30.12.2013 Views

Techniques de caracterisation Clinker / ciment - Cours de Génie Civil

Techniques de caracterisation Clinker / ciment - Cours de Génie Civil

Techniques de caracterisation Clinker / ciment - Cours de Génie Civil

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>Techniques</strong> <strong>de</strong> <strong>caracterisation</strong><br />

• <strong>Clinker</strong> / <strong>ciment</strong><br />

• Pâte <strong>de</strong> <strong>ciment</strong> / béton<br />

– Soli<strong>de</strong><br />

– pores<br />

<strong>Clinker</strong> / <strong>ciment</strong><br />

• Composition chimique:<br />

– XRF<br />

• Fast<br />

• All elements (B and above)<br />

X-rays


20 µm<br />

«alite»<br />

C 3 S, impure<br />

« belite »<br />

C 2 S, impure<br />

phases<br />

«interstitielles»<br />

«celite»<br />

C 3 A, impure<br />

+ solution<br />

soli<strong>de</strong> <strong>de</strong> ferrite<br />

«C 4 AF »,<br />

liqui<strong>de</strong> pendant<br />

la cuisson<br />

X-ray diffraction -Braggs law<br />

Limitations of conventional<br />

quantitative XRD-analysis:<br />

1200<br />

Belite: Influence of the preferred orientation on the peak area<br />

- Preferred orientation effects<br />

- Overlapping of peaks<br />

- Solid solutions<br />

Intensities (counts)<br />

1000<br />

800<br />

600<br />

400<br />

200<br />

0<br />

No orientation<br />

Orientation 0.9<br />

Orientation 0.7<br />

Orientation 0.5<br />

25 30 35 40<br />

2-Theta (°)<br />

Theoretical calculation of a mixture of 50 % Alite and 50 % Belite<br />

Solid solutions<br />

*<br />

Example Alite :<br />

(Ca 0,98 Mg 0,01 Al 0,067 Fe 0,00333 ) 3 (Si 0,97 Al 0,03 )O 5<br />

Similar: Belite, Aluminate and Ferrite<br />

Intensities<br />

600<br />

500<br />

400<br />

300<br />

200<br />

Alite<br />

Belite<br />

*<br />

CEMENT CHEMISTRY, H.F.W. Taylor (2nd edition 1997)<br />

100<br />

0<br />

10 20 30 40 50 60<br />

2-Theta (°)


2500<br />

2000<br />

1500<br />

1000<br />

500<br />

0<br />

2500<br />

2000<br />

1500<br />

1000<br />

500<br />

20 25 30 35 40 45 50 55 60<br />

2-theta<br />

0<br />

SECAR 71<br />

SECAR 71<br />

400<br />

300<br />

200<br />

100<br />

20 25 30 35 40 45 50 55 60<br />

2-theta<br />

0<br />

57.2 wt.-% Alite<br />

18.2 wt.-% Belite<br />

12.2 wt.-% Aluminate<br />

7.1 wt.-% Ferrite<br />

4.4 wt.-% Gypsum<br />

0.9 wt.-% Lime<br />

Observed Intensities<br />

Calculated Intensities<br />

Difference<br />

10 20 30 40 50<br />

2-Theta (°)<br />

Quantitative XRD analysis<br />

Intensité (Cps)<br />

Différentes métho<strong>de</strong>s <strong>de</strong> quantification<br />

C) Métho<strong>de</strong> Rietveld<br />

A) Intensité absolue<br />

500<br />

B) Métho<strong>de</strong> surface pic<br />

18 55<br />

0<br />

X<br />

18.2°<br />

Y<br />

Bruit <strong>de</strong> fond<br />

2-theta (°)<br />

Rietveld working principles<br />

Diffractometer BRAGG: n•λ = 2•d•sin Θ<br />

X-RAY beam<br />

cut out<br />

d<br />

x-ray beam<br />

observed diagram<br />

intensity<br />

pow<strong>de</strong>r<br />

sample<br />

Portland Cement<br />

Intensities (counts)<br />

Atoms / Position X Y Z Occup.<br />

calculated diagram<br />

Mg 2+ 0.000 0.000 0.000 0.1667<br />

C 0.000 0.000 0.000 0.1667<br />

O 1- 0.2800 0.000 0.2500 0.5000<br />

intensity<br />

Lattice parameters 4.6330 6.6330 15.0160<br />

Preliminaries: a) stable running Rietveld software<br />

b) precise working control files<br />

The Rietveld method<br />

<strong>Clinker</strong> Port La Nouvelle<br />

300<br />

Observed Intensities<br />

Calculated Intensities<br />

Difference<br />

Intensities (counts)<br />

200<br />

100<br />

0<br />

10 20 30 40 50 60<br />

2-Theta(°)


1 2 3 4 5 6 7<br />

Weight-%<br />

Content of Alite<br />

80<br />

Samples 1-5:<br />

<strong>Clinker</strong> Type A<br />

75<br />

Samples 6-7:<br />

<strong>Clinker</strong> Type B<br />

70<br />

65<br />

Rietveld calculation<br />

60<br />

Sample X-rayed in Halle<br />

Rietveld calculation<br />

Sample X-rayed at LCR<br />

55<br />

Microscopy CTS<br />

50<br />

Sample No.<br />

Weight-%<br />

Content of Aluminate<br />

12<br />

Rietveld calculation<br />

10<br />

Sample X-rayed in Halle<br />

Rietveld calculation<br />

Sample X-rayed at LCR<br />

8<br />

Microscopy CTS<br />

6<br />

4 Samples 1-5:<br />

<strong>Clinker</strong> Type A<br />

2 Samples 6-7:<br />

<strong>Clinker</strong> Type B<br />

0<br />

1 2 3 4 5 6 7<br />

Sample No.<br />

wt.-%<br />

wt.-%<br />

10<br />

10<br />

8<br />

8<br />

6<br />

6<br />

4<br />

4<br />

2<br />

2<br />

0<br />

0<br />

% gypse dsc<br />

% gypse dsc<br />

% standard<br />

% standard<br />

% gypse rietveld<br />

% gypse rietveld<br />

2 3 4 1 5 6 7 8 9<br />

1 2 3 4 5 6 7 8 9<br />

Samples 1 to 9<br />

Samples 1 to 9<br />

wt.-%<br />

wt.-%<br />

12<br />

12<br />

10<br />

10<br />

8<br />

8<br />

6<br />

6<br />

4<br />

4<br />

2<br />

2<br />

0<br />

0<br />

% sh dsc<br />

% sh dsc<br />

% standard<br />

% standard<br />

% sh rietveld<br />

% sh rietveld<br />

1<br />

1<br />

2<br />

2<br />

3<br />

3<br />

4<br />

4<br />

5<br />

5<br />

6<br />

6<br />

7<br />

7<br />

8<br />

Samples<br />

8<br />

Samples<br />

1<br />

1<br />

to<br />

to<br />

9<br />

9<br />

À cause <strong>de</strong>s solutions soli<strong>de</strong>s<br />

Le calcul « Bogue » n’est qu’une<br />

estimation<br />

C 3 S<br />

BOGUE<br />

59<br />

QXDA<br />

67<br />

C 2 S<br />

C 3 A<br />

«C 4 AF »<br />

13<br />

9<br />

9<br />

15<br />

5<br />

6<br />

Écarts typiques<br />

Pâte <strong>de</strong> <strong>ciment</strong> / béton - solids<br />

Hydrates<br />

• Hydroxi<strong>de</strong>s <strong>de</strong> calcium, Ca(OH) 2<br />

• C-S-H ?


NMR – RMN – resonance magnetic nucleaire<br />

• Nucleus with non-zero magnetic moment<br />

• Strong magnetic field,<br />

strong radio frequency pulse aligns nagnetic<br />

moments<br />

• Magnetic moments relax back to equilibrium<br />

positions<br />

• Fourier transform of time <strong>de</strong>pen<strong>de</strong>ncy ><br />

frequency spectrum<br />

Nuclear Magnetic Resonance : application to<br />

silicates<br />

One chemical environement<br />

→ one chemical shift (in ppm) on the<br />

29 Si MR spectrum<br />

Q 0<br />

Q 1<br />

Q 2<br />

29 Si chemical shift table<br />

(Engelhardt and Michel)<br />

Q 3<br />

Q 0<br />

Cement<br />

Q 4<br />

-60 -70 -80 -90 -100 -110 -120<br />

ppm<br />

Q 3<br />

Q 2<br />

Q 1<br />

Calcium Silicate<br />

Hydrates<br />

Quartz, silica<br />

fume<br />

Q 4<br />

Characterisation of <strong>ciment</strong> : 29 Si spectrum<br />

Q 1<br />

C-S-H<br />

Q 2<br />

Q 2p<br />

cement<br />

sand and quartz Q 4<br />

Q 0<br />

-140<br />

silica fume Q 4<br />

-40<br />

-50<br />

-60<br />

-70<br />

-80<br />

-90<br />

-100<br />

-110<br />

-120<br />

-130<br />

(ppm)


NMR<br />

Q2(1Al) indicates Al in<br />

C-S-H chains<br />

120<br />

100<br />

80<br />

Q 2 (1Al)<br />

Q 0<br />

Q 1<br />

Q 2 (0Al)<br />

x10 3<br />

60<br />

40<br />

20<br />

0<br />

-50<br />

-60<br />

-70<br />

-80<br />

-90<br />

ppm<br />

-100<br />

-110<br />

Al subsituting for Si<br />

in bridging sites<br />

-120<br />

9/17<br />

Aluminium in concretes : charactérisation<br />

by using 27 Al NMR<br />

Al IV<br />

cement *<br />

140<br />

120 100 80 60 40 20 0<br />

(ppm)<br />

-20<br />

-40<br />

-60<br />

* = rotating si<strong>de</strong> bands<br />

C-S-H<br />

Aluminium in concretes : charactérisation<br />

by using 27 Al NMR<br />

Si<br />

ettringite<br />

Ca<br />

AFm<br />

Al V<br />

Al IV<br />

paste : water +<br />

cement<br />

140<br />

*<br />

120 100 80 60 40 20 0<br />

(ppm)<br />

*<br />

*<br />

-20<br />

-40<br />

-60<br />

* = rotating si<strong>de</strong> bands


Sections polie, electron retrodiffusé<br />

pores<br />

sand (aggregate)<br />

“outer” or<br />

“undifferentiated”<br />

C-S-H<br />

“inner” C-S-H<br />

partially reacted<br />

cement grain<br />

calcium hydroxi<strong>de</strong><br />

(CH)<br />

Many microanalyses in precise locations<br />

Outer C-S-H :<br />

C-S-H formed<br />

outsi<strong>de</strong> the largest<br />

cement grains.<br />

Inner C-S-H :<br />

C-S-H formed within<br />

the boundaries of the<br />

former cement grains.<br />

EXAMPLE<br />

mechanism of expansion<br />

of mortars cured at elevated<br />

temperatures<br />

0.2<br />

Non-expanding mortar<br />

S/Ca<br />

0.15<br />

0.1<br />

0.05<br />

0<br />

After heating<br />

After 200 days<br />

0 0.05 0.1 0.15 0.2<br />

Al/Ca<br />

S/Ca<br />

0.2<br />

0.15<br />

0.1<br />

0.05<br />

0<br />

Expanding mortar<br />

After heating<br />

After 200 days<br />

0 0.05 0.1 0.15 0.2<br />

Al/Ca


Overall reaction<br />

• Heat output – calorimetry<br />

SO 3 =2.6; C 3 A=10<br />

SO 3 /C 3 A=0.88<br />

SO 3 =3.1; C 3 A=12.1<br />

SO 3 /C 3 A=0.87<br />

SO 3 =2.2; C 3 A=10.1<br />

SO 3 /C 3 A=0.73<br />

Overall reaction<br />

• Heat output – calorimetry<br />

• Bound water<br />

weight loss 110°C – 800 °C

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!