c 1 = c 2 = c in<br />

(1), with a/= 0andbc > 0. Therefore, we have the n × n <strong>tridiagonal</strong> Toeplitz matrix<br />

⎛<br />

⎞<br />

a b 0<br />

c a b<br />

T =<br />

. c a ..<br />

. (16)<br />

⎜<br />

⎝<br />

. .. . ..<br />

⎟<br />

b ⎠<br />

0 c a<br />

According to (14),<br />

⎧<br />

⎨(−1) i+j b j−i θ i−1 φ j+1 /θ n if i j,<br />

(T −1 ) ij =<br />

⎩<br />

(−1) i+j c i−j θ j−1 φ i+1 /θ n if i>j.<br />

It is well-known and we can easily check using elementary trigonometry that<br />

)<br />

U 2i+1 (x) = 2xU i<br />

(2x 2 − 1 .<br />

Since β = 1and<br />

( a 2 ) (<br />

− 2bc<br />

U i = U i<br />

2bc<br />

from (15) we get<br />

(√ ) ( i a<br />

θ i = bc Ui<br />

( ) a 2<br />

2<br />

2 √ − 1)<br />

=<br />

bc<br />

√ ( )<br />

bc a<br />

a U 2i+1<br />

2 √ ,<br />

bc<br />

)<br />

2 √ ,<br />

bc<br />

and taking into account the above remark the φ i ’s can be computed using the θ i ’s,<br />

giving<br />

(√ ) ( )<br />

n+1−i a<br />

φ i = θ n+1−i = bc Un+1−i<br />

2 √ .<br />

bc<br />

Therefore, the next result comes immediately.<br />

Corollary 4.1. Let T be the matrix in (16) and define d :=a/2 √ bc. The inverse is<br />

given by<br />

⎧<br />

(−1) i+j b j−i U i−1 (d)U n−j (d)<br />

( √bc ) j−i+1<br />

if i j,<br />

U n (d)<br />

⎪⎨<br />

(T −1 ) ij =<br />

(−1)<br />

⎪⎩<br />

i+j c i−j U j−1 (d)U n−i (d)<br />

( √bc ) i−j+1<br />

if i>j.<br />

U n (d)


16 C.M. da Fonseca, J. Petronilho / Linear Algebra and its Applications 325 (2001) 7–21<br />

This result is well-known. It can be deduced, e.g., using results in the book <strong>of</strong><br />

Heinig and Rost [2, p. 28]. The next corollary is Theorem 3.1 <strong>of</strong> Kamps [3].<br />

Corollary 4.2. Let Σ be the n-square matrix<br />

⎛<br />

⎞<br />

a b 0<br />

b a b<br />

Σ =<br />

. b a ..<br />

. (17)<br />

⎜<br />

⎝<br />

. .. . ⎟ .. b ⎠<br />

0 b a<br />

The inverse is given by<br />

⎧<br />

(−1) ⎪⎨<br />

i+j 1 b<br />

(Σ −1 ) ij =<br />

⎪⎩ (−1) i+j 1 b<br />

U i−1 (a/2b)U n−j (a/2b)<br />

U n (a/2b)<br />

U j−1 (a/2b)U n−i (a/2b)<br />

U n (a/2b)<br />

if i j,<br />

if i>j.<br />

We consider now a second application. In [3,4], the <strong>matrices</strong> <strong>of</strong> type (17), with<br />

a>0, b/= 0anda>2|b|, arose as the covariance matrix <strong>of</strong> one-dependent random<br />

variables Y 1 ,...,Y n , with same expectation. Let us consider the least squares<br />

estimator<br />

ˆµ opt = 1t Σ −1 Y<br />

1 t Σ −1 1 ,<br />

where 1 = (1,...,1) and Y = (Y 1 ,...,Y n ) t , which estimates the parameter µ equal<br />

to the common expectation <strong>of</strong> the Y i ’s, with variance<br />

V ( ) 1<br />

ˆµ opt =<br />

1 t Σ −1 1 .<br />

According to Kamps, the estimator ˆµ opt is the best unbiased estimator based on Y .<br />

So, the sum <strong>of</strong> all the entries <strong>of</strong> the inverse <strong>of</strong> Σ, 1 t Σ −1 1, has an important role in the<br />

determination <strong>of</strong> this estimator and therefore in the computation <strong>of</strong> the variance V<br />

( ˆµ opt ). Kamps used in [3] <strong>some</strong> sum and product formulas involving different kinds<br />

<strong>of</strong> Chebyshev polynomials. We will prove the same results in a more concise way.<br />

Corollary 4.3. The sum s i <strong>of</strong> the ith row (or column) <strong>of</strong> Σ −1 , for i = 1,...,n is<br />

given by<br />

s i = 1 + b(σ 1i + σ 1,n−i+1 )<br />

,<br />

a + 2b<br />

where σ ij = (Σ −1 ) ij , when i j.<br />

Pro<strong>of</strong>. By Corollary 4.2, for i j,


where<br />

C.M. da Fonseca, J. Petronilho / Linear Algebra and its Applications 325 (2001) 7–21 17<br />

(<br />

σ ij = (−1) i+j 1 r<br />

i<br />

+ − r−) ( )<br />

i r n−j+1<br />

+ − r n−j+1<br />

−<br />

(<br />

) ,<br />

b (r + − r − ) r+ n+1 − rn+1 −<br />

r ± = a ± √ a 2 − 4b 2<br />

.<br />

2b<br />

Thus<br />

∑i−1<br />

n∑<br />

s i = σ ji + σ ij .<br />

j=1<br />

j=1<br />

j=i<br />

By the sum <strong>of</strong> a geometric progression and the fact that<br />

r + r − = 1,<br />

we have<br />

∑i−1<br />

(<br />

r+ i+1 −<br />

)(<br />

and<br />

σ ji = b (σ 1i + σ ii )<br />

a + 2b<br />

+ 1<br />

a + 2b<br />

n∑<br />

σ ij = b ( )<br />

σ 1,n−i+1 − σ ii<br />

a + 2b<br />

j=i<br />

− 1<br />

a + 2b<br />

(r + − r − )<br />

(<br />

r<br />

i<br />

+ − r i −) ( r n−i<br />

)<br />

r+ n−i+1 − r−<br />

n−i+1<br />

(<br />

)<br />

r+ n+1 − rn+1 −<br />

+ − rn−i −<br />

(<br />

(r + − r − ) r+ n+1 − rn+1 −<br />

)<br />

).<br />

Finally<br />

( )(<br />

r+ i+1 − ri+1 −<br />

= (r + − r − )<br />

r+ n−i+1 − r−<br />

n−i+1<br />

(<br />

r+ n+1 − rn+1 −<br />

) ( )( )<br />

− r+ i − ri − r+ n−i − rn−i −<br />

)<br />

. □<br />

The previous theorem says that s i depends only on the first row <strong>of</strong> Σ −1 . In fact<br />

(as the following result says) the sum <strong>of</strong> all entries <strong>of</strong> Σ −1 depends only on σ 11 and<br />

σ 1n .<br />

Corollary 4.4.<br />

1 t Σ −1 1 = n + 2bs 1<br />

a + 2b .<br />

5. Inverse <strong>of</strong> a <strong>tridiagonal</strong> 3-Toeplitz matrix<br />

In an analogous way <strong>of</strong> the 2-Toeplitz <strong>matrices</strong>, we may ask about the inverse <strong>of</strong> a<br />

<strong>tridiagonal</strong> 3-Toeplitz matrix. To solve this case, we have to compute θ i and φ i in (7).


18 C.M. da Fonseca, J. Petronilho / Linear Algebra and its Applications 325 (2001) 7–21<br />

For θ i ,wehave<br />

θ 0 = 1, θ 1 = a 1 ,<br />

θ 3i = a 3 θ 3i−1 − b 2 c 2 θ 3i−2 ,<br />

θ 3i+1 = a 1 θ 3i − b 3 c 3 θ 3i−1 ,<br />

θ 3i+2 = a 2 θ 3i+1 − b 1 c 1 θ 3i .<br />

Making the change<br />

z i = (−1) i θ i ,<br />

we get the relations<br />

z 0 = 1, z 1 =−a 1 ,<br />

z 3i =−a 3 z 3i−1 − b 2 c 2 z 3i−2 ,<br />

z 3i+1 =−a 1 z 3i − b 3 c 3 z 3i−1 ,<br />

z 3i+2 =−a 2 z 3i+1 − b 1 c 1 z 3i .<br />

According to the results in [7],<br />

z i = Q i (0),<br />

where Q i is a polynomial <strong>of</strong> degree exactly i, defined according to<br />

Q i+1 (x) = (x − ˜β i )Q i (x) −˜γ i Q i−1 (x),<br />

where<br />

⎧⎨<br />

⎩<br />

˜β 3j = a 1 ,<br />

˜β 3j+1 = a 2 ,<br />

˜β 3j+2 = a 3 ,<br />

and<br />

⎧<br />

⎨ ˜γ 3j = b 3 c 3 ,<br />

˜γ 3j+1 = b 1 c 1 ,<br />

⎩<br />

˜γ 3j+2 = b 2 c 2 .<br />

The solution <strong>of</strong> the recurrence relation (8) with coefficients (18) is<br />

(18)<br />

Q 3i (x) = P i [π 3 (x)] + b 3 c 3 (x − a 2 ) P i−1 [π 3 (x)] ,<br />

Q 3i+1 (x) = (x − a 1 )P i [π 3 (x)] + b 1 c 1 b 3 c 3 P i−1 [π 3 (x)] ,<br />

Q 3i+2 (x) = [(x − a 1 )(x − a 2 ) − b 1 c 1 ] P i [π 3 (x)] ,<br />

where<br />

∣ x − a 1 1 1 ∣∣∣∣∣<br />

π 3 (x) =<br />

b 1 c 1 x − a 2 1<br />

∣ b 3 c 3 b 2 c 2 x − a 3<br />

and<br />

P i (x) =<br />

(2 √ ) [ ( )]<br />

i x − b1 c 1 − b 2 c 2 − b 3 c 3<br />

b 1 b 2 b 3 c 1 c 2 c 3 U i<br />

2 √ .<br />

b 1 b 2 b 3 c 1 c 2 c 3


C.M. da Fonseca, J. Petronilho / Linear Algebra and its Applications 325 (2001) 7–21 19<br />

We may conclude that<br />

θ i = (−1) i Q i (0).<br />

In order to compute the φ i ’s, we define<br />

ψ i = φ n+1−i<br />

for i = 1,...,n. In this situation, we have to distinguish three cases. If n ≡ 0<br />

(mod 3), then<br />

ψ 0 = 1, ψ 1 = a 3 ,<br />

ψ 3i = a 1 ψ 3i−1 − b 1 c 1 ψ 3i−2 ,<br />

ψ 3i+1 = a 3 ψ 3i − b 3 c 3 ψ 3i−1 ,<br />

ψ 3i+2 = a 2 ψ 3i+1 − b 2 c 2 ψ 3i .<br />

If n ≡ 1(mod3),then<br />

ψ 0 = 1, ψ 1 = a 1 ,<br />

ψ 3i = a 2 ψ 3i−1 − b 2 c 2 ψ 3i−2 ,<br />

ψ 3i+1 = a 1 ψ 3i − b 1 c 1 ψ 3i−1 ,<br />

ψ 3i+2 = a 3 ψ 3i+1 − b 3 c 3 ψ 3i ,<br />

and if n ≡ 2(mod3),then<br />

ψ 0 = 1, ψ 1 = a 2 ,<br />

ψ 3i = a 3 ψ 3i−1 − b 3 c 3 ψ 3i−2 ,<br />

ψ 3i+1 = a 2 ψ 3i − b 2 c 2 ψ 3i−1 ,<br />

ψ 3i+2 = a 1 ψ 3i+1 − b 1 c 1 ψ 3i .<br />

It is clear that these three recurrence relations can be solved by a similar process<br />

as for the computation <strong>of</strong> the θ i ’s (mutatis mutandis). Following in this way, we can<br />

state the next proposition.<br />

Theorem 5.1. Let B be the <strong>tridiagonal</strong> matrix (2), with a 1 a 2 a 3 /= 0 and b 1 b 2 b 3 c 1 c 2<br />

c 3 > 0.Let<br />

( )<br />

a b c<br />

π 3<br />

α β γ ; x x − a 1 1<br />

:=<br />

α x − b 1<br />

∣ γ β x − c∣ ,<br />

( )<br />

a b c<br />

P i<br />

α β γ ; x :=2 √ αβγ<br />

( [ ( )<br />

])<br />

1 a b c<br />

×U i<br />

2 √ π 3<br />

αβγ α β γ ; x − (a + b + c) ,


20 C.M. da Fonseca, J. Petronilho / Linear Algebra and its Applications 325 (2001) 7–21<br />

( ) ( )<br />

a b c<br />

a b c<br />

Q 3i<br />

α β γ ; x := P i<br />

α β γ ; x<br />

( )<br />

a b c<br />

+γ(x− b) P i−1<br />

α β γ ; x ,<br />

( )<br />

( )<br />

a b c<br />

a b c<br />

Q 3i+1<br />

α β γ ; x := (x − a)P i<br />

α β γ ; x<br />

( )<br />

a b c<br />

+αγ P i−1<br />

α β γ ; x ,<br />

( )<br />

( )<br />

a b c<br />

a b c<br />

Q 3i+2<br />

α β γ ; x := [(x − a)(x − b) − α] P i<br />

α β γ ; x ,<br />

where a, b, c, α, β and γ are <strong>some</strong> parameters, subject to the restriction αβγ > 0.<br />

Under these conditions,<br />

⎧<br />

⎨(−1) i+j β i β i+1 ···β j θ i−1 φ j+1 /θ n if i j,<br />

(B −1 ) ij =<br />

(19)<br />

⎩<br />

(−1) i+j γ j γ j+1 ···γ i θ j−1 φ i+1 /θ n if i>j,<br />

where<br />

β 3l+s+1 = b s+1 , γ 3l+s+1 = c s+1 (s = 0, 1, 2; l = 0, 1, 2,...),<br />

and the θ i ’s and φ i ’s are explicitly given by<br />

( )<br />

θ i = (−1) i a1 a<br />

Q 2 a 3<br />

i ; 0<br />

(20)<br />

b 1 c 1 b 2 c 2 b 3 c 3<br />

and<br />

⎧<br />

( )<br />

(−1) n+1−i a3 a<br />

Q 2 a 1<br />

n+1−i ; 0 if n ≡ 0, (mod 3),<br />

b 2 c 2 b 1 c 1 b 3 c 3<br />

⎪⎨<br />

( )<br />

φ i = (−1) n+1−i a1 a<br />

Q 3 a 2<br />

n+1−i ; 0<br />

b 3 c 3 b 2 c 2 b 1 c 1<br />

( )<br />

⎪⎩ (−1) n+1−i a2 a<br />

Q 1 a 3<br />

n+1−i ; 0<br />

b 1 c 1 b 3 c 3 b 2 c 2<br />

if n ≡ 1, (mod 3),<br />

if n ≡ 2,(mod 3).<br />

Acknowledgments<br />

This work was supported by CMUC (Centro de Matemática da Universidade de<br />

Coimbra). The authors thank the editor as well as the unknown referees for their<br />

helpful remarks which helped to improve the final version <strong>of</strong> the paper.


References<br />

C.M. da Fonseca, J. Petronilho / Linear Algebra and its Applications 325 (2001) 7–21 21<br />

[1] M. Gover, The eigenproblem <strong>of</strong> a <strong>tridiagonal</strong> 2-Toeplitz matrix, Linear Algebra Appl. 197/198<br />

(1994) 63–78.<br />

[2] G. Heinig, K. Rost, Algebraic Methods for Toeplitz-like Matrices and Operators, vol. 13. Birkhäuser,<br />

OT, 1984.<br />

[3] U. Kamps, Chebyshev polynomials and least squares estimation based on one-dependent random<br />

variables, Linear Algebra Appl. 112 (1989) 217–230.<br />

[4] U. Kamps, Relative efficiency <strong>of</strong> estimates and the use <strong>of</strong> Chebyshev polynomials in a model <strong>of</strong><br />

pairwise overlapping samples, Linear Algebra Appl. 127 (1990) 641–653.<br />

[5] J.W. Lewis, Inversion <strong>of</strong> <strong>tridiagonal</strong> <strong>matrices</strong>, Numer. Math. 38 (1982) 333–345.<br />

[6] F. Marcellán, J. Petronilho, Eigenproblems for <strong>tridiagonal</strong> 2-Toeplitz <strong>matrices</strong> and quadratic polynomials<br />

mappings, Linear Algebra Appl. 260 (1997) 169–208.<br />

[7] F. Marcellán, J. Petronilho, Orthogonal polynomials and cubic polynomial mappings I, Communications<br />

in the Analytic Theory <strong>of</strong> Continued Fractions 8 (2000) 88–116.<br />

[8] G. Meurant, A review on the inverse <strong>of</strong> symmetric <strong>tridiagonal</strong> and block <strong>tridiagonal</strong> <strong>matrices</strong>, SIAM<br />

J. Matrix Anal. Appl. 13 (3) (1992) 707–728.<br />

[9] R. Usmani, Inversion <strong>of</strong> a <strong>tridiagonal</strong> Jacobi matrix, Linear Algebra Appl. 212/213 (1994) 413–414.<br />

[10] P. Schlegel, The explicit inverse <strong>of</strong> a <strong>tridiagonal</strong> matrix, Math. Computation 24 (111) (1970) 665.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!