05.01.2014 Views

NETL - cooling water

NETL - cooling water

NETL - cooling water

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

A Solution to Water Crisis in Energy Production:<br />

Feasibility of Using Impaired Waters for Coal Fired<br />

Power Plant Cooling<br />

Heng Li, Shih-Hsiang Chien, Radisav Vidic<br />

University of Pittsburgh<br />

Ming-Kai Hsieh, David Dzombak<br />

Carnegie Mellon University


OVERVIEW<br />

• Water-Energy Nexus<br />

• Water requirements in thermoelectric power<br />

production<br />

• Alternative <strong>water</strong>s for power plant <strong>cooling</strong><br />

• Research materials and methods<br />

• Results and discussions<br />

• Summary


WATER-ENERGY NEXUS<br />

Current Approach:<br />

• Planning for future electricity production without<br />

considering how <strong>water</strong> requirements will be met<br />

over time, and<br />

• Planning for future <strong>water</strong> resources with the<br />

assumption that electricity will be readily<br />

availability<br />

Energy-<strong>water</strong> relationship:<br />

• Need electricity to produce <strong>water</strong><br />

• Need <strong>water</strong> to produce electricity


Water Use in Thermoelectric Power Plants<br />

Water-Intensive<br />

Processes<br />

Water vapor<br />

Steam cycle<br />

Steam<br />

Turbine<br />

Cooling <strong>water</strong><br />

Water vapor<br />

Cooling tower<br />

Additional<br />

Processes<br />

Heat<br />

Source<br />

Condenser<br />

Other Cooling<br />

Requirements<br />

Wet Solid<br />

Waste<br />

Process<br />

<strong>water</strong><br />

make-up<br />

Boiler<br />

feed<strong>water</strong><br />

make-up<br />

Cooling<br />

tower<br />

make-up<br />

Cooling <strong>water</strong><br />

blowdown<br />

Raw <strong>water</strong> source (river, lake, ocean, well, municipal system, etc.)


THERMOELECTRIC POWER GENERATION<br />

AND WATER<br />

• 2000 thermoelectric <strong>water</strong><br />

Public Supply, 13%<br />

U.S. Fresh<strong>water</strong> Withdrawal (2000)<br />

Domestic, 1%<br />

Irrigation, 40%<br />

requirements:<br />

– Withdrawal: ~ 136 BGD<br />

– Consumption: ~ 4 BGD<br />

U.S. Fresh<strong>water</strong> Consumption (1995)<br />

Thermoelectric, 39%<br />

Mining, 1%<br />

Livestock, 1%<br />

Aquaculture, 1%<br />

Commercial, 1%<br />

Thermoelectric, 3%<br />

Domestic, 6%<br />

Mining, 1%<br />

Industrial, 5%<br />

Industrial, 3%<br />

• Thermoelectric power plants compete<br />

Livestock, 3%<br />

with other use sectors.<br />

Irrigation, 81%<br />

Sources: USGS, 1998, 2004


HI<br />

AK<br />

AK<br />

AK<br />

HI<br />

HI<br />

HI<br />

HI<br />

HI<br />

HI<br />

HI<br />

HI HI<br />

HI<br />

HI<br />

HI<br />

HI<br />

HI<br />

OR<br />

OR WA<br />

ID<br />

ID<br />

SD<br />

MI<br />

MN<br />

WI<br />

MI<br />

MA<br />

WY<br />

LIMITATIONS IN WATER AVAILABILITY CT RI<br />

MT<br />

ND SD<br />

WI<br />

ME<br />

MI<br />

NY MA<br />

WY<br />

IA<br />

PA FOR<br />

NE<br />

MN<br />

NJ<br />

CTRI<br />

OR<br />

MI<br />

VT<br />

NV ID<br />

NH<br />

OH<br />

UT<br />

IL<br />

MD<br />

SD<br />

WI IA<br />

DE<br />

MI<br />

NY PA<br />

MA<br />

CA POWER CO PLANT<br />

NE<br />

NJ<br />

COOLING<br />

WV<br />

WY<br />

CTRI<br />

Survey Responses<br />

Extent of State Shortages Likely over the Next Decade<br />

NV<br />

KS MO<br />

VA OH<br />

UT<br />

KY IL IN<br />

MDDE<br />

IA<br />

PA<br />

NE<br />

NJ<br />

CA<br />

CO<br />

WV<br />

NV<br />

NC<br />

TN<br />

OH<br />

UT<br />

KS<br />

OK<br />

ILMO<br />

IN<br />

MDDE<br />

VA<br />

AZ<br />

KY<br />

CA<br />

NM CO<br />

AR<br />

WV SC<br />

under Average Water Conditions<br />

KS MO<br />

VA NC<br />

MS AL KY GA TN<br />

OK<br />

WAAZ<br />

NC<br />

NM TX<br />

AR TN<br />

SC<br />

OK LA<br />

AZ<br />

NM MT<br />

ME<br />

ND<br />

AR<br />

SC<br />

MS AL<br />

FL GA<br />

MN<br />

OR<br />

MS AL MI GA<br />

VT<br />

ID<br />

NH<br />

TX<br />

TX SD<br />

LAWI<br />

MI<br />

NY<br />

LA<br />

MA<br />

WY<br />

CTRI<br />

IA<br />

FL FL<br />

PALegend<br />

NE<br />

NJ<br />

NV<br />

OH<br />

UT<br />

IL IN shortageMDDE<br />

CA<br />

CO<br />

WV Statewide<br />

KS MO<br />

VA<br />

KY Regional<br />

Legend<br />

AZ<br />

NM<br />

Local NC<br />

TN shortage<br />

OK<br />

None<br />

AR<br />

SC Statewide shortage<br />

No response or uncertain<br />

MS AL GA Regional Statewide<br />

Local Regional<br />

TX<br />

LA<br />

None<br />

Local<br />

AK<br />

No FL response or uncertain<br />

MI<br />

NY<br />

VT NH<br />

VT NH<br />

None<br />

Legend<br />

No response or uncertain<br />

HI<br />

Source: US Government Accountability Office2003<br />

HI<br />

HI<br />

HI<br />

HI<br />

Legend<br />

shortage<br />

Statewide<br />

Regional<br />

Local<br />

None<br />

No response or uncertain


Expected Cooling Water Shortage in 2025<br />

Source: Roy et al., (2003) A Survey of Water<br />

Use and Sustainability in the United States with<br />

a Focus on Power Generation. EPRI


POSSIBLE ALTERNATIVE SOURCES OF<br />

COOLING WATER<br />

Municipal<br />

Waste<strong>water</strong><br />

Ash Pond Water<br />

Abandoned Mine Drainage


REUSE OF MUNICIPAL WASTEWATER<br />

IN THE COOLING SYSTEMS OF<br />

THERMOELECTRIC POWER PLANTS<br />

• 11.4 trillion gallons of municipal waste<strong>water</strong><br />

collected and treated annually in U.S.<br />

• Experience with use of treated municipal<br />

<strong>water</strong> for power plant <strong>cooling</strong> in arid west;<br />

e.g., Burbank, Las Vegas, Phoenix<br />

• Significant additional treatment beyond<br />

secondary treatment (e.g., clarification,<br />

filtration, N and P removal)


INVENTORY OF AVAILABLE MUNICIPAL<br />

WASTEWATER<br />

GIS-based tool developed to assess availability of<br />

secondary effluent from publicly owned treatment works<br />

(17864 POTWs in lower 48 states).


INVENTORY OF WATER NEEDS<br />

• 110 proposed power plants from EIA annual report 2007<br />

• U.S. is divided into major NERC regions


Percentage, %<br />

POWER PLANTS WITH SUFFICIENT MUNICIPAL<br />

WASTEWATER FOR COOLING<br />

100<br />

92<br />

80<br />

81<br />

76<br />

60<br />

49<br />

40<br />

20<br />

0<br />

10 25<br />

Coverage radius, mile<br />

Proposed Power Plants<br />

Existing Power Plants


SUMMARY – WASTEWATER AVAILABILITY<br />

• POTWs located within 10 and 25 mile radius from<br />

the proposed power plants can satisfy 81% and<br />

92% of proposed and 49% and 76% of existing<br />

power plant <strong>cooling</strong> <strong>water</strong> needs, respectively.<br />

• On average, one fairly large POTW can<br />

completely satisfy the <strong>cooling</strong> <strong>water</strong> demand for<br />

each of these power plants.


KEY TECHNICAL CHALLENGES WITH<br />

THE USE OF IMPAIRED WATERS<br />

• Precipitation and scaling<br />

• Accelerated corrosion<br />

• Biomass growth


CORROSION AND SCALING CONTROL<br />

Categories<br />

Corrosion control<br />

Inorganic-anodic<br />

Inorganic-cathodic<br />

Organic inhibitors<br />

Agents<br />

Chromate<br />

Nitrite<br />

Nitrate<br />

Molybdate<br />

Orthophosphate<br />

Silicates<br />

Zinc<br />

Polyphosphate<br />

Azoles<br />

Amines and fatty polyamines<br />

Consideration for<br />

Study<br />

No<br />

No<br />

No<br />

No<br />

Yes<br />

No<br />

Yes<br />

Yes<br />

Yes<br />

No<br />

Scaling and fouling control<br />

Chelant Glucoheptonates No<br />

Amines and fatty polyamines No<br />

Traditional inhibitors<br />

Phosphonates<br />

Yes<br />

Phosphate esters<br />

No<br />

Polycarboxylic acid (PCA)<br />

No<br />

Polymer<br />

Polyacrylates (PAA)<br />

Yes<br />

Polymaleic acid (PMA)<br />

Yes<br />

Natural dispersants<br />

Ligno-sulfonates<br />

No<br />

Tannins<br />

No


Bench-scale Water Recirculating System:<br />

Scaling and Biofouling


Bench-scale Water Recirculating System:<br />

Corrosion Studies<br />

Potentiostat PT<br />

Electrode<br />

Recirculating flow<br />

Flow meter<br />

Electrode holder<br />

Pump<br />

P<br />

Synthetic<br />

waste<strong>water</strong><br />

Valve<br />

Hot plate


CORROSION CRITERIA FOR<br />

COMMONLY USED ALLOYS<br />

Source: Puckorius, (2003) Cooling Water System<br />

Corrosion Guidelines. Process Cooling & Equipment.<br />

10 MPY<br />

Unacceptable<br />

5 MPY<br />

3 MPY<br />

1 MPY<br />

Poor<br />

Fair<br />

Good<br />

Excellent<br />

0.5 MPY<br />

0.3 MPY<br />

0.2 MPY<br />

0.1 MPY<br />

Mild steel piping<br />

Copper and copper alloys


PILOT SCALE COOLING TOWERS<br />

Franklin Township Municipal<br />

Sanitary Authority, Murrysville, PA


Pilot-Scale Water Recirculating System<br />

Biocide tank<br />

Heater<br />

Coupon/Electrode rack


Chemical Treatment Programs for Secondary<br />

Treated Municipal Waste<strong>water</strong><br />

Agents<br />

Tower<br />

A1<br />

Target chemical agent conc. (ppm)<br />

Tower<br />

B1<br />

Tower<br />

C1<br />

Tower<br />

A2<br />

Tower<br />

B2<br />

TTA 2 1 2 2 0<br />

TKPP 10 0 10 0 0<br />

PMA 10 0 20 10 0<br />

PBTC 5 0 10 0 0<br />

MCA 1-2 1-2 1-2 3-4 3-4


Corrosion Rates in Cooling Towers<br />

Average corrosion rate category<br />

Metal alloys Tower A1 Tower B1 Tower C1 Tower A2 Tower B2<br />

Mild steel<br />

(21-day avg.)<br />

Mild steel<br />

(last 5 days avg.)<br />

Copper<br />

(21-day avg.)<br />

Copper-nickel<br />

(21-day avg.)<br />

excellent good fair poor unaccep.


Deposits (mg)<br />

Relative amount<br />

Scaling Rates in Cooling Towers<br />

30<br />

25<br />

20<br />

15<br />

10<br />

Disc number<br />

0 1 2 3 4 5 6<br />

7<br />

8<br />

9<br />

Tower C (PMA-PBTC 20/10ppm)<br />

Tower B (blank)<br />

Tower A (PMA-PBTC 10/5ppm)<br />

5<br />

0<br />

0 5 10 15 20 25<br />

Immersion time (day)<br />

100%<br />

unburnable mass<br />

burned mass<br />

75%<br />

50%<br />

25%<br />

0%<br />

7 8 9<br />

Coupon disc number


SUMMARY: SCALING AND CORROSION<br />

• Several scale inhibitors were effective in the<br />

absence of disinfectants<br />

• Phosphate, either present in the makeup <strong>water</strong><br />

or added as corrosion inhibitor, worsened<br />

scaling<br />

• Ammonia could accelerate corrosion and<br />

mitigate scaling, but was stripped in the <strong>cooling</strong><br />

tower<br />

• In general, except for aluminum (pitting in all<br />

situations), corrosion rates of alloys were within<br />

acceptable range


SUMMARY: BIOFOULING<br />

• Addition of chlorine impaired the<br />

effectiveness of the antiscalants and<br />

accelerated corrosion<br />

• Chloramine was an effective biocide<br />

and much less corrosive than chlorine<br />

• Continuous monochloramine dosing to<br />

achieve 3 – 4 ppm as Cl 2 successfully<br />

inhibited biomass growth with planktonic<br />

heterotrophic plate count under 10 4<br />

CFU/ml and sessile heterotrophic plate<br />

count under 10 4 CFU/cm 2


ADDITIONAL ISSUES WITH THE USE<br />

OF IMPAIRED WATERS<br />

• Pretreatment before use vs. extensive chemical<br />

addition to the <strong>cooling</strong> tower<br />

• LCA of the alternatives<br />

• Regulatory issues<br />

• Social issues


Acknowledgement<br />

U.S. DOE – National Energy Technology Laboratory<br />

“Reuse of Treated Internal or External Waste<strong>water</strong>s in the Cooling<br />

Systems of Coal-based Thermoelectric Power Plants”<br />

(Grant # DE-FC26-06NT42722)<br />

Jim Brucker and Gene Greco<br />

Franklin Township Municipal Sanitary Authority (Murrysville, PA)

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!