27.12.2013 Views

Diel cycles of molting, mating, egg sac production and hatching in ...

Diel cycles of molting, mating, egg sac production and hatching in ...

Diel cycles of molting, mating, egg sac production and hatching in ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

\:><br />

Piaiikloii Biol. Ixol. 46 (2): 120 127. 1999<br />

plankton<br />

biology & ecology<br />

' llv riiiilkloii Socid.v ul J,ip.<strong>in</strong> IW)<br />

<strong>Diel</strong> <strong>cycles</strong> <strong>of</strong> <strong>molt<strong>in</strong>g</strong>, <strong>mat<strong>in</strong>g</strong>, <strong>egg</strong> <strong>sac</strong> <strong>production</strong> <strong>and</strong><br />

<strong>hatch<strong>in</strong>g</strong> <strong>in</strong> the swarm form<strong>in</strong>g cyclopoid copepod<br />

Dioithona oculata<br />

JULIE W. AMBLKR', FRANK D. FKRRARI-, JOHN A. FORNSHELL- & EDWARD J. BUSKHV^<br />

'pcpailmcnl <strong>of</strong> Biology. Milkrsvilk' University. .Millcr.svilk'. Pcnn.sylvi<strong>in</strong>ia 17551. U.S.A.<br />

•Depanmem o//merlt'lvvlc Zoology Mu.scum <strong>of</strong>Nalunil History Sniilh.soiiiun Iiistiltilioit. Washiitglon. DC. 211560. U..S..4.<br />

- Mar<strong>in</strong>e Science lii.'itilKtc'. The University <strong>of</strong> Texas at .-lust <strong>in</strong>. 750 Chaniielvie»- Drive. Port .Iransas. Texas 7«7.?. U.S.A.<br />

Received 8 December 1998; accepted 14 June 1999<br />

Abstract: <strong>Diel</strong> periodicity was discovered <strong>in</strong> 4 life cycle events for the swarm<strong>in</strong>g cyclopoid copepod<br />

Dtoithona oculata: the molt to adult stage, <strong>mat<strong>in</strong>g</strong>, <strong>egg</strong> <strong>sac</strong> <strong>production</strong>, <strong>and</strong> <strong>egg</strong> <strong>hatch<strong>in</strong>g</strong>. The tim<strong>in</strong>g<br />

<strong>of</strong> these events was associated with swarm<strong>in</strong>g <strong>in</strong> which dioithonans form swarms at dawn <strong>and</strong> disperse<br />

at dusk. A laboratory time course experiment revealed that <strong>molt<strong>in</strong>g</strong> <strong>of</strong> copepodid stage five<br />

(CV) to adult (CVI) occurred between midnight <strong>and</strong> dawn (0600 h). In videotaped experiments <strong>of</strong> laboratory<br />

swarms, <strong>mat<strong>in</strong>g</strong> encounters were greatest at dawn <strong>and</strong> therefore would occur as soon as CV<br />

molted to adults <strong>and</strong> were present <strong>in</strong> swarms. In experiments with field collected swarms, 80% <strong>of</strong> <strong>egg</strong><br />

<strong>sac</strong>s were produced by females between midnight <strong>and</strong> 0820 h the next morn<strong>in</strong>g, <strong>and</strong> 80% <strong>of</strong> the <strong>egg</strong>s<br />

hatched by the follow<strong>in</strong>g night between midnight <strong>and</strong> 0500 h. Egg cycle duration (clutch duration<br />

plus mter-clutch <strong>in</strong>terval) was 48 h, <strong>and</strong> the mean fecundity was 0.56 pairs <strong>of</strong> <strong>egg</strong> <strong>sac</strong>s d ' or 7.6 <strong>egg</strong>s<br />

d \ We suggest that predation is the ma<strong>in</strong> selective force for diel <strong>cycles</strong> <strong>of</strong> D, oculata, but that diel <strong>cycles</strong><br />

<strong>in</strong> re<strong>production</strong> benefit the survival <strong>of</strong> nauplii, whereas diel <strong>cycles</strong> <strong>of</strong> <strong>molt<strong>in</strong>g</strong>, <strong>mat<strong>in</strong>g</strong>, <strong>and</strong><br />

swarm<strong>in</strong>g benefit the re<strong>production</strong> <strong>and</strong> survival <strong>of</strong> adults.<br />

Key words: diel <strong>cycles</strong>, cyclopoid copepod, <strong>egg</strong> <strong>production</strong>, <strong>molt<strong>in</strong>g</strong>, <strong>mat<strong>in</strong>g</strong><br />

Introduction<br />

<strong>Diel</strong> <strong>cycles</strong> govern many copepod life events by provid<strong>in</strong>g<br />

proximate cues for their behavior such as vertical migration,<br />

swarm<strong>in</strong>g, <strong>egg</strong> <strong>production</strong>, <strong>and</strong> feed<strong>in</strong>g (Hamner &<br />

Carleton 1979; Haney 1988). We have been study<strong>in</strong>g a tropical<br />

swarm<strong>in</strong>g cyclopoid copepod, Dioithoita ociilala (Farran<br />

1913), which consistently forms swarms dur<strong>in</strong>g the daylight<br />

hours dur<strong>in</strong>g all seasons (Ambler et al. 1991). In this<br />

study, we focus on diel <strong>cycles</strong> found for life cycle events<br />

which beg<strong>in</strong> with the molt to the adult stage <strong>and</strong> cont<strong>in</strong>ue<br />

through <strong>mat<strong>in</strong>g</strong>, <strong>egg</strong> <strong>sac</strong> <strong>production</strong> <strong>and</strong> <strong>egg</strong> <strong>hatch<strong>in</strong>g</strong>.<br />

Dioithona ociilala forms dense aggregations <strong>in</strong> lagoonal<br />

waters surround<strong>in</strong>g mangrove isl<strong>and</strong>s <strong>of</strong>f Belize. Dur<strong>in</strong>g the<br />

day, adults <strong>and</strong> immature copepodids occur <strong>in</strong> swarms<br />

among red mangrove prop roots, <strong>and</strong> densities with<strong>in</strong><br />

swarms ranges from 1-90 copepods ml ' (Ambler et al.<br />

Correspond<strong>in</strong>g autlior: .liilie W. Amble r: e-mail, JamblenK niaraiKler.<br />

millorsv.edu<br />

1991; Buskcy et al. 1996). Swarms are <strong>in</strong>itiated by phototactic<br />

behavior to swarm markers which are light shafts<br />

formed by sunlight penetrat<strong>in</strong>g through the mangrove<br />

canopy. Individual D. ociilala ma<strong>in</strong>ta<strong>in</strong> their positions <strong>in</strong><br />

swarms by kl<strong>in</strong>o-k<strong>in</strong>etic turn<strong>in</strong>g behavior <strong>and</strong> active swimm<strong>in</strong>g<br />

to stay with<strong>in</strong> the light shaft swarm markers (Buskey<br />

et al. 1995; Buskey et al. 1996). As light <strong>in</strong>tensity decreases<br />

at dusk <strong>and</strong> swarm markers disappear, adults <strong>and</strong> copepodids<br />

disperse from swarms to several meters from the mangrove<br />

shorel<strong>in</strong>e overnight (Ambler et al. 1991). Nauplii are<br />

never found under the prop roots dur<strong>in</strong>g the day or night,<br />

but occur several meters away from the prop roots <strong>in</strong> the<br />

channels between mangrove isl<strong>and</strong>s (Ambler el al. 1991).<br />

Thus the daily ambit <strong>of</strong> the nauplii is much more restricted<br />

than that <strong>of</strong> copepodids <strong>and</strong> adults which occupy the mangrove<br />

channel <strong>and</strong> prop root habitats.<br />

The consistency <strong>and</strong> tim<strong>in</strong>g <strong>of</strong> swarm<strong>in</strong>g suggested that<br />

there were strong selective pressures on D. oculata <strong>in</strong> the<br />

mangrove habitat, <strong>and</strong> led us to consider the tim<strong>in</strong>g <strong>of</strong> other<br />

events <strong>in</strong> their life cycle: <strong>molt<strong>in</strong>g</strong>, <strong>mat<strong>in</strong>g</strong>, <strong>egg</strong> <strong>sac</strong> produc-


I<br />

I


<strong>Diel</strong> Cycles <strong>in</strong> Copepod Re<strong>production</strong> 121<br />

tion <strong>and</strong> <strong>egg</strong> <strong>hatch<strong>in</strong>g</strong>. <strong>Diel</strong> <strong>cycles</strong> <strong>of</strong> <strong>egg</strong> <strong>production</strong> with<br />

<strong>hatch<strong>in</strong>g</strong> at night have been reported for many copepod <strong>and</strong><br />

ciadoceran species as reviewed by Haney (1988). More recently<br />

Hopcr<strong>of</strong>t & R<strong>of</strong>f (1996) have reported diel <strong>cycles</strong> for<br />

<strong>egg</strong> <strong>production</strong> <strong>of</strong> 4 cyclopoid copepod species. Our objective<br />

was to determ<strong>in</strong>e if diel <strong>cycles</strong> occurred <strong>in</strong> <strong>egg</strong> <strong>production</strong><br />

<strong>and</strong> events occurr<strong>in</strong>g before <strong>egg</strong> <strong>production</strong>, <strong>and</strong> to relate<br />

these life cycle events to the diel cycle <strong>of</strong> swarm<strong>in</strong>g.<br />

\cy<br />

\n<br />

m<br />

Materials <strong>and</strong> Methods<br />

Swarms <strong>of</strong> Dioiihona ociilata were collected from several<br />

protected shorel<strong>in</strong>es <strong>of</strong> Tw<strong>in</strong> Cays, which are mangrove<br />

isl<strong>and</strong>s <strong>in</strong> the barrier reef lagoon <strong>of</strong> Belize (16°50'N,<br />

88°05'W) (Fig. 1). Field temperatures varied between 28-<br />

30°C dur<strong>in</strong>g May-July, <strong>and</strong> 20-26°C <strong>in</strong> January-February.<br />

Copepods formed swarms <strong>in</strong> the field near dawn: dur<strong>in</strong>g<br />

summer the earliest swarms were observed at 0515h, <strong>and</strong><br />

dur<strong>in</strong>g the w<strong>in</strong>ter swarms were observed as early as 0600 h<br />

(Ambler ct al. 1991). Swarms dispersed near dusk between<br />

1700 <strong>and</strong> 1800 h dur<strong>in</strong>g both summer <strong>and</strong> w<strong>in</strong>ter.<br />

For the <strong>egg</strong> <strong>hatch<strong>in</strong>g</strong> experiments, two types <strong>of</strong> <strong>egg</strong> <strong>sac</strong>s<br />

were monitored: (1) <strong>egg</strong> <strong>sac</strong>s that females had dropped, <strong>and</strong><br />

(2) <strong>egg</strong> <strong>sac</strong>s still attached to females. D. uculata were collected<br />

on seven dates between February 1989 to January<br />

1990, <strong>and</strong> groups <strong>of</strong> 10 dropped <strong>egg</strong> <strong>sac</strong>s or 10 females<br />

with a pair <strong>of</strong> <strong>egg</strong> <strong>sac</strong>s were placed <strong>in</strong> 25-cm-diameter petri<br />

dishes with seawater filtered through a 45-/jm mesh. The<br />

total number <strong>of</strong> <strong>egg</strong> <strong>sac</strong>s observed for a particular date varied<br />

between 30 to 67 (Table 1). Females from May 1990<br />

<strong>and</strong> July 1991, carried a mean <strong>of</strong> 7.17 <strong>and</strong> 6.32 <strong>egg</strong>s per<br />

<strong>sac</strong>, respectively. Therefore at least 190 <strong>egg</strong>s were observed<br />

dur<strong>in</strong>g each experimental date. Dur<strong>in</strong>g each experiment, we<br />

monitored embryonic stage <strong>and</strong> the number <strong>of</strong> <strong>egg</strong> <strong>sac</strong>s<br />

with complete <strong>hatch<strong>in</strong>g</strong> at 2-h <strong>in</strong>tervals, beg<strong>in</strong>n<strong>in</strong>g at 2000 h<br />

<strong>and</strong> usually end<strong>in</strong>g at 0800 h when most <strong>of</strong> the <strong>egg</strong>s had<br />

hatched.<br />

From the <strong>egg</strong> <strong>hatch<strong>in</strong>g</strong> experiments, we determ<strong>in</strong>ed that<br />

newly formed embryos appeared opaque or gray us<strong>in</strong>g<br />

transmitted light microscopy, <strong>and</strong> that 8-10 h later embryos<br />

TWIN CAYS,<br />

BELIZE<br />

Fig. 1. Tw<strong>in</strong> Cays, two mangrove isl<strong>and</strong>s (16°5{)'N. 88°05'W)<br />

near the Smithsonian Institution"s Field Station al Carrie Bow Cay.<br />

Belize. Swarms were collected from I'vv<strong>in</strong> Bays, Ma<strong>in</strong> Channel,<br />

<strong>and</strong> the Lair Channel.<br />

were orange. Four experiments were performed between 31<br />

May <strong>and</strong> 9 July 1989 to determ<strong>in</strong>e the tim<strong>in</strong>g <strong>of</strong> <strong>egg</strong> <strong>sac</strong><br />

formation <strong>and</strong> <strong>hatch<strong>in</strong>g</strong> by dist<strong>in</strong>guish<strong>in</strong>g between newly<br />

formed opaque gray embryos <strong>and</strong> older orange embryos. In<br />

the late afternoon (16()0h). 2-3 swarms were collected<br />

from Tw<strong>in</strong> Bays (Fig. 1) <strong>and</strong> placed <strong>in</strong> a 10.6-liter cooler<br />

with water from their mangrove prop root habitat for a f<strong>in</strong>al<br />

densities around 1 animal ml '. Beg<strong>in</strong>n<strong>in</strong>g at 2200h on the<br />

same day, 100-ml samples were removed from the cooler<br />

<strong>and</strong> 100 females were anesthetized with MS222 (trica<strong>in</strong>e<br />

methanesulfonate) <strong>and</strong> identified to 3 categories: females<br />

with new opaque embryos, females with older orange embryos,<br />

<strong>and</strong> females without <strong>egg</strong> <strong>sac</strong>s. The 100-ml sample<br />

was not returned to the 10.6-liter cooler. Samples <strong>of</strong> 100 ml<br />

were collected al 2-h <strong>in</strong>tervals until 0600 or 0630 h <strong>of</strong> the<br />

follow<strong>in</strong>g day. Temperature <strong>in</strong> the cooler decreased by at<br />

Table 1. Dioiihona oculata. Estimation <strong>of</strong> lime or50% <strong>hatch<strong>in</strong>g</strong> <strong>of</strong>dropped <strong>egg</strong> <strong>sac</strong>s (dropped) <strong>and</strong> paired <strong>egg</strong> <strong>sac</strong>s <strong>of</strong> females (females).<br />

For each experiment the follow<strong>in</strong>g are .shown: date, collection time <strong>in</strong> the field, r value, viability <strong>of</strong> <strong>hatch<strong>in</strong>g</strong> by OSOOh the day after collection,<br />

the number <strong>of</strong> <strong>egg</strong> <strong>sac</strong>s observed, estimated time <strong>of</strong> 50% hatch, <strong>and</strong> the percent <strong>egg</strong>s hatched at midnight <strong>and</strong> 0600h the next day.<br />

Egg<br />

Collection , Viability No. <strong>of</strong> Time <strong>of</strong> % <strong>egg</strong>s hatched<br />

Date<br />

<strong>sac</strong> time (%) <strong>egg</strong> <strong>sac</strong>s 50% hatch 2400 h 0600 h<br />

Dropped 21 Feb89 lOOOh 0.96 100 35 0144 h 27 94<br />

Dropped 18 May 89 0815h 0.85 100 50 0219h 5 99<br />

Dropped 20 May 89 I145h 0.82 64 67 0558 h 0 49<br />

Dropped 22 May 89 1430h 0.98 100 61 0158 h 18 99<br />

Females 21 Feb89 0.96 83 132 0556 h 1 49<br />

Females 28 May 89 0.81 100 30 0349 h 1 76<br />

Females 8 Jan 90 0.99 96 68 0546 h<br />

Mean<br />

1<br />

8<br />

55<br />

74


122 J. W. AMBLER, F. D. FERRARI, J. A. FORNSHELL & E. J. BUSKEY<br />

most 1°C dur<strong>in</strong>g the experimental period.<br />

To determ<strong>in</strong>e the percentage <strong>and</strong> frequency <strong>of</strong> females<br />

produc<strong>in</strong>g <strong>egg</strong> <strong>sac</strong>s, we followed the <strong>egg</strong> <strong>sac</strong> <strong>production</strong> <strong>of</strong><br />

<strong>in</strong>dividual females fed Aniphidiiiiitm klehsii over a 4-d period<br />

dur<strong>in</strong>g July 1991. On 6 July at 15()0h, swarms <strong>of</strong> D.<br />

ocuhita <strong>and</strong> water conta<strong>in</strong><strong>in</strong>g a bloom <strong>of</strong> A. klehsii were<br />

collected. On 7 July at 0900h (Day 1), 49 females with<br />

newly formed opaque embryos <strong>in</strong> <strong>egg</strong> <strong>sac</strong>s were isolated<br />

<strong>and</strong> each female was put <strong>in</strong>to a s<strong>in</strong>gle 3-ml well with bloom<br />

water. At 0600h on 8 July (Day 2) through 10 July (Day 4).<br />

each female was observed for presence <strong>of</strong> nauplii <strong>in</strong>dicat<strong>in</strong>g<br />

<strong>hatch<strong>in</strong>g</strong> <strong>and</strong> presence <strong>of</strong> a newly formed <strong>egg</strong> <strong>sac</strong>. Nauplii<br />

were removed each day.<br />

Synchrony <strong>in</strong> <strong>molt<strong>in</strong>g</strong> <strong>of</strong> copepodid stage five (CV) to<br />

adults (CVl) dur<strong>in</strong>g the night was documented. Swarms<br />

were collected at I030h from Tw<strong>in</strong> Bays on 17 June 1995.<br />

Between 1230 <strong>and</strong> 1330h. 6 groups <strong>of</strong> 30 CV were sorted<br />

from animals which were lightly anesthetized with MS222,<br />

<strong>and</strong> kept <strong>in</strong> 100-ml beakers with cultures <strong>of</strong> Isochiysis galbc<strong>in</strong>ci<br />

or Diiiuiliella saliiui. Two groups <strong>of</strong> 30 animals were<br />

preserved at midnight. 0400 <strong>and</strong> 0630 h. Animals <strong>in</strong> each<br />

group were identified as CV, CVI female or CVl male. <strong>Diel</strong><br />

periodicity <strong>in</strong> <strong>mat<strong>in</strong>g</strong> was observed from videotaped laboratory<br />

experiments performed dur<strong>in</strong>g 12-27 January <strong>and</strong> 24<br />

May-8 June, 1994, <strong>and</strong> photobehavior from these experiments<br />

is described <strong>in</strong> Buskey et al. (1995). The experimental<br />

protocol was to put D. oculala collected from swarms <strong>in</strong><br />

a laboratory aquarium for 5m<strong>in</strong> <strong>in</strong> darkness, lOm<strong>in</strong> <strong>in</strong> the<br />

presence <strong>of</strong> a vertical light shaft capable <strong>of</strong> <strong>in</strong>duc<strong>in</strong>g<br />

swarm<strong>in</strong>g behavior dur<strong>in</strong>g the day, <strong>and</strong> 2 m<strong>in</strong> aga<strong>in</strong> <strong>in</strong> darkness.<br />

Swarm formation usually occurred with<strong>in</strong> the first<br />

5 m<strong>in</strong> <strong>of</strong> the light-shaft period. This experiment was repeated<br />

at 5 ditTerent times dur<strong>in</strong>g the day: 1600, 2000,<br />

0000, 0600, <strong>and</strong> lOOOh, <strong>and</strong> at each time the experiment<br />

was replicated 6 times with a difTcrent group <strong>of</strong> animals.<br />

For each time, the number <strong>of</strong> <strong>mat<strong>in</strong>g</strong> pairs was counted dur<strong>in</strong>g<br />

the 10 m<strong>in</strong> <strong>of</strong> swarm<strong>in</strong>g. Mat<strong>in</strong>gs were dist<strong>in</strong>guished by<br />

prolonged contact between 2 copepods, which only occurs<br />

between adult males <strong>and</strong> adult virg<strong>in</strong> females prior to <strong>mat<strong>in</strong>g</strong><br />

(Ambler ct al. 1997).<br />

The percent <strong>mat<strong>in</strong>g</strong> encounters were determ<strong>in</strong>ed by compar<strong>in</strong>g<br />

the number <strong>of</strong> mated pairs formed per m<strong>in</strong>ute to the<br />

potential number <strong>of</strong> copepod pairs encountered per m<strong>in</strong>ute.<br />

Mat<strong>in</strong>gs per copepod per m<strong>in</strong>ute were determ<strong>in</strong>ed by divid<strong>in</strong>g<br />

the number <strong>of</strong> observed <strong>mat<strong>in</strong>g</strong>s per m<strong>in</strong>ute by the observed<br />

copepod density. The potential number <strong>of</strong> encounters<br />

per m<strong>in</strong>ute was determ<strong>in</strong>ed by modify<strong>in</strong>g the model <strong>of</strong><br />

Gerritsen & Strickler (1977) which was developed for<br />

predator prey <strong>in</strong>teractions (Buskey 1998). To calculate encounter<br />

frequencies, copepod density, swimm<strong>in</strong>g speeds <strong>of</strong><br />

males <strong>and</strong> females, <strong>and</strong> encounter distance must be known.<br />

Copepod density was calculated us<strong>in</strong>g Bioscan Optimas<br />

image analysis s<strong>of</strong>tware, <strong>and</strong> swimm<strong>in</strong>g speeds were calculated<br />

us<strong>in</strong>g Expertvision Cell-Trak video computer motion<br />

analysis. The encounter distance between a male <strong>and</strong> a female<br />

before <strong>mat<strong>in</strong>g</strong> was estimated as 2.5 mm from video-<br />

tapes <strong>of</strong> previous experiments (Ambler et al. 1997). Percent<br />

<strong>mat<strong>in</strong>g</strong> encounters were calculated as the ratio <strong>of</strong> the number<br />

<strong>of</strong> observed <strong>mat<strong>in</strong>g</strong>s copepod ' m<strong>in</strong> ' to encounter frequency.<br />

Statistical transformations were necessary for fraction<br />

CV not molted to adult, fraction gray embryos formed <strong>and</strong><br />

fraction orange embryos hatched, because these fractions<br />

are sigmoidal as a function <strong>of</strong> time. The fractions were<br />

transformed to the arcs<strong>in</strong>e <strong>of</strong> the square root to produce a<br />

l<strong>in</strong>ear relationship (Sokal & Rohlf 1981). L<strong>in</strong>ear regressions<br />

were performed with EXCEL 97 to describe the time<br />

course function <strong>and</strong> to estimate the times <strong>of</strong> 10. 50, <strong>and</strong><br />

90% <strong>molt<strong>in</strong>g</strong> to adult, <strong>egg</strong> <strong>sac</strong> <strong>production</strong> or <strong>egg</strong> <strong>hatch<strong>in</strong>g</strong>.<br />

Thus we can quantify the time period when 80% <strong>of</strong> these<br />

events occurred, <strong>and</strong> estimate clutch duration by the difference<br />

between times <strong>of</strong> 50% <strong>egg</strong> <strong>sac</strong> <strong>production</strong> <strong>and</strong> <strong>hatch<strong>in</strong>g</strong>.<br />

Results<br />

<strong>Diel</strong> periodicity <strong>of</strong> <strong>egg</strong> <strong>hatch<strong>in</strong>g</strong> was observed to occur at<br />

night <strong>in</strong> experiments with dropped or attached <strong>egg</strong> <strong>sac</strong>s<br />

(Table 1). By midnight only 8% <strong>of</strong> the <strong>egg</strong>s hatched, but by<br />

0600 h the next day, 74% <strong>of</strong> the <strong>egg</strong>s hatched. These results<br />

were consistent for <strong>egg</strong> <strong>sac</strong>s which were either attached to<br />

females or dropped. Viability <strong>of</strong> nauplii was 83-100% <strong>in</strong> 6<br />

<strong>of</strong> the 7 experiments. Embryos with attached or dropped<br />

<strong>sac</strong>s developed <strong>in</strong> the follow<strong>in</strong>g sequence: (I) 0-14h: <strong>egg</strong><br />

<strong>sac</strong>s form <strong>and</strong> embryos appear gray <strong>in</strong> transmitted light <strong>and</strong><br />

extend to the edges <strong>of</strong> the <strong>egg</strong> membrane; <strong>egg</strong> membranes<br />

are pressed together <strong>in</strong> the <strong>sac</strong> <strong>and</strong> do not appear round; (2)<br />

14-20 h: gray embryos become orange embryos <strong>in</strong>side<br />

Time (hfs)<br />

80'<br />

July 6-7. 1989<br />

• 60<br />

----• A a<br />

40.<br />

a \<br />

20 a' \<br />

n r ^ r-<br />

%~~ ^^^*<br />

Fig. 2. Dioilhoua ociilnfii. Lxperiments for <strong>egg</strong> <strong>sac</strong> formation<br />

<strong>and</strong> <strong>egg</strong> <strong>hatch<strong>in</strong>g</strong> on 4 dilTereni dates. Time course from 2200 h<br />

(-2) on the day <strong>of</strong> swarm collection to 0800 h (8) the follow<strong>in</strong>g<br />

morn<strong>in</strong>g for females with new embryos, females with older orange<br />

embryos, <strong>and</strong> females with no <strong>egg</strong> <strong>sac</strong>s.


<strong>Diel</strong> Cycles <strong>in</strong> Copepod Re<strong>production</strong> 123<br />

<strong>egg</strong>s; surface <strong>of</strong> <strong>egg</strong>s appears sh<strong>in</strong>y: (3) 20-24 h: <strong>egg</strong>s<br />

hatch; with<strong>in</strong> an hour <strong>of</strong> <strong>hatch<strong>in</strong>g</strong> the naupliar eye is visible<br />

<strong>and</strong> <strong>egg</strong>s separate from each other <strong>and</strong> each <strong>egg</strong> appears to<br />

be attached by a str<strong>in</strong>g-like structure.<br />

<strong>Diel</strong> periodicity <strong>of</strong> the <strong>egg</strong> cycle was determ<strong>in</strong>ed from<br />

the time course <strong>of</strong> embryonic development experiments<br />

with swarm samples (Fig. 2). At 2200 h on the day <strong>of</strong> collection,<br />

females were either carry<strong>in</strong>g <strong>egg</strong>s with orange embryos<br />

or not carry<strong>in</strong>g <strong>egg</strong> <strong>sac</strong>s. By midnight most <strong>egg</strong> <strong>sac</strong>s<br />

still conta<strong>in</strong>ed orange embryos, although 4-9% <strong>of</strong> females<br />

were carry<strong>in</strong>g newly formed gray embryos <strong>in</strong> <strong>egg</strong> <strong>sac</strong>s. At<br />

0200 h the percent females carry<strong>in</strong>g orange embryos <strong>in</strong> <strong>egg</strong><br />

<strong>sac</strong>s was decreas<strong>in</strong>g <strong>and</strong> the number <strong>of</strong> females with newly<br />

formed gray embryos was <strong>in</strong>creas<strong>in</strong>g. At 0400 h the percentage<br />

<strong>of</strong> females with newly formed embryos was greater<br />

than that <strong>of</strong> females carry<strong>in</strong>g orange embryos. By 0600 h<br />

the percentage <strong>of</strong> females with orange embryos was zero.<br />

The percentage <strong>of</strong> females without <strong>egg</strong> <strong>sac</strong>s varied from 20<br />

to 50% dur<strong>in</strong>g the experimental period from 2200 h on the<br />

day <strong>of</strong> collection to 0600 h the follow<strong>in</strong>g day.<br />

For all the data <strong>in</strong> these 4 experiments. 80% <strong>of</strong> the <strong>egg</strong><br />

<strong>sac</strong>s were formed between 0036 <strong>and</strong> 0820 h. <strong>and</strong> 80% <strong>of</strong> the<br />

<strong>egg</strong>s hatched the follow<strong>in</strong>g day between 0016 <strong>and</strong> 0509 h<br />

(Fig. 3). The clutch or embyronic development time was estimated<br />

by the diftcrcnce between the time <strong>of</strong> 50% <strong>egg</strong> <strong>sac</strong><br />

formation (0428 h) <strong>and</strong> time <strong>of</strong> 50% <strong>egg</strong> <strong>hatch<strong>in</strong>g</strong> (0243 h):<br />

22.25 h. The time <strong>of</strong> 50% hatch. 0243 h. was <strong>in</strong> the middle<br />

<strong>of</strong> the range for time <strong>of</strong> 50% hatch for females with attached<br />

<strong>egg</strong> <strong>sac</strong>s <strong>and</strong> for dropped <strong>egg</strong> <strong>sac</strong>s (Table 1).<br />

In Fig. 2. 20-50% <strong>of</strong> the females did not have <strong>egg</strong> <strong>sac</strong>s,<br />

which might result from all females produc<strong>in</strong>g a clutch<br />

every other day or only half <strong>of</strong> the females produc<strong>in</strong>g <strong>egg</strong><br />

<strong>sac</strong>s every day. The pattern <strong>of</strong> <strong>egg</strong> <strong>sac</strong> <strong>production</strong> for <strong>in</strong>dividual<br />

females was determ<strong>in</strong>ed dur<strong>in</strong>g the 4-d experiment<br />

when 49 <strong>in</strong>dividual fertilized females were observed. Thirty<br />

eight <strong>of</strong> the 49 females produced <strong>egg</strong> <strong>sac</strong>s only on Days 1<br />

<strong>and</strong> 3 (Table 2). which means that most females produced a<br />

pair <strong>of</strong> <strong>egg</strong> <strong>sac</strong>s every other day. Six <strong>of</strong> the 49 females produced<br />

3 <strong>egg</strong> <strong>sac</strong>s dur<strong>in</strong>g 4 d, <strong>and</strong> 3 females produced an <strong>egg</strong><br />

<strong>sac</strong> every day. These 49 females produced an average <strong>of</strong><br />

1.11 pairs <strong>of</strong> <strong>egg</strong> <strong>sac</strong>s every other day. or 0.56 pairs <strong>of</strong> <strong>egg</strong><br />

<strong>sac</strong>s per day.<br />

Eighty percent <strong>of</strong> the CV molted to adult overnight between<br />

0057 <strong>and</strong> 0606 h dur<strong>in</strong>g the -lunc 1995 experiment<br />

(Fig. 4). Only 4% <strong>of</strong> the CV animals had molted to CVl by<br />

midnight, which was about 12 h after they had been anesthetized<br />

<strong>and</strong> isolated from swarms. By 0400 h, 47.7% <strong>of</strong> the<br />

CV were adults; females comprised 52% <strong>of</strong> adults <strong>and</strong> 2 females<br />

had <strong>egg</strong> <strong>sac</strong>s. By 0630 h, 82.5% <strong>of</strong> copepods were<br />

adults with females compris<strong>in</strong>g 51.5% <strong>of</strong> all adults; there<br />

was one female with <strong>egg</strong> .<strong>sac</strong>s. The estimated time for 50%<br />

<strong>of</strong> the CV to moh was 0330 h.<br />

In more than 200 m<strong>in</strong> <strong>of</strong> video-taped experiments. 12<br />

episodes <strong>of</strong> prolonged contact between 2 <strong>in</strong>dividuals <strong>of</strong><br />

Dioiihona ociilata were <strong>in</strong>terpreted as <strong>mat<strong>in</strong>g</strong>. Eleven <strong>of</strong><br />

these episodes occurred near dawn (0600h) <strong>and</strong> one oc-<br />

<strong>in</strong><br />

<<br />

1.2<br />

O<br />

I 0.8<br />

o<br />

CO<br />

LLI<br />

o<br />

•d<br />

c<br />

V)<br />

<strong>in</strong><br />

<<br />

0.0 Q<br />

Gray Embryos<br />

y = 0.12x + 0.25<br />

r^ = 0.89<br />

n<br />

a.<br />

D<br />

'•°(> \ • -m-<br />

1.2 <<br />

^<br />

\ .<br />

N t<br />

D.<br />

0.8<br />

V •<br />

04<br />

r\<br />

n<br />

D<br />

\<br />

V<br />

n<br />

-B<br />

D<br />

Orange Embryos<br />

y = -0.19x+ 1.30<br />

r^ = 0.82<br />

0.0 1 + +:<br />

-202468<br />

Time (hrs)<br />

Fig. 3. Dioithona ociilala. L<strong>in</strong>ear regression <strong>of</strong> arcs<strong>in</strong>c transformation<br />

for females with gray embryos GE (top) <strong>and</strong> females with<br />

orange embryos OE (bottom) versus time from 2200h (-2) to<br />

0600h (6) the follow<strong>in</strong>g day. Data from all 4 experiments shown<br />

<strong>in</strong> Fig. 2 comb<strong>in</strong>ed. Three arrows on the time axis show the estimated<br />

times for 10. 50. <strong>and</strong> 90% <strong>egg</strong> <strong>sac</strong> formation (top) <strong>and</strong> <strong>egg</strong><br />

<strong>hatch<strong>in</strong>g</strong> (bottom).<br />

Table 2. Dioiihoiui oculaiu. Patterns <strong>of</strong> <strong>egg</strong> <strong>sac</strong> <strong>production</strong> for<br />

49 females collected at l.'iOOh on 6 July. 1991 <strong>and</strong> fed d<strong>in</strong><strong>of</strong>lagellates<br />

collected from the held for4d. X=new pair <strong>of</strong> <strong>egg</strong> <strong>sac</strong>s observed<br />

at 0600 h <strong>of</strong> each day. See text for methods.<br />

No. Fema es<br />

Days<br />

1 2 3 4<br />

Tot il no. clutches<br />

38 X X 2<br />

3 X X X X 4<br />

3 X X X 3<br />

2 X X X 3<br />

1 X X X 3<br />

1 X X 2<br />

1 X 1<br />

49 Total females 49 8 46 6 109 Total<br />

Mean = 2.22 pairs <strong>of</strong> <strong>egg</strong> <strong>sac</strong>s (4d) ', or 0.56 pairs <strong>of</strong> <strong>egg</strong> <strong>sac</strong>s d<br />

8.3


124 J. W. AMBLER, F. D. FERRARI, J. A. FORNSHELL & E. J. BUSKEY<br />

June 17-18, 1995<br />

B%CV n%CVI-m l3%CVI-f •%CVI-fg<br />

100% • ^~<br />

n •<br />

>f 80%-<br />

to<br />

•o 80% -<br />

'><br />

40% •<br />

« 20% -<br />

no/ .<br />

' 2.0<br />

><br />

u<br />

1 fi<br />

o<br />

u 1.2<br />

t 0.8<br />

o-<br />

(A 0.4<br />

0)<br />

c<br />

u) 0.0<br />

JiXLi<br />

11:50PM 12:15AM 3:55AM 4:25 AM 6:20 AM 6:35 AM<br />

Time (hrs)<br />

Fig. 4. Dioithomi ocidata. Molt<strong>in</strong>g <strong>of</strong> CV to adult dur<strong>in</strong>g the<br />

night. A. Relative abundance CV, <strong>and</strong> adult males (CVIm), adult<br />

females (CVIO, <strong>and</strong> ovigerous females (CVIfg). B. Regression <strong>of</strong><br />

arcs<strong>in</strong>e transformation <strong>of</strong> CV as a function <strong>of</strong> time from midnight<br />

(0) to 0600 h (6). Three arrows <strong>in</strong> (B) show the time <strong>of</strong> 10, 50, <strong>and</strong><br />

90% <strong>molt<strong>in</strong>g</strong> from CV to adult.<br />

curred at iOOOh (Table 3). Vv'ith<strong>in</strong> the center <strong>of</strong> the light<br />

shaft, copepod density <strong>in</strong>creased from 0.64 copepods ml '<br />

at midnight to 11.22 copepods ml ' at I600h, a 17-fold <strong>in</strong>crease.<br />

The rate <strong>of</strong> encounters between 2 <strong>in</strong>dividuals also<br />

varied by 17-fold: from 2.0 encounters copepod 'm<strong>in</strong> ' at<br />

midnight to 35.2 encounters copepod 'm<strong>in</strong> ' at I600h.<br />

Obviously, encounter rates were much greater dur<strong>in</strong>g the<br />

day when copepods formed swarms. Therefore <strong>mat<strong>in</strong>g</strong> encounters<br />

were not a function <strong>of</strong> copepod density but time <strong>of</strong><br />

day, s<strong>in</strong>ce the highest percent <strong>mat<strong>in</strong>g</strong> encounters, 0.9%, occurred<br />

at dawn.<br />

Discussion<br />

We detected dicl <strong>cycles</strong> <strong>of</strong> <strong>egg</strong> <strong>production</strong> by identify<strong>in</strong>g<br />

2 dist<strong>in</strong>ct stages <strong>in</strong> embryonic development: new gray non-<br />

differentiated embryos <strong>and</strong> older orange embryos with dist<strong>in</strong>ct<br />

features <strong>in</strong>clud<strong>in</strong>g naupliar eyes. These stages were<br />

dist<strong>in</strong>ct because we observed live rather than preserved animals<br />

<strong>and</strong> could easily dist<strong>in</strong>guish colors <strong>of</strong> embryos. This<br />

technique allowed us to focus on the time period when <strong>egg</strong><br />

<strong>hatch<strong>in</strong>g</strong> <strong>and</strong> <strong>egg</strong>-<strong>sac</strong> formation were occurr<strong>in</strong>g. Hopcr<strong>of</strong>t<br />

& R<strong>of</strong>f (1996) observed females at l-2-h <strong>in</strong>tervals, <strong>and</strong><br />

sometimes missed <strong>egg</strong> <strong>hatch<strong>in</strong>g</strong>. If other cyclopoid species<br />

have dist<strong>in</strong>ct color changes <strong>in</strong> embryonic development, then<br />

the time <strong>of</strong> <strong>egg</strong> <strong>hatch<strong>in</strong>g</strong> could be estimated by observ<strong>in</strong>g<br />

the proportion <strong>of</strong> females with <strong>and</strong> without colored embryos.<br />

Tessier (1984) reported diel <strong>cycles</strong> <strong>of</strong> <strong>egg</strong> <strong>production</strong><br />

<strong>in</strong> cladoceran species by observ<strong>in</strong>g that the frequency <strong>of</strong><br />

embryonic development stages rema<strong>in</strong>ed constant.<br />

Dioithona ocidata females collected from swarms reproduced<br />

synchronously with a diel cycle, with <strong>egg</strong>s <strong>hatch<strong>in</strong>g</strong><br />

between midnight <strong>and</strong> 0600h the next morn<strong>in</strong>g (Table I,<br />

Fig. 2). The <strong>egg</strong> cycle duration, which <strong>in</strong>cludes the clutch<br />

duration (22.25 h) <strong>and</strong> the <strong>in</strong>ter-clutch duration was usually<br />

48 h, although some <strong>in</strong>dividual females produced <strong>egg</strong> <strong>sac</strong>s<br />

with<strong>in</strong> a few hours af^er <strong>egg</strong> <strong>hatch<strong>in</strong>g</strong> which resulted <strong>in</strong> a<br />

24-h clutch duration (Table 2). Hopcr<strong>of</strong>t & R<strong>of</strong>f (1996) observed<br />

diel <strong>cycles</strong> <strong>of</strong> clutch duration for the tropical cyclopoid<br />

species: Oilliona naiia, Oithona simplex, <strong>and</strong><br />

Coiycueus amazoniciis. <strong>and</strong> for the harpacticoid Euterpimi<br />

acutifrons. Oilliona luiiui <strong>and</strong> O. simplex had diel <strong>cycles</strong><br />

with the same tim<strong>in</strong>g as D. oculaia: <strong>egg</strong> <strong>hatch<strong>in</strong>g</strong> occurred<br />

between 0300 <strong>and</strong> 0600 h. However, the majority <strong>of</strong> O.<br />

liana, O. simplex, <strong>and</strong> E. aciiiijivns females produced <strong>egg</strong><br />

<strong>sac</strong>s soon (with<strong>in</strong> I h) after <strong>egg</strong> <strong>hatch<strong>in</strong>g</strong>, so that most females<br />

carried <strong>egg</strong> <strong>sac</strong>s (Hopcr<strong>of</strong>t & R<strong>of</strong>f 1996). This 24-h<br />

<strong>egg</strong>-cycle duration contrasts with D. ocidata which usually<br />

produced <strong>egg</strong> <strong>sac</strong>s the next day after <strong>egg</strong> <strong>hatch<strong>in</strong>g</strong> <strong>and</strong><br />

therefore had a 48-h <strong>egg</strong>-cycle duration (Table 2). Hopcr<strong>of</strong>t<br />

& R<strong>of</strong>f (1996) also observed longer <strong>egg</strong>-cycle durations for<br />

Oithona pliimifera which they collected further <strong>of</strong>fshore<br />

than other oithonids. Thus diel <strong>cycles</strong> <strong>of</strong> <strong>egg</strong> <strong>production</strong><br />

have been observed for 5 cyclopoid <strong>and</strong> one harpacticoid<br />

species with <strong>hatch<strong>in</strong>g</strong> occurr<strong>in</strong>g near dawn (Hopcr<strong>of</strong>t &<br />

R<strong>of</strong>f 1996; present study). One exception was C. amazoniciis<br />

whose <strong>egg</strong>s hatched <strong>in</strong> late afternoon (Hopcr<strong>of</strong>t & R<strong>of</strong>f<br />

1996).<br />

Egg-cycle duration, clutch size, <strong>and</strong> <strong>egg</strong>-<strong>production</strong> rates<br />

Table 3. Diiiilhoiui ocuUiUi. <strong>Diel</strong> <strong>mat<strong>in</strong>g</strong> pattern for females <strong>in</strong> laboratory experiments, <strong>in</strong> which copepods were filmed for .Sm<strong>in</strong> <strong>in</strong> dark,<br />

lOm<strong>in</strong> <strong>in</strong> the center <strong>of</strong>a light shaft formed by fiber optic probe, <strong>and</strong> Sm<strong>in</strong> <strong>in</strong> dark. Record<strong>in</strong>gs began at 1600h on the day <strong>of</strong> field collection.<br />

Time Density no. <strong>mat<strong>in</strong>g</strong>s no. <strong>mat<strong>in</strong>g</strong>s no encounters Mat<strong>in</strong>g<br />

(h) copepod ml ' <strong>in</strong> 10 m<strong>in</strong> copepod ' m<strong>in</strong>"' copepod ' m<strong>in</strong> ' encounters (%)<br />

1600 11.22 0 0 35.2 0<br />

2000 1.03 0 0 3.23 0<br />

0000 0.64 0 0 2.02 0<br />

0600 3.67 11 0.1 11.5 0.87<br />

1000 9.97 1 0.0033 31.3 0.011


<strong>Diel</strong> Cycles <strong>in</strong> Copepod Re<strong>production</strong><br />

125<br />

ciu.ch du,.a,L. ircyde Z^^^Zs^^ZL^Z TZ^I:::^'^-''^ d..rat,on ,<strong>egg</strong> develop„.en.a, t<strong>in</strong>.) pK.s ,„,e,-<br />

mean nu,o otcycle ,c> clutch duration , 1.22, NA = noZii bl "<br />

°' '"'^'^ '"""°" " '^'"•^^" ''^'^^"'"" '""-^ "^^<br />

Species T^mP Clutch M<strong>in</strong>imum cycle Ratio Best estmiate Clutch size Kgg prod<br />

( C) duration(d) duration(d) cycle/clutch cycle duration (<strong>egg</strong>s pair ') (<strong>egg</strong>s female 'd ') Reference<br />

Coiycaetis<br />

ai)i(i:ttiiicii.s<br />

Dioilhoiui<br />

ociiliiki<br />

Oilhonu<br />

colcarvu<br />

Oithona<br />

colcarva<br />

Oiilwna<br />

colcarva<br />

Oiihona<br />

davisae<br />

Oithona<br />

davisae<br />

Oithona<br />

nana<br />

OitllO/HI<br />

phimifera<br />

Oithona<br />

phimifera<br />

Oithona<br />

pi<strong>in</strong>nifcra<br />

Oithona<br />

similis<br />

Oiihona<br />

similis<br />

Oitliona<br />

simplex<br />

28<br />

28<br />

15<br />

20<br />

25<br />

20<br />

28<br />

28<br />

20<br />

28<br />

28<br />

10<br />

15<br />

28<br />

0.91<br />

0.84<br />

4.00<br />

1.68<br />

0.86<br />

NA<br />

0.77<br />

0.98<br />

NA<br />

1.60<br />

1.50<br />

NA<br />

3.00<br />

0.96<br />

1.0<br />

1.0<br />

NA<br />

NA<br />

NA<br />

2.7<br />

NA<br />

1.0<br />

3.2<br />

2.2<br />

2.5<br />

6.0<br />

3.4<br />

1.0<br />

Mean ratio<br />

1.10<br />

1.19<br />

NA<br />

NA<br />

NA<br />

NA<br />

NA<br />

1.02<br />

NA<br />

1.38<br />

1.67<br />

NA<br />

1.13<br />

1.04<br />

1.22<br />

1.00<br />

1.00<br />

4.87<br />

2.05<br />

1.05<br />

2.70<br />

0.94<br />

1.00<br />

3.20<br />

2.20<br />

2.50<br />

6.00<br />

3.40<br />

1.00<br />

43.0<br />

13.5<br />

15.0<br />

20.0<br />

16.8<br />

10.0<br />

20.0<br />

18.5<br />

12.2<br />

8.0<br />

12.9<br />

9.3<br />

14.9<br />

7.0<br />

43.0<br />

13.5<br />

3.1<br />

9.8<br />

16.0<br />

3.7<br />

21.3<br />

18.5<br />

3.8<br />

3.6<br />

5.2<br />

1.6<br />

4.4<br />

7.0<br />

Hopcr<strong>of</strong>t& Ro<strong>in</strong>996<br />

This Study<br />

Lonsdale 1981<br />

Lonsdale 1981<br />

Lonsdale 1981<br />

Uchima 1985<br />

Uye & Sano 1995<br />

Hopcr<strong>of</strong>t& R<strong>of</strong>f 1996<br />

Pafienhcifer 1993<br />

Webber & R<strong>of</strong>l" 1995<br />

Hopcrort& R<strong>of</strong>f 1996<br />

Eaton 1971<br />

Sabat<strong>in</strong>i & Kiorboe 1994<br />

Hopcr<strong>of</strong>t& R<strong>of</strong>t"|996<br />

<strong>of</strong> D. ociihita were comparable to other cyclopoid copepod<br />

species (Table 4). The m<strong>in</strong>imum <strong>egg</strong>-cycle duration was a<br />

few hours longer than clutch duration (embryonic development<br />

time), <strong>and</strong> decreased exponentially with temperature<br />

for 7 species (Fig. 5). These m<strong>in</strong>imal times for <strong>egg</strong>-cycle<br />

duration may represent optimal conditions with no food<br />

limitation, s<strong>in</strong>ce Sabat<strong>in</strong>i & Kiorboe (1994) found that <strong>egg</strong>cycle<br />

duration decreased with <strong>in</strong>creas<strong>in</strong>g food concentrations<br />

for a given temperature. Egg-<strong>production</strong> rates were<br />

calculated by divid<strong>in</strong>g clutch size by <strong>egg</strong>-cycle duration. In<br />

contrast to a fairly uniform temperature function for <strong>egg</strong>cycle<br />

duration, the temperature function for daily <strong>egg</strong>-<strong>production</strong><br />

rates was more variable due to lower clutch sizes<br />

for O. simplex <strong>and</strong> D. ociikila, <strong>and</strong> longer <strong>egg</strong>-cycle durations<br />

for the coastal species O. phimifera (Paffenh<strong>of</strong>er<br />

1993; Webber & R<strong>of</strong>f 1995; Hopcr<strong>of</strong>t & R<strong>of</strong>lF 1996). Egg<strong>production</strong><br />

rates for Oithona davisae fed natural food at<br />

28°C followed the maximal temperature curve, but O.<br />

davisae fed two flagellate cultures at 20°C were lower than<br />

maximal rate for that temperature (Uchima 1985; Uye &<br />

10 15 20<br />

Temperature (°C)<br />

25 30<br />

Fig. 5. Seven species <strong>in</strong> Order Cyclopoida. Experimental data<br />

for m<strong>in</strong>imum <strong>egg</strong>-cycle duration (time from clutch to clutch) as a<br />

function <strong>of</strong> temperature.


126<br />

J. W. AMBLER, F. D. FERRARI, J. A. FORNSHELL & E. J. BUSKEY<br />

Sano 1995). Con'caeiis amazoniciis had a much higher<br />

ckitch size than the oithonids, which resulted <strong>in</strong> higher <strong>egg</strong><strong>production</strong><br />

rates (Table 4). Although <strong>egg</strong>-<strong>production</strong> rates<br />

follow a general temperature function, they are characterized<br />

by diflFerences between species <strong>and</strong> food availability.<br />

Male-female pairs <strong>of</strong> D. oculata were more <strong>of</strong>ten found<br />

<strong>mat<strong>in</strong>g</strong> early <strong>in</strong> the morn<strong>in</strong>g (Table 3). <strong>and</strong> this tim<strong>in</strong>g <strong>of</strong><br />

copulation may result directly from CV <strong>molt<strong>in</strong>g</strong> to adult before<br />

dawn, <strong>and</strong> male preference for <strong>mat<strong>in</strong>g</strong> with virg<strong>in</strong> females<br />

(Ambler et al. 1997). Mated females may produce<br />

<strong>egg</strong> <strong>sac</strong>s shortly after copulation, or wait until the followmg<br />

day at 0400 h. Uchima (1985) found that for O. clavisae,<br />

<strong>hatch<strong>in</strong>g</strong> success <strong>of</strong> viable nauplii was highest for females<br />

that produced <strong>egg</strong> <strong>sac</strong>s with<strong>in</strong> a day <strong>of</strong> copulation. Tim<strong>in</strong>g<br />

<strong>of</strong> copulation at dawn may also result from an adaptive advantage<br />

for diel periodicity for later reproductive events<br />

such as <strong>egg</strong> lay<strong>in</strong>g or <strong>hatch<strong>in</strong>g</strong> <strong>of</strong> nauplii. However, Volkmann-Rocco<br />

(1972) found that harpacticoid copepods <strong>in</strong><br />

genus Tishe could delay fertilization. Therefore, selective<br />

pressures for the tim<strong>in</strong>g <strong>of</strong> copulation may not <strong>in</strong>fluence<br />

tim<strong>in</strong>g for <strong>egg</strong> <strong>sac</strong> <strong>production</strong> <strong>and</strong> <strong>egg</strong> <strong>hatch<strong>in</strong>g</strong>.<br />

Although <strong>mat<strong>in</strong>g</strong> encounters were greatest for the dawn<br />

experiment, 0.9% is a low percentage. The average composition<br />

<strong>of</strong> field collected swarms is 24% males, 36% females,<br />

9% female CV, 6% male CV, <strong>and</strong> 25% younger copcpodid<br />

stages (Ambler ct al. 1991). For a swarm collected dur<strong>in</strong>g<br />

the day <strong>and</strong> kept overnight, 9% <strong>of</strong> the animals would be virg<strong>in</strong><br />

females if all CV females molted between midnight <strong>and</strong><br />

0630h (Fig. 4). Therefore most <strong>of</strong> the encounters between<br />

copepods are not potential <strong>mat<strong>in</strong>g</strong> pairs.<br />

Re<strong>production</strong> <strong>of</strong> female D. oailala <strong>in</strong>cluded the follow<strong>in</strong>g<br />

diel episodic events: molt to adult before dawn (El),<br />

<strong>mat<strong>in</strong>g</strong> at early dawn on the same day as El after swarm<br />

formation (E2), <strong>egg</strong> <strong>sac</strong> <strong>production</strong> probably the night after<br />

<strong>mat<strong>in</strong>g</strong> (E3). <strong>egg</strong> <strong>hatch<strong>in</strong>g</strong> 22.25 h after E3 (E4), <strong>and</strong> events<br />

E3 <strong>and</strong> E4 repeat several times until females die (Fig. 6).<br />

Longevity <strong>of</strong> adult females is unknown but females may<br />

live 3^ d longer than CV copepodids, because the percentage<br />

<strong>of</strong> adults found under the mangroves but not <strong>in</strong> swarms<br />

dur<strong>in</strong>g the day is a ratio <strong>of</strong> 4 adults to I copcpodid (Ambler<br />

ct al. 1991). This estimate assumes a stable age distribution<br />

<strong>in</strong> the population <strong>of</strong> D. ociilala. We do not know if females<br />

spawn cont<strong>in</strong>uously until they die, but most females were<br />

probably produc<strong>in</strong>g <strong>egg</strong> <strong>sac</strong>s s<strong>in</strong>ce the percentage <strong>of</strong> ovigerous<br />

females <strong>in</strong> a swarm population was usually at least 50%<br />

(Fig. 2) <strong>and</strong> most females produced a pair <strong>of</strong> <strong>egg</strong> <strong>sac</strong>s every<br />

other day (Table 2).<br />

Naupliar <strong>hatch<strong>in</strong>g</strong> occurs at night when many females are<br />

3-5 m away from the mangrove prop roots. Thus nauplii are<br />

not released <strong>in</strong>to water near the mangrove prop roots, where<br />

copepodids <strong>and</strong> adults swarm. This corresponds to the absence<br />

<strong>of</strong> nauplii from swarm samples <strong>and</strong> their presence <strong>in</strong><br />

samples from <strong>of</strong>lshore waters (Ambler et al. 1991). Older<br />

copcpodid stages <strong>and</strong> adults, <strong>in</strong>clud<strong>in</strong>g mothers <strong>of</strong> the nauplii,<br />

are able to cannibalize the nauplii (Unpublished results).<br />

Because there is a difference <strong>in</strong> copcpodid <strong>and</strong> adult<br />

Fig. 6. Dioithonu oculahi. Schematic diagram portray<strong>in</strong>g diel<br />

<strong>cycles</strong> for 4 life history events.<br />

densities <strong>of</strong> about 2 orders <strong>of</strong> magnitude between swarms<br />

dur<strong>in</strong>g the day <strong>and</strong> <strong>of</strong>f"shore waters at night, diel episodic<br />

<strong>hatch<strong>in</strong>g</strong> <strong>in</strong>to <strong>of</strong>fshore water should decrease cannibalism<br />

by reduc<strong>in</strong>g the probability <strong>of</strong> naupliar encounters by older<br />

copepods.<br />

Release <strong>of</strong> D. oculata nauplii <strong>in</strong> water <strong>of</strong>fshore <strong>of</strong> the<br />

mangroves should also reduce predation by the mangrove<br />

mysid Mvsidium columhiae. which occupies the mangrove<br />

prop root habitat dur<strong>in</strong>g the day <strong>and</strong> night (Modl<strong>in</strong> 1990).<br />

Juveniles <strong>of</strong> this mysid species probably can capture nauplii,<br />

s<strong>in</strong>ce exoskcletons <strong>of</strong> D. ocuhila copepodids have been<br />

recovered from stomachs <strong>of</strong> adult M columhiae (F. D. Ferrari,<br />

unpublished data). Aser et al. (1995) have shown that<br />

Neomvsis <strong>in</strong>teger can capture both nauplii <strong>and</strong> copepodids<br />

<strong>of</strong> the calanoid copepod Eurytemom aff<strong>in</strong>is. Other potential<br />

predators <strong>of</strong> copepod nauplii <strong>in</strong> the mangrove habitat <strong>in</strong>clude<br />

numerous sessile filter feeders such as oysters <strong>and</strong><br />

anemones attached to prop roots (Ambler et al. 1994).<br />

<strong>Diel</strong> <strong>cycles</strong> <strong>of</strong> <strong>egg</strong>-<strong>sac</strong> <strong>production</strong> <strong>and</strong> <strong>egg</strong> <strong>hatch<strong>in</strong>g</strong> are<br />

more widespread phenomena than swarm<strong>in</strong>g for species <strong>of</strong><br />

Oithonidae. Oilhona simplex, O. tiami <strong>and</strong> O. jonsecae have<br />

also been collected <strong>in</strong> Tw<strong>in</strong> Cays, but never with the<br />

swarms <strong>of</strong> D, oculata (unpublished data). Although diel <strong>cycles</strong><br />

<strong>of</strong> <strong>egg</strong> <strong>hatch<strong>in</strong>g</strong> appear to protect nauplii from predation.<br />

about 50% <strong>of</strong> the D. oculata females are always carry<strong>in</strong>g<br />

<strong>egg</strong> <strong>sac</strong>s (Fig. 2). which should cause them to be more<br />

visible to predators. Swarm<strong>in</strong>g <strong>of</strong> D. oculata may be a de-


<strong>Diel</strong> Cycles <strong>in</strong> Copepod Re<strong>production</strong><br />

127<br />

tcrrent to fish prcdation. <strong>and</strong> restricted to this species s<strong>in</strong>ce<br />

they are larger than other Oiiluma spp. Mat<strong>in</strong>g pairs <strong>of</strong> D.<br />

ovulaui are probably especially visible to predators because<br />

<strong>mat<strong>in</strong>g</strong> pairs have dist<strong>in</strong>ctive swimm<strong>in</strong>g patterns (Ambler et<br />

al. 1997). If <strong>mat<strong>in</strong>g</strong> is restricted to an hour at dawn, then<br />

<strong>mat<strong>in</strong>g</strong> pairs have less risk from predation. Swarm<strong>in</strong>g may<br />

allow more encounters for mates, but if this is the pHmary<br />

eause. then the closely related Oiilwiui spp. should also<br />

benefit from this behavior <strong>and</strong> swarm. However, Oiilwmi<br />

spp. may have other methods <strong>of</strong> locat<strong>in</strong>g <strong>and</strong> ide^tify<strong>in</strong>^<br />

mates such as female release <strong>of</strong> distance pheremones which<br />

were hypothesized for O. davisuc (Uchima & Murano<br />

I98S). Predation appears to be the ma<strong>in</strong> selective force for<br />

diel <strong>cycles</strong> <strong>of</strong> D. oailala. but diel <strong>cycles</strong> <strong>in</strong> re<strong>production</strong><br />

probably <strong>in</strong>crease the survival <strong>of</strong> nauplii. whereas diel cy-<br />

cles <strong>of</strong> <strong>molt<strong>in</strong>g</strong>, <strong>mat<strong>in</strong>g</strong>, <strong>and</strong> swarm<strong>in</strong>g may <strong>in</strong>sure higher<br />

fecundity <strong>and</strong> <strong>in</strong>crease survival <strong>of</strong> adults.<br />

Acknowledgments<br />

We especially thank Dr Klaus Riitzler for his encourage-<br />

ment <strong>and</strong> cont<strong>in</strong>uous efforts to provide research experiences<br />

at the Smithsonian Institution's Field Station at Carrie Bow<br />

Cay. We thank the support staff at Carrie Bow Cay for pro-<br />

vidnig seaworthy boats <strong>and</strong> wonderful Bclizean meals. Our<br />

research was supported by Visit<strong>in</strong>g Scientist stipends from<br />

the Caribbean Coral Reef Hcosystems Program (CCRIi) for<br />

all <strong>of</strong> us, grants (OCE 9217422 <strong>and</strong> OCE 9349834) from<br />

the Ocean Sciences Division <strong>of</strong> the National Science foun-<br />

dation (JWA <strong>and</strong> E.IB), <strong>and</strong> Millersville University Faculty<br />

Release Time Grants (JWA). This paper is Caribbean Coral<br />

Reef Ecosystem Program contribution 571 , <strong>and</strong> University<br />

<strong>of</strong> Texas Mar<strong>in</strong>e Science Institute contribution 1111.<br />

Literature Cited<br />

Ambler. .1. W.. F 1), ferrari & .(. A. fornshcll 19^;i. I'opukuion<br />

structure <strong>and</strong> .swarm formation <strong>of</strong> the cyclopoid copepod<br />

Dioithoiui (Kiikiki near mangrove cays. ./ Plankton Re\ 13-<br />

1257 1272.<br />

Ambler, .1. W, J. Alcala-llcrrera & R. Burke 1994. Trophic roles<br />

<strong>of</strong> particle feeders <strong>and</strong> detritus <strong>in</strong> a mangrove isl<strong>and</strong> prop root<br />

ecosystem. lhclmhiol„i>ic, 292/293: 437 446.<br />

Ambler, .1. W., S. A. liroaduator, \1. J. IJuskcy & J. O. Peterson<br />

1997. Mat<strong>in</strong>g behavior o( Dioilhona ociilalu <strong>in</strong> swarms, p.<br />

287-299 fn Zoophwklrw Sensory Ecology <strong>and</strong> Physiology (eds<br />

Lcnz, P. II.. D. K. Hartl<strong>in</strong>e, .1. F. Purcell & D. L. Macmillan).<br />

(Jordon & Breach Science Publishers. Basel.<br />

Aser, tl. F, I-:. Jeppesen & M. Sondergaard 1995. Seasonal dy-<br />

namics <strong>of</strong> Ihc mysid Ncomysis <strong>in</strong>lcgcr <strong>and</strong> its predation on the<br />

copepod Ewylcmora aff<strong>in</strong>is <strong>in</strong> a shallow hyperuophic brackish<br />

lake. Mar. Ecol. Prog. Scr 127: 47-56.<br />

15uskcy, !•:. .1. 1998. Components <strong>of</strong> <strong>mat<strong>in</strong>g</strong> behavior <strong>in</strong> planklonie<br />

eopepods. 7 Mar .Syslcms 15: l."^ 21.<br />

Buskey, i:. .1., J, O. Peterson & .1. W. Ambler 1995. The role <strong>of</strong><br />

photoreccption <strong>in</strong> the swarm<strong>in</strong>g behavior <strong>of</strong> the copepod<br />

Dioilhona oculala. Mar Fresh. Behay Phytiol. 26: 273 285<br />

Uuskey, F. .1.. .1. O. Peterson & .1. W. Ambler 1996. The swarm<strong>in</strong>g<br />

behavior <strong>of</strong> the copepod Dioithona oculala: <strong>in</strong> silii <strong>and</strong> laboratory<br />

studies. L<strong>in</strong>iiiol. (kvanogn 41: 513 521.<br />

[•;alon, .1. M. 1971. Studies on the feed<strong>in</strong>g <strong>and</strong> reproductive biol-<br />

ogy <strong>of</strong> the mar<strong>in</strong>e cyclopoid copepod Oiihona similis Claus. Ph.<br />

D. Thesis, Dalhousie University, 101 pp.<br />

(ierritsen, J. & .1. R. Striekler 1977. l-ncounler probabilities <strong>and</strong><br />

community structure <strong>in</strong> zooplankton: a mathematical model J.<br />

I'ish. RL'S. Bel Can. 34: 73 82.<br />

Ilamner, W. M. & J. Carleton 1979. Copepod swarms: attributes<br />

<strong>and</strong> role <strong>in</strong> coral reef ecosystems. L<strong>in</strong><strong>in</strong>ol. Occanoi^r 24: 1-14.<br />

Haney, ,1. F 19X8. <strong>Diel</strong> patterns <strong>of</strong> zooplanklon behavior Ball<br />

Mar Sci. 43: 583 603.<br />

Ilopcroli. R. R. & .1. C. Ron- 1996. Zooplankton growth rates: diel<br />

<strong>egg</strong> <strong>production</strong> <strong>in</strong> the copepods Oiihona, Enlcrp<strong>in</strong>a <strong>and</strong><br />

Corycacns from tropical waters.,/ Planklon Res. 18: 789-803<br />

Lonsdale. D. .1. 1981. Regulatory role <strong>of</strong> physical factors <strong>and</strong> pre-<br />

dation for two Chesapeake Bay copepod species. Mar Ecol<br />

Pr<strong>of</strong>i.Ser 5:341 351.<br />

Modhn. R. F 1990. Observations on the aggregative behavior <strong>of</strong><br />

Mysii/iiwi cohi<strong>in</strong>hiae. the mangrove mysid. PS Z.N I Mar Ecol<br />

11:263 275.<br />

Pallbnh<strong>of</strong>er, G. A. 1993. On the ecology <strong>of</strong> mar<strong>in</strong>e cyclopoid<br />

copepods (Crustacea, Copepoda). J. Planklon Res. 15: 37-55<br />

Sabat<strong>in</strong>i, M. & T Kiorboe 1994. ligg <strong>production</strong>, growth <strong>and</strong> de-<br />

velopment <strong>of</strong> the cyclopoid copepod Oiihona similis. .1. Planklon<br />

Res. 16: 1329 1351.<br />

Sokal. R. R. & [• .1. Rohir 1981. Bio<strong>in</strong>elry. Second f-dition. W. IF<br />

Freeman <strong>and</strong> Co., San Francisco, 859 pp.<br />

Tcssier, A. J. 1984. Periodicity <strong>of</strong> <strong>egg</strong> lay<strong>in</strong>g <strong>and</strong> <strong>egg</strong> age distributions<br />

<strong>in</strong> planktonic eladoecra. Can. J. Eish Aqual Sci 41-<br />

409 413. • '<br />

Uchima, M. 1979. Morphological observation <strong>of</strong> developmental<br />

stages Ml Oiihona breyicornis (Copepoda. Cyclopoida). Bull.<br />

Planklon. Soc. Jpn 26: 58-76.<br />

Uchima. M. 1985. C^opulation <strong>in</strong> the mar<strong>in</strong>e copepod Oiihona<br />

dayisae Ferrari & Orsi. 11. Relationship between copulation <strong>and</strong><br />

<strong>egg</strong>-lay<strong>in</strong>g. Bull. Planklon Soc. Jpn 32: 31 36.<br />

Uchima. M. & M. Murano 1988. Mat<strong>in</strong>g behavior <strong>of</strong> the mar<strong>in</strong>e<br />

copepod Oiiluma dayisae. Mar Biol. 99: 39 45.<br />

Uyc. S. & K. Sano 1995. Seasonal reproductive biology <strong>of</strong> the<br />

small cyclopoid copepod Oiihona davi.Kae <strong>in</strong> a temperate eutrophie<br />

<strong>in</strong>let. Mar Ecol. Prog. .Scr 118: 121 128<br />

Volkmann-Roceo. B. 1972. The etTecl <strong>of</strong> delayed fertilization <strong>in</strong><br />

some species <strong>of</strong> the genus mhe (Copepoda. Harpactieoida)<br />

Biol. Bud. 142: 520-529.<br />

Webber, M. K. & J. C. R<strong>of</strong>V 1995. Annual biomass <strong>and</strong> produclion<br />

ot the oceanic copepod community olf r:)iscovery Bay .lamaiea<br />

Mar Biol. 123: 481-495.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!