29.12.2013 Views

Influence of bedding material on footpad dermatitis in broiler chickens

Influence of bedding material on footpad dermatitis in broiler chickens

Influence of bedding material on footpad dermatitis in broiler chickens

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

© 2009 Poultry Science Associati<strong>on</strong>, Inc.<br />

<str<strong>on</strong>g>Influence</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>bedd<strong>in</strong>g</str<strong>on</strong>g> <str<strong>on</strong>g>material</str<strong>on</strong>g> <strong>on</strong> <strong>footpad</strong><br />

<strong>dermatitis</strong> <strong>in</strong> <strong>broiler</strong> <strong>chickens</strong><br />

S. F. Bilgili ,* 1 J. B. Hess ,* J. P. Blake ,* K. S. Mackl<strong>in</strong> ,* B. Saenmahayak ,*<br />

and J. L. Sibley †<br />

* Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Poultry Science, and † Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Horticulture,<br />

Auburn University, Auburn, AL 36849-5416<br />

Primary Audience: Broiler Producers, Service Pers<strong>on</strong>nel, Producti<strong>on</strong> Managers<br />

SUMMARY<br />

Bedd<strong>in</strong>g availability issues are aris<strong>in</strong>g rapidly <strong>in</strong> the <strong>broiler</strong> <strong>in</strong>dustry that may alter the type<br />

and quality <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>bedd<strong>in</strong>g</str<strong>on</strong>g> available to growers to rear <strong>broiler</strong> <strong>chickens</strong>. Because birds are <strong>in</strong> direct<br />

c<strong>on</strong>tact with the litter, the potential impact <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>bedd<strong>in</strong>g</str<strong>on</strong>g> <str<strong>on</strong>g>material</str<strong>on</strong>g>s <strong>on</strong> <strong>footpad</strong> health is <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

c<strong>on</strong>cern. In 3 successive trials, 8 different <str<strong>on</strong>g>bedd<strong>in</strong>g</str<strong>on</strong>g> sources (p<strong>in</strong>e shav<strong>in</strong>gs, p<strong>in</strong>e bark, chipped<br />

p<strong>in</strong>e, mortar sand, ground hardwood pallets, chopped straw, ground door filler, and cott<strong>on</strong>-g<strong>in</strong><br />

trash) were compared <strong>in</strong> side-by-side experimental pens by rear<strong>in</strong>g mixed-sex birds. In additi<strong>on</strong><br />

to <strong>broiler</strong> growth performance and litter characteristics (moisture, cak<strong>in</strong>g, and amm<strong>on</strong>ia<br />

volatilizati<strong>on</strong>), the <strong>in</strong>cidence and severity <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>footpad</strong> <strong>dermatitis</strong> (FPD) was assessed at 6 wk <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

age. Bedd<strong>in</strong>g <str<strong>on</strong>g>material</str<strong>on</strong>g>s had little <strong>in</strong>fluence <strong>on</strong> the live performance <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>broiler</strong>s <strong>in</strong> 3 successive<br />

trials. Prevalence <str<strong>on</strong>g>of</str<strong>on</strong>g> FPD varied significantly (P < 0.05) am<strong>on</strong>g the <str<strong>on</strong>g>bedd<strong>in</strong>g</str<strong>on</strong>g> <str<strong>on</strong>g>material</str<strong>on</strong>g>s. The<br />

<strong>in</strong>cidence <str<strong>on</strong>g>of</str<strong>on</strong>g> FPD paralleled high litter moisture and cak<strong>in</strong>g scores, with chipped p<strong>in</strong>e, chopped<br />

straw, cott<strong>on</strong>-g<strong>in</strong> trash, and p<strong>in</strong>e shav<strong>in</strong>gs show<strong>in</strong>g the highest severity scores and mortar sand<br />

and ground door filler show<strong>in</strong>g the lowest. From an FPD etiology standpo<strong>in</strong>t, the ability <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

<str<strong>on</strong>g>bedd<strong>in</strong>g</str<strong>on</strong>g> to absorb (i.e., ground door filler) and quickly release (i.e., mortar sand) moisture may<br />

be the most important characteristics.<br />

Key words: <strong>broiler</strong> , foot , paw , stra<strong>in</strong>-cross<br />

2009 J. Appl. Poult. Res. 18 :583–589<br />

doi: 10.3382/japr.2009-00023<br />

DESCRIPTION OF PROBLEM<br />

The <strong>in</strong>cidence and severity <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>footpad</strong> <strong>dermatitis</strong><br />

(FPD) is <str<strong>on</strong>g>of</str<strong>on</strong>g> great c<strong>on</strong>cern to the <strong>broiler</strong><br />

<strong>in</strong>dustry, not <strong>on</strong>ly from a product quality [1–3],<br />

but also from an animal welfare standpo<strong>in</strong>t [4].<br />

The FPD lesi<strong>on</strong>s are usually superficial <strong>in</strong> nature,<br />

but may result <strong>in</strong> pa<strong>in</strong> and discomfort to<br />

the bird when transformed <strong>in</strong>to deep ulcers. The<br />

occurrence <str<strong>on</strong>g>of</str<strong>on</strong>g> FPD is now used as an objective<br />

audit criteri<strong>on</strong> <strong>in</strong> welfare assessment <str<strong>on</strong>g>of</str<strong>on</strong>g> poultry<br />

producti<strong>on</strong> systems <strong>in</strong> both Europe and the<br />

United States [5].<br />

Informati<strong>on</strong> <strong>on</strong> the etiology <str<strong>on</strong>g>of</str<strong>on</strong>g> FPD is limited<br />

and po<strong>in</strong>ts to a complex <strong>in</strong>teracti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> various<br />

risk factors, such as producti<strong>on</strong> system, stock<strong>in</strong>g<br />

density, market BW, litter quality, flock health,<br />

nutriti<strong>on</strong>, feed<strong>in</strong>g, and flock management programs<br />

[6–14]. Birds spend most <str<strong>on</strong>g>of</str<strong>on</strong>g> their life <strong>in</strong><br />

close associati<strong>on</strong> with the <str<strong>on</strong>g>bedd<strong>in</strong>g</str<strong>on</strong>g> or litter <str<strong>on</strong>g>material</str<strong>on</strong>g>.<br />

Hence, the most obvious c<strong>on</strong>tributor to FPD<br />

may be the type, quantity, or substandard qual-<br />

1<br />

Corresp<strong>on</strong>d<strong>in</strong>g author: bilgisf@auburn.edu


584<br />

ity <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>bedd<strong>in</strong>g</str<strong>on</strong>g> <str<strong>on</strong>g>material</str<strong>on</strong>g>. Bedd<strong>in</strong>g <str<strong>on</strong>g>material</str<strong>on</strong>g>s with<br />

sharp edges (large particle-size wood chips,<br />

chopped straw, etc.) may c<strong>on</strong>tribute to FPD<br />

through their abrasive acti<strong>on</strong>. Bacterial <strong>in</strong>fecti<strong>on</strong><br />

is not usually observed histologically <strong>in</strong> FPD lesi<strong>on</strong>s.<br />

Litter management is an <strong>on</strong>go<strong>in</strong>g struggle<br />

for producers, who must weigh replacement <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

built-up litter with the cost and availability <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

alternative <str<strong>on</strong>g>bedd<strong>in</strong>g</str<strong>on</strong>g> sources. As birds grow, <strong>in</strong>creas<strong>in</strong>g<br />

amounts <str<strong>on</strong>g>of</str<strong>on</strong>g> moisture and nutrients are<br />

cycled through the litter. Manag<strong>in</strong>g litter moisture<br />

becomes more challeng<strong>in</strong>g <strong>in</strong> built-up litter,<br />

especially as the birds approach market BW.<br />

Short downtimes between flocks, marg<strong>in</strong>al flock<br />

health programs, high-nutrient-density feed<strong>in</strong>g<br />

programs, partial-house brood<strong>in</strong>g, evaporative<br />

cool<strong>in</strong>g systems, and poor dr<strong>in</strong>ker management<br />

are some <str<strong>on</strong>g>of</str<strong>on</strong>g> the important factors c<strong>on</strong>tribut<strong>in</strong>g to<br />

this moisture cycle <strong>in</strong> the rear<strong>in</strong>g envir<strong>on</strong>ment<br />

[15, 16]. Although many plant-based <str<strong>on</strong>g>material</str<strong>on</strong>g>s<br />

have been evaluated for rear<strong>in</strong>g <strong>broiler</strong> <strong>chickens</strong>,<br />

<strong>in</strong>formati<strong>on</strong> <strong>on</strong> their impact <strong>on</strong> FPD is lack<strong>in</strong>g.<br />

The purpose <str<strong>on</strong>g>of</str<strong>on</strong>g> this study was to evaluate the<br />

<strong>in</strong>fluence <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>bedd<strong>in</strong>g</str<strong>on</strong>g> <str<strong>on</strong>g>material</str<strong>on</strong>g> <strong>on</strong> FPD <strong>in</strong> <strong>broiler</strong><br />

<strong>chickens</strong>. The <strong>in</strong>cidence and severity <str<strong>on</strong>g>of</str<strong>on</strong>g> FPD<br />

was assessed <strong>in</strong> <strong>broiler</strong> <strong>chickens</strong> grown side-byside<br />

<strong>on</strong> 8 different <str<strong>on</strong>g>bedd<strong>in</strong>g</str<strong>on</strong>g> <str<strong>on</strong>g>material</str<strong>on</strong>g>s with 3 successive<br />

grow-outs.<br />

MATERIALS AND METHODS<br />

In 3 successive trials, 8 alternative <str<strong>on</strong>g>bedd<strong>in</strong>g</str<strong>on</strong>g><br />

<str<strong>on</strong>g>material</str<strong>on</strong>g>s [Figure 1; p<strong>in</strong>e shav<strong>in</strong>g (PS), p<strong>in</strong>e<br />

bark (PB), chipped p<strong>in</strong>e (CP), mortar sand<br />

(MS), chopped wheat straw (CS), ground hardwood<br />

pallets (GP), ground door filler (DF), and<br />

cott<strong>on</strong>-g<strong>in</strong> trash (CT)] were compared simultaneously<br />

<strong>in</strong> a completely randomized experiment<br />

with 6 replicate pens <str<strong>on</strong>g>of</str<strong>on</strong>g> 20 birds each per treatment<br />

[17]. Most <str<strong>on</strong>g>of</str<strong>on</strong>g> these <str<strong>on</strong>g>material</str<strong>on</strong>g>s were periodically<br />

available as a <str<strong>on</strong>g>bedd<strong>in</strong>g</str<strong>on</strong>g> source <strong>in</strong> parts <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Alabama. Ground door filler was a wood fiberbased<br />

<str<strong>on</strong>g>material</str<strong>on</strong>g> used <strong>in</strong> <strong>in</strong>sulat<strong>in</strong>g metal doors.<br />

Mixed-sex Ross × Ross [18] birds were reared<br />

to 42 d <str<strong>on</strong>g>of</str<strong>on</strong>g> age (September to December) <strong>on</strong> a<br />

3-phase commercial feed<strong>in</strong>g program c<strong>on</strong>sist<strong>in</strong>g<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> starter (22.6% CP; 1385 kcal <str<strong>on</strong>g>of</str<strong>on</strong>g> ME/lb),<br />

grower (20.5% CP; 1420 kcal <str<strong>on</strong>g>of</str<strong>on</strong>g> ME/lb), and<br />

f<strong>in</strong>isher (18.3% CP; 1450 kcal <str<strong>on</strong>g>of</str<strong>on</strong>g> ME/lb) feeds.<br />

A 12-d downtime was used between each trial to<br />

simulate commercial practices. Broiler growth<br />

JAPR: Research Report<br />

performance (BW ga<strong>in</strong>, feed c<strong>on</strong>sumpti<strong>on</strong>, and<br />

mortality) and the <strong>in</strong>cidence (i.e., proporti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

affected birds) and severity (i.e., extent <str<strong>on</strong>g>of</str<strong>on</strong>g> lesi<strong>on</strong>s)<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> FPD were measured at the end <str<strong>on</strong>g>of</str<strong>on</strong>g> each<br />

trial by exam<strong>in</strong><strong>in</strong>g the <strong>footpad</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> all the birds<br />

[19]. Each <str<strong>on</strong>g>bedd<strong>in</strong>g</str<strong>on</strong>g> <str<strong>on</strong>g>material</str<strong>on</strong>g> was analyzed for<br />

bulk density, <strong>in</strong>itial moisture c<strong>on</strong>tent, and moisture<br />

retenti<strong>on</strong> capacity [20]. At the end <str<strong>on</strong>g>of</str<strong>on</strong>g> each<br />

trial, litter was analyzed for percentage <str<strong>on</strong>g>of</str<strong>on</strong>g> moisture<br />

[21]. Litter cak<strong>in</strong>g (trials 1 and 2) [22] and<br />

amm<strong>on</strong>ia volatilizati<strong>on</strong> (trials 2 and 3) were also<br />

assessed [23]. The data were analyzed us<strong>in</strong>g the<br />

GLM procedure <str<strong>on</strong>g>of</str<strong>on</strong>g> SAS [24, 25].<br />

RESULTS AND DISCUSSION<br />

Bulk density, <strong>in</strong>itial moisture c<strong>on</strong>tent, and<br />

moisture retenti<strong>on</strong> characteristics <str<strong>on</strong>g>of</str<strong>on</strong>g> the <str<strong>on</strong>g>bedd<strong>in</strong>g</str<strong>on</strong>g><br />

<str<strong>on</strong>g>material</str<strong>on</strong>g>s used <strong>in</strong> this study are presented <strong>in</strong> Table<br />

1. Mortar sand had the highest bulk density,<br />

the lowest <strong>in</strong>itial moisture, and the lowest 24- to<br />

48-h moisture retenti<strong>on</strong> values compared with all<br />

other <str<strong>on</strong>g>bedd<strong>in</strong>g</str<strong>on</strong>g> <str<strong>on</strong>g>material</str<strong>on</strong>g>s (P < 0.05). In c<strong>on</strong>trast,<br />

chopped wheat straw showed the lowest bulk<br />

density and <strong>on</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g> the highest <strong>in</strong>itial moisture<br />

levels. Of all the <str<strong>on</strong>g>bedd<strong>in</strong>g</str<strong>on</strong>g> <str<strong>on</strong>g>material</str<strong>on</strong>g>s tested, DF<br />

and CT showed the highest moisture retenti<strong>on</strong><br />

ability. Differences between trials <strong>in</strong> live performance<br />

(i.e., BW ga<strong>in</strong>, FE, and mortality) <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<strong>broiler</strong> <strong>chickens</strong> <strong>in</strong> all 3 trials were driven more<br />

by weather than by the <str<strong>on</strong>g>bedd<strong>in</strong>g</str<strong>on</strong>g> <str<strong>on</strong>g>material</str<strong>on</strong>g> (data<br />

not shown), <strong>in</strong>dicat<strong>in</strong>g that most <str<strong>on</strong>g>of</str<strong>on</strong>g> these locally<br />

available <str<strong>on</strong>g>material</str<strong>on</strong>g>s can be used to rear <strong>broiler</strong><br />

<strong>chickens</strong>, at least for 2 successive flocks.<br />

Figure 2 illustrates litter moisture, litter cak<strong>in</strong>g<br />

(trials 1 and 2), and FPD <strong>in</strong>cidence <strong>in</strong> each<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the trials c<strong>on</strong>ducted. Incidence <str<strong>on</strong>g>of</str<strong>on</strong>g> FPD varied<br />

significantly (P < 0.05) am<strong>on</strong>g the <str<strong>on</strong>g>bedd<strong>in</strong>g</str<strong>on</strong>g><br />

<str<strong>on</strong>g>material</str<strong>on</strong>g>s <strong>in</strong> trials 1 and 2, but not <strong>in</strong> trial 3. Because<br />

PS is the preferred <str<strong>on</strong>g>bedd<strong>in</strong>g</str<strong>on</strong>g> source <strong>in</strong> the<br />

United States, the <strong>in</strong>cidence <str<strong>on</strong>g>of</str<strong>on</strong>g> FPD <strong>on</strong> PS may<br />

be used as a benchmark to assess other <str<strong>on</strong>g>bedd<strong>in</strong>g</str<strong>on</strong>g><br />

<str<strong>on</strong>g>material</str<strong>on</strong>g>s. Incidence <str<strong>on</strong>g>of</str<strong>on</strong>g> FPD <strong>on</strong> PS <strong>in</strong>creased<br />

from 31 and 26.7%, respectively, <strong>in</strong> trials 1 and<br />

2 to 54.1% <strong>in</strong> trial 3. Compared with PS, CP and<br />

CS (trials 1 and 2) and CT (trial 2) showed a<br />

higher <strong>in</strong>cidence <str<strong>on</strong>g>of</str<strong>on</strong>g> FPD. Litter moisture levels<br />

were high <strong>in</strong> trial 1, rang<strong>in</strong>g from 10.5 (MS) to<br />

39.1% (CP), but stabilized <strong>in</strong> subsequent trials.<br />

In trials 2 and 3, <strong>in</strong>cidence <str<strong>on</strong>g>of</str<strong>on</strong>g> FPD appeared to<br />

parallel litter moisture levels. Mortar sand had


Bilgili et al.: BEDDING AND FOOTPAD DERMATITIS 585<br />

Figure 1. Bedd<strong>in</strong>g <str<strong>on</strong>g>material</str<strong>on</strong>g>s used <strong>in</strong> trials 1 to 3.<br />

the lowest litter moisture levels (3 and 4.7%),<br />

followed by DF (8.5 and 14%) <strong>in</strong> trials 2 and 3,<br />

respectively. Both <str<strong>on</strong>g>bedd<strong>in</strong>g</str<strong>on</strong>g> <str<strong>on</strong>g>material</str<strong>on</strong>g>s showed the<br />

lowest <strong>in</strong>cidence and severity <str<strong>on</strong>g>of</str<strong>on</strong>g> FPD. Bilgili et<br />

al. [26, 27] previously reported <strong>on</strong> the use <str<strong>on</strong>g>of</str<strong>on</strong>g> MS<br />

as <str<strong>on</strong>g>bedd<strong>in</strong>g</str<strong>on</strong>g> for rear<strong>in</strong>g <strong>broiler</strong>s and the beneficial<br />

effect it had <strong>on</strong> FPD as compared with PS. Litter<br />

cak<strong>in</strong>g scores closely followed FPD <strong>in</strong>cidence<br />

<strong>in</strong> trials 1 and 2 (Figure 2). This was not surpris<strong>in</strong>g<br />

because litter moisture and cak<strong>in</strong>g have been<br />

identified as major c<strong>on</strong>tribut<strong>in</strong>g factors to FPD<br />

<strong>in</strong> poultry [15, 16]. Mayne et al. [16] clearly<br />

dem<strong>on</strong>strated that high litter moisture al<strong>on</strong>e was<br />

sufficient to cause FPD <strong>in</strong> young turkeys <strong>in</strong> as<br />

little as 2 to 4 d.<br />

Litter amm<strong>on</strong>ia may be another important<br />

factor <strong>in</strong> the etiology <str<strong>on</strong>g>of</str<strong>on</strong>g> FPD [28] because the<br />

amm<strong>on</strong>ia generated because <str<strong>on</strong>g>of</str<strong>on</strong>g> bacterial acti<strong>on</strong><br />

dissolves <strong>in</strong> high-moisture litter to create an irritant<br />

alkal<strong>in</strong>e soluti<strong>on</strong> for the <strong>footpad</strong>s. Amm<strong>on</strong>ia<br />

Table 1. Physical characteristics <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>bedd<strong>in</strong>g</str<strong>on</strong>g> <str<strong>on</strong>g>material</str<strong>on</strong>g>s<br />

Moisture retenti<strong>on</strong> (%)<br />

Bedd<strong>in</strong>g <str<strong>on</strong>g>material</str<strong>on</strong>g> Bulk density (g/cm 3 ) Initial moisture (%)<br />

24 h 48 h<br />

P<strong>in</strong>e shav<strong>in</strong>gs 0.110 cde 11.3 bc 71.2 c 71.8 c<br />

P<strong>in</strong>e bark 0.198 b 11.4 bc 68.6 c 73.8 c<br />

Chipped p<strong>in</strong>e 0.064 ef 14.5 a 73.0 c 74.4 c<br />

Mortar sand 1.234 a 9.9 c 25.8 d 22.2 d<br />

Ground hardwood pallets 0.130 cd 13.2 ab 78.0 b 80.2 b<br />

Chopped straw 0.040 f 12.2 abc 80.6 b 80.8 b<br />

Ground door filler 0.158 bc 11.2 bc 87.4 a 88.0 a<br />

Cott<strong>on</strong>-g<strong>in</strong> trash 0.096 def 12.0 bc 87.6 a 88.4 a<br />

SEM 1 0.013 0.43 1.0 1.03<br />

Significance *** *** *** ***<br />

a–f Means with<strong>in</strong> a column with different superscripts differ (P < 0.05).<br />

1 Pooled SEM.<br />

***P < 0.001.


586<br />

JAPR: Research Report<br />

Figure 2. Incidence <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>footpad</strong> <strong>dermatitis</strong> (FPD) and litter moisture (trials 1 to 3).<br />

volatilizati<strong>on</strong> varied from 69 to 99 ppm <strong>in</strong> trial<br />

2, and from 65 to 105 ppm <strong>in</strong> trial 3, with no difference<br />

(P > 0.05) am<strong>on</strong>g the <str<strong>on</strong>g>bedd<strong>in</strong>g</str<strong>on</strong>g> sources<br />

(data not shown). Tasistro et al. [29] recently<br />

observed a significant <strong>in</strong>teracti<strong>on</strong> between <str<strong>on</strong>g>bedd<strong>in</strong>g</str<strong>on</strong>g><br />

<str<strong>on</strong>g>material</str<strong>on</strong>g>s and sampl<strong>in</strong>g site <strong>on</strong> amm<strong>on</strong>ia<br />

volatilizati<strong>on</strong> that was attributed to differences<br />

<strong>in</strong> moisture retenti<strong>on</strong> capacity. It was postulated<br />

that <str<strong>on</strong>g>bedd<strong>in</strong>g</str<strong>on</strong>g> <str<strong>on</strong>g>material</str<strong>on</strong>g>s with lower moisture retenti<strong>on</strong><br />

would dry and form a crust faster, thus


Bilgili et al.: BEDDING AND FOOTPAD DERMATITIS 587<br />

Figure 3. Severity <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>footpad</strong> <strong>dermatitis</strong> (FPD; trials 1 to 3).


588<br />

creat<strong>in</strong>g a physical barrier to amm<strong>on</strong>ia volatilizati<strong>on</strong>.<br />

Based <strong>on</strong> the amm<strong>on</strong>ia levels and cak<strong>in</strong>g<br />

scores observed <strong>in</strong> this study, this hypothesis<br />

was not c<strong>on</strong>firmed. Nagaraj et al. [12], us<strong>in</strong>g<br />

high-prote<strong>in</strong> diets, l<strong>in</strong>ked high litter nitrogen<br />

levels to FPD. In several studies, nutriti<strong>on</strong>al and<br />

management approaches to reduce nitrogen excreti<strong>on</strong><br />

and c<strong>on</strong>trol litter amm<strong>on</strong>ia producti<strong>on</strong><br />

appeared to alleviate FPD <strong>in</strong>cidence and severity<br />

[13, 14].<br />

The severity scores <str<strong>on</strong>g>of</str<strong>on</strong>g> FPD are presented <strong>in</strong><br />

Figure 3. Overall, FPD severity <strong>in</strong>creased with<br />

each successive trial. Proporti<strong>on</strong>ately, <strong>in</strong> additi<strong>on</strong><br />

to CP and CS (trials 1, 2, and 3), CT (trials 2<br />

and 3) and PS (trial 3) <str<strong>on</strong>g>bedd<strong>in</strong>g</str<strong>on</strong>g> <str<strong>on</strong>g>material</str<strong>on</strong>g>s showed<br />

the highest FPD severity. Aga<strong>in</strong>, MS and DF<br />

were ranked as the <str<strong>on</strong>g>bedd<strong>in</strong>g</str<strong>on</strong>g> <str<strong>on</strong>g>material</str<strong>on</strong>g>s with the<br />

lowest severity. These results are c<strong>on</strong>sistent<br />

with those recently reported by Berk [30], who<br />

showed wide variati<strong>on</strong> am<strong>on</strong>g different k<strong>in</strong>ds <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

litter <strong>in</strong> the prevalence and severity <str<strong>on</strong>g>of</str<strong>on</strong>g> FPD. In<br />

this study, both CS and CP had the worst FPD<br />

scores.<br />

It is clear from this study that the <str<strong>on</strong>g>bedd<strong>in</strong>g</str<strong>on</strong>g><br />

<str<strong>on</strong>g>material</str<strong>on</strong>g>s tested <strong>in</strong> this study are acceptable for<br />

rear<strong>in</strong>g <strong>broiler</strong>s, at least for several flocks. P<strong>in</strong>e<br />

bark has been used successfully under commercial<br />

c<strong>on</strong>diti<strong>on</strong>s, with the <strong>in</strong>tent <str<strong>on</strong>g>of</str<strong>on</strong>g> us<strong>in</strong>g the used<br />

litter as a substrate comp<strong>on</strong>ent <strong>in</strong> nursery crop<br />

producti<strong>on</strong> [31]. Chipped p<strong>in</strong>e, GP, DF, and CT<br />

are unique plant-based products that may be<br />

available locally to <strong>broiler</strong> producers as substitute<br />

<str<strong>on</strong>g>bedd<strong>in</strong>g</str<strong>on</strong>g> <str<strong>on</strong>g>material</str<strong>on</strong>g>s. However, based <strong>on</strong> the<br />

results obta<strong>in</strong>ed <strong>in</strong> this study and those reported<br />

by others [16, 30], <str<strong>on</strong>g>bedd<strong>in</strong>g</str<strong>on</strong>g> <str<strong>on</strong>g>material</str<strong>on</strong>g>s can <strong>in</strong>fluence<br />

the prevalence and severity <str<strong>on</strong>g>of</str<strong>on</strong>g> FPD <strong>in</strong><br />

<strong>broiler</strong> <strong>chickens</strong>. This effect may be directly<br />

associated with the ability <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>bedd<strong>in</strong>g</str<strong>on</strong>g> to shield<br />

<strong>footpad</strong>s from c<strong>on</strong>t<strong>in</strong>uous c<strong>on</strong>tact with moisture,<br />

thereby m<strong>in</strong>imiz<strong>in</strong>g <strong>footpad</strong> s<str<strong>on</strong>g>of</str<strong>on</strong>g>ten<strong>in</strong>g and susceptibility<br />

to irritati<strong>on</strong> and <strong>in</strong>flammati<strong>on</strong>. Birds<br />

reared <strong>on</strong> MS and DF showed the lowest PDF<br />

scores <strong>in</strong> all 3 trials. However, both <str<strong>on</strong>g>of</str<strong>on</strong>g> these <str<strong>on</strong>g>bedd<strong>in</strong>g</str<strong>on</strong>g><br />

<str<strong>on</strong>g>material</str<strong>on</strong>g>s exhibited significantly c<strong>on</strong>trast<strong>in</strong>g<br />

physical characteristics. Although MS had a<br />

low (26%) 24-h moisture retenti<strong>on</strong> ability and<br />

DF had <strong>on</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g> the highest (87%; Table 1), both<br />

<str<strong>on</strong>g>bedd<strong>in</strong>g</str<strong>on</strong>g> <str<strong>on</strong>g>material</str<strong>on</strong>g>s showed some <str<strong>on</strong>g>of</str<strong>on</strong>g> the lowest<br />

litter moisture and cak<strong>in</strong>g levels observed <strong>in</strong> this<br />

study. In terms <str<strong>on</strong>g>of</str<strong>on</strong>g> FPD c<strong>on</strong>trol, the capability <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

the <str<strong>on</strong>g>bedd<strong>in</strong>g</str<strong>on</strong>g> to absorb (i.e., DF) and release (i.e.,<br />

JAPR: Research Report<br />

MS) moisture may be the most important characteristics<br />

to seek <strong>in</strong> a <str<strong>on</strong>g>bedd<strong>in</strong>g</str<strong>on</strong>g> <str<strong>on</strong>g>material</str<strong>on</strong>g>.<br />

CONCLUSIONS AND APPLICATIONS<br />

1. The <str<strong>on</strong>g>bedd<strong>in</strong>g</str<strong>on</strong>g> <str<strong>on</strong>g>material</str<strong>on</strong>g>s evaluated had<br />

little <strong>in</strong>fluence <strong>on</strong> the live performance<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>broiler</strong>s <strong>in</strong> 3 successive trials.<br />

2. Footpad <strong>dermatitis</strong> <strong>in</strong>cidence and severity<br />

varied significantly (P < 0.05) am<strong>on</strong>g<br />

the <str<strong>on</strong>g>bedd<strong>in</strong>g</str<strong>on</strong>g> <str<strong>on</strong>g>material</str<strong>on</strong>g>s and corresp<strong>on</strong>ded<br />

to high litter moisture and cak<strong>in</strong>g scores.<br />

Of the <str<strong>on</strong>g>bedd<strong>in</strong>g</str<strong>on</strong>g> <str<strong>on</strong>g>material</str<strong>on</strong>g>s tested, CP, CS,<br />

CT, and PS showed the highest FPD <strong>in</strong>cidence<br />

and severity, whereas MS and<br />

DF had the lowest.<br />

3. From the standpo<strong>in</strong>t <str<strong>on</strong>g>of</str<strong>on</strong>g> FPD etiology, the<br />

ability <str<strong>on</strong>g>of</str<strong>on</strong>g> the <str<strong>on</strong>g>bedd<strong>in</strong>g</str<strong>on</strong>g> to absorb (i.e., DF)<br />

and quickly release (i.e., MS) moisture<br />

may be the most important characteristics.<br />

REFERENCES AND NOTES<br />

1. Bilgili, S. F., and J. B. Hess. 1997. Maximiz<strong>in</strong>g chicken<br />

paw yield and quality . Meat Poult. 5 :54.<br />

2. Bilgili, S. F., M. A. Alley, J. B. Hess, and M. Nagaraj.<br />

2006. <str<strong>on</strong>g>Influence</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> age and sex <strong>on</strong> foot pad quality and yield<br />

<strong>in</strong> <strong>broiler</strong> <strong>chickens</strong> reared <strong>on</strong> low and high density diets. J.<br />

Appl. Poult. Res. 15:433–441.<br />

3. Bilgili, S. F., D. Zelenka, and J. E. Mari<strong>on</strong>. 2008.<br />

Quality standards for chicken feet (paws) dur<strong>in</strong>g process<strong>in</strong>g.<br />

In Proc. World’s Poultry C<strong>on</strong>gress, Brisbane, Australia [CD-<br />

ROM]. World’s Poultry Science Associati<strong>on</strong>, Beekbergen,<br />

the Netherlands.<br />

4. Bradshaw, R. H., R. D. Kirkden, and D. M. Broom.<br />

2002. A review <str<strong>on</strong>g>of</str<strong>on</strong>g> the aetiology and pathology <str<strong>on</strong>g>of</str<strong>on</strong>g> leg weakness<br />

<strong>in</strong> <strong>broiler</strong>s <strong>in</strong> relati<strong>on</strong> to welfare. Avian Poult. Biol.<br />

Rev. 13:45–103.<br />

5. Nati<strong>on</strong>al Chicken Council. 2005. Nati<strong>on</strong>al Chicken<br />

Council Animal Welfare Guidel<strong>in</strong>es and Audit Checklist.<br />

Natl. Chicken Counc., Wash<strong>in</strong>gt<strong>on</strong>, DC. http://www.nati<strong>on</strong>alchickencouncil.com/aboutIndustry/detail.cfm?id=19<br />

Accessed<br />

March 25, 2009.<br />

6. Menzies, F. D., E. A. Goodall, D. A. McC<strong>on</strong>aghy,<br />

and M. J. Alcorn. 1998. An update <strong>on</strong> the epidemiology <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

c<strong>on</strong>tact <strong>dermatitis</strong> <strong>in</strong> commercial <strong>broiler</strong>s. Avian Pathol.<br />

27:174–180.<br />

7. Ekstrand, C., T. E. Carpenter, I. Anderss<strong>on</strong>, and B.<br />

Algers. 1998. Prevalence and c<strong>on</strong>trol <str<strong>on</strong>g>of</str<strong>on</strong>g> foot-pad <strong>dermatitis</strong><br />

<strong>in</strong> <strong>broiler</strong>s <strong>in</strong> Sweden. Br. Poult. Sci. 39:318–324.<br />

8. Mayne, R. K. 2005. A review <str<strong>on</strong>g>of</str<strong>on</strong>g> the aetiology and<br />

possible causative factors <str<strong>on</strong>g>of</str<strong>on</strong>g> foot pad <strong>dermatitis</strong> <strong>in</strong> grow<strong>in</strong>g<br />

turkeys and <strong>broiler</strong>s. World’s Poult. Sci. J. 61:256–267.<br />

9. Pagazaurtundua, A., and P. D. Warris. 2006. Levels <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

foot pad <strong>dermatitis</strong> <strong>in</strong> <strong>broiler</strong> <strong>chickens</strong> reared <strong>in</strong> 5 different<br />

systems. Br. Poult. Sci. 47:529–532.<br />

10. Haslam, S. M., T. G. Knowles, S. N. Brown, L. J.<br />

Wilk<strong>in</strong>s, S. C. Kest<strong>in</strong>, P. D. Warris, and C. J. Nicol. 2007.


Bilgili et al.: BEDDING AND FOOTPAD DERMATITIS 589<br />

Factors affect<strong>in</strong>g the prevalence <str<strong>on</strong>g>of</str<strong>on</strong>g> foot pad <strong>dermatitis</strong>,<br />

hock burn and breast burn <strong>in</strong> <strong>broiler</strong> chicken. Br. Poult. Sci.<br />

48:264–275.<br />

11. Meluzzi, A., C. Fabbri, E. Folegatti, and F. Sirri.<br />

2008. Survey <str<strong>on</strong>g>of</str<strong>on</strong>g> chicken rear<strong>in</strong>g c<strong>on</strong>diti<strong>on</strong>s <strong>in</strong> Italy: Effects<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> litter quality and stock<strong>in</strong>g density <strong>on</strong> productivity, foot<br />

<strong>dermatitis</strong> and carcase <strong>in</strong>juries. Br. Poult. Sci. 49:257–264.<br />

12. Nagaraj, M., C. A. P. Wils<strong>on</strong>, J. B. Hess, and S. F.<br />

Bilgili. 2007. Effect <str<strong>on</strong>g>of</str<strong>on</strong>g> high prote<strong>in</strong> and all vegetable diets<br />

<strong>on</strong> the <strong>in</strong>cidence and severity <str<strong>on</strong>g>of</str<strong>on</strong>g> podo<strong>dermatitis</strong> <strong>in</strong> <strong>broiler</strong><br />

<strong>chickens</strong>. J. Appl. Poult. Res. 16:304–312.<br />

13. Nagaraj, M., J. B. Hess, and S. F. Bilgili. 2007.<br />

Evaluati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> a feed-grade enzyme <strong>in</strong> <strong>broiler</strong> diets to reduce<br />

podo<strong>dermatitis</strong>. J. Appl. Poult. Res. 16:52–61.<br />

14. Nagaraj, M., C. A. P. Wils<strong>on</strong>, B. Saenmahayak, J. B.<br />

Hess, and S. F. Bilgili. 2007. Efficacy <str<strong>on</strong>g>of</str<strong>on</strong>g> a litter amendment<br />

to reduce podo<strong>dermatitis</strong> <strong>in</strong> <strong>broiler</strong> <strong>chickens</strong>. J. Appl. Poult.<br />

Res. 16:255–261.<br />

15. Wang, G., C. Ekstrand, and J. Svedberg. 1998. Wet<br />

litter and perches as risk factors for the development <str<strong>on</strong>g>of</str<strong>on</strong>g> foot<br />

pad <strong>dermatitis</strong> <strong>in</strong> floor-housed hens. Br. Poult. Sci. 39:191–<br />

197.<br />

16. Mayne, R. K., R. W. Else, and P. M. Hock<strong>in</strong>g. 2007.<br />

High litter moisture is sufficient to cause <strong>footpad</strong> <strong>dermatitis</strong><br />

<strong>in</strong> grow<strong>in</strong>g turkeys. Br. Poult. Sci. 48:538–545.<br />

17. Each <str<strong>on</strong>g>bedd<strong>in</strong>g</str<strong>on</strong>g> <str<strong>on</strong>g>material</str<strong>on</strong>g> was placed 4 <strong>in</strong>. deep <strong>in</strong> 6 replicate<br />

pens (1.22 × 1.52 m <strong>in</strong> dimensi<strong>on</strong>), with a stock<strong>in</strong>g<br />

density <str<strong>on</strong>g>of</str<strong>on</strong>g> 10.8 birds per m 2 .<br />

18. Aviagen, Huntsville, AL.<br />

19. The FPD scor<strong>in</strong>g system was a 3-po<strong>in</strong>t visual rank<strong>in</strong>g<br />

system, where a score <str<strong>on</strong>g>of</str<strong>on</strong>g> 0 <strong>in</strong>dicated <strong>footpad</strong>s with no lesi<strong>on</strong>s<br />

present, and <strong>in</strong>tact dermal ridges with<strong>in</strong> central plantar<br />

<strong>footpad</strong> surface; a score <str<strong>on</strong>g>of</str<strong>on</strong>g> 1 <strong>in</strong>dicated <strong>footpad</strong>s with mild<br />

lesi<strong>on</strong>s, and dermal ridges with oval or round ulcers covered<br />

with a crust (7.5 mm) adher<strong>in</strong>g<br />

to the central plantar <strong>footpad</strong> [14].<br />

20. Bulk density was determ<strong>in</strong>ed by calculat<strong>in</strong>g grams<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> dry sample per cubic centimeter. The dry weight <str<strong>on</strong>g>of</str<strong>on</strong>g> each<br />

<str<strong>on</strong>g>material</str<strong>on</strong>g> was determ<strong>in</strong>ed after dry<strong>in</strong>g for 72 h at 71°C. Five<br />

20-g samples from each <str<strong>on</strong>g>bedd<strong>in</strong>g</str<strong>on</strong>g> <str<strong>on</strong>g>material</str<strong>on</strong>g> were placed <strong>in</strong><br />

nyl<strong>on</strong> socks and fully submerged <strong>in</strong> water for 24 and 48<br />

h. At the end <str<strong>on</strong>g>of</str<strong>on</strong>g> each <strong>in</strong>terval, the socks were hung, gently<br />

massaged to drip, allowed to air-dry for 30 m<strong>in</strong>, and subsequently<br />

reweighed.<br />

21. Litter was collected from the 4 corners and center <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

each replicate pen and pooled <strong>in</strong> plastic bags to create a composite<br />

sample for moisture analysis. Percentage <str<strong>on</strong>g>of</str<strong>on</strong>g> moisture<br />

was determ<strong>in</strong>ed by plac<strong>in</strong>g 2 g <str<strong>on</strong>g>of</str<strong>on</strong>g> litter <strong>in</strong>to a dry<strong>in</strong>g oven<br />

(150°C) for 24 h. Samples were then immediately placed<br />

<strong>in</strong>to desiccators, and weighed after equilibrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> temperature<br />

to calculate percentage <str<strong>on</strong>g>of</str<strong>on</strong>g> moisture.<br />

22. Litter cak<strong>in</strong>g was evaluated subjectively by stirr<strong>in</strong>g<br />

the litter with a rod to estimate the caked area as a percentage<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the total pen surface.<br />

23. Amm<strong>on</strong>ia measurements were c<strong>on</strong>ducted us<strong>in</strong>g<br />

a closed c<strong>on</strong>ta<strong>in</strong>er <str<strong>on</strong>g>of</str<strong>on</strong>g> specified dimensi<strong>on</strong>s (36 × 46 × 12<br />

cm) <strong>in</strong>verted over the litter bed and were determ<strong>in</strong>ed us<strong>in</strong>g<br />

a Drager CMS Analyzer (Drager Inc., Pittsburgh, PA)<br />

equipped with a remote air-sampl<strong>in</strong>g pump and amm<strong>on</strong>ia<br />

sampl<strong>in</strong>g chip (10 to 150 ppm). The tube from the sampl<strong>in</strong>g<br />

pump was located <strong>in</strong> the top center <str<strong>on</strong>g>of</str<strong>on</strong>g> the c<strong>on</strong>ta<strong>in</strong>er. The sampl<strong>in</strong>g<br />

pump was evacuated (calibrated) for 60 s, followed by<br />

a measurement period <str<strong>on</strong>g>of</str<strong>on</strong>g> up to 300 s. Most read<strong>in</strong>gs were<br />

usually achieved with<strong>in</strong> 60 s after evacuati<strong>on</strong>.<br />

24. The statistical model c<strong>on</strong>sisted <str<strong>on</strong>g>of</str<strong>on</strong>g> a 1-way ANOVA,<br />

with pens (treatment) as the error term to test the <str<strong>on</strong>g>bedd<strong>in</strong>g</str<strong>on</strong>g><br />

<str<strong>on</strong>g>material</str<strong>on</strong>g> ma<strong>in</strong> effect. When significant (P < 0.05), means<br />

were separated by Tukey’s test. Percentage values were<br />

transformed to arcs<strong>in</strong>e values before analysis. Each trial was<br />

analyzed separately.<br />

25. SAS Institute. 1988. SAS/STAT User’s Guide for Pers<strong>on</strong>al<br />

Computers, Release 6.03. SAS Inst. Inc., Cary, NC.<br />

26. Bilgili, S. F., G. I. M<strong>on</strong>tenegro, J. B. Hess, and M. K.<br />

Eckman. 1999. Sand as litter for rear<strong>in</strong>g <strong>broiler</strong> <strong>chickens</strong>. J.<br />

Appl. Poult. Res. 8:345–351.<br />

27. Bilgili, S. F., G. I. M<strong>on</strong>tenegro, J. B. Hess, and M.<br />

K. Eckman. 1999. Live performance, carcass quality, and<br />

deb<strong>on</strong><strong>in</strong>g yields <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>broiler</strong>s reared <strong>on</strong> sand as a litter source.<br />

J. Appl. Poult. Res. 8:352–361.<br />

28. Haslam, S. M., S. N. Brown, L. J. Wilk<strong>in</strong>s, S. C. Kest<strong>in</strong>,<br />

P. D. Warriss, and C. J. Nicol. 2006. Prelim<strong>in</strong>ary study to<br />

exam<strong>in</strong>e the utility <str<strong>on</strong>g>of</str<strong>on</strong>g> us<strong>in</strong>g foot burn or hock burn to assess<br />

aspects <str<strong>on</strong>g>of</str<strong>on</strong>g> hous<strong>in</strong>g c<strong>on</strong>diti<strong>on</strong>s for <strong>broiler</strong> chicken. Br. Poult.<br />

Sci. 47:13–18.<br />

29. Tasistro, A. S., C. W. Ritz, and D. E. Kissel. 2007.<br />

Amm<strong>on</strong>ia emissi<strong>on</strong>s from <strong>broiler</strong> litter: resp<strong>on</strong>se to <str<strong>on</strong>g>bedd<strong>in</strong>g</str<strong>on</strong>g><br />

<str<strong>on</strong>g>material</str<strong>on</strong>g>s and acidifiers. Br. Poult. Sci. 48:399–405.<br />

30. Berk, J. 2008. Effect <str<strong>on</strong>g>of</str<strong>on</strong>g> different k<strong>in</strong>ds <str<strong>on</strong>g>of</str<strong>on</strong>g> litter <strong>on</strong> severity<br />

and prevalence <str<strong>on</strong>g>of</str<strong>on</strong>g> podo<strong>dermatitis</strong> <strong>in</strong> male <strong>broiler</strong>s. In<br />

Proc. XXIII World’s Poult. C<strong>on</strong>gr., Brisbane, Australia [CD-<br />

ROM]. World’s Poultry Science Associati<strong>on</strong>, Beekbergen,<br />

the Netherlands.<br />

31. Pickens, J. M., J. L. Sibley, C. H. Gilliam, S. F. Bilgili,<br />

J. B. Hess, K. S. Mackl<strong>in</strong>, and J. O. D<strong>on</strong>ald. 2009. Evaluati<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> bark-based poultry litter as a substrate comp<strong>on</strong>ent<br />

<strong>in</strong> nursery crop producti<strong>on</strong>. Proc. Southern Nursery Assoc.<br />

Res. C<strong>on</strong>f. 54:121–123.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!