11.01.2014 Views

1 Calculus III Exam 2 Practice Problems - Solutions

1 Calculus III Exam 2 Practice Problems - Solutions

1 Calculus III Exam 2 Practice Problems - Solutions

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>Calculus</strong> <strong>III</strong>, <strong>Exam</strong> 2: Review <strong>Solutions</strong> 4<br />

(c) ∫ 1<br />

0<br />

1<br />

(d) ∫ 1<br />

0<br />

∫ 1<br />

y sin(x 2 )dxdy = ∫ 1 ∫ √ x<br />

y sin(x 2 )dydx = ∫ 1<br />

y 2 0 0<br />

[1 − cos 1]<br />

2 [− 1 2 cos(x2 )] 1 0 = 1 4 [− cos(1) + cos 0] = 1 4<br />

∫ x<br />

2 ∫ y<br />

0 0 y2 zdzdydx = ∫ 1 ∫ x<br />

2<br />

y 2 [ 1 0 0 2 z2 ] y 0 dydx = ∫ 1<br />

0<br />

[ 1<br />

0 sin(x2 )[ 1 √ x<br />

2 y2 ]<br />

∫ x<br />

2<br />

0<br />

0 dx = ∫ 1<br />

0 sin(x2 )[ 1 2 x]dx =<br />

1<br />

2 y4 dydx = ∫ 1<br />

0 [ 1<br />

10 y5 ] x2<br />

0 dx = ∫ 1 1<br />

0 10 x1 0dx =<br />

110 x11 ] 1 0 = 1<br />

110<br />

(e) ∫ 1 ∫ 1<br />

0 x ex/y dydx = ∫ 1 ∫ y<br />

0 0 ex/y dxdy = ∫ 1<br />

0 [yex/y ] y 0 dy = ∫ 1<br />

0 [ye − y]dy = [ e 2 y2 − 1 2 y2 ] 1 0 = 1 2<br />

(e − 1)<br />

(f) ∫ 1 ∫ 1√y ∫ y<br />

0 0 xydzdxdy = ∫ 1 ∫ 1√y<br />

xy[z] y 0<br />

0 dxdy = ∫ 1 ∫ 1√y<br />

xy 2 dxdy = ∫ 1<br />

0<br />

0 y2 [ 1 2 x2 ] 1 √ y<br />

dy = ∫ 1<br />

0 [ 1 2 y2 −<br />

1<br />

2 y3 ]dy = [ 1 6 y3 − 1 8 y4 ] 1 0 = 1 6 − 1 8 = 1<br />

24<br />

16. Use differentials to estimate the amount of tin in a closed tin can with diameter 8cm and height<br />

12 cm if the tin is 0.04 cm thick.<br />

Solution: The volume of tin is the volume of the exterior of the can minus the volume of the<br />

interior of the can. The volume of a cylinder of radius r and height h is V = πr 2 h, so ∆V ≈ dV =<br />

V r dr + V h dh = [2πrh][dr] + [πr 2 ][dh] = [2π(4)(12)][0.04] + [π(4) 2 ][0.04] = 112π<br />

25 .<br />

17. Find the volume under the cone z = √ x 2 + y 2 and above the ring 4 ≤ x 2 + y 2 ≤ 25.<br />

∫ 5 ∫ r<br />

r=2 z=0 rdzdrdθ = ∫ 2π ∫ 5<br />

0 2 r[z]r 0drdθ = ∫ 2π<br />

0<br />

Solution: V = ∫ 2π<br />

θ=0<br />

( 125<br />

3 − 8 3<br />

)[2π] = 78π.<br />

∫ 5<br />

2 r2 drdθ = ∫ 2π<br />

0 [ 1 3 r3 ] 5 2dθ =<br />

18. Find the average height of the paraboloid z = x 2 + y 2 over the rectangle R = {(x, y) : 0 ≤ x ≤<br />

2, 0 ≤ y ≤ 1}.<br />

∫∫<br />

1<br />

Solution: The average height is<br />

Area(R) R zdA = ∫ 1 2 ∫ 1 ∫<br />

2 0 0 (x2 + y 2 )dydx = 1 2<br />

2 0 [x2 y + 1 3 y3 ] 1 0dx =<br />

∫ 2<br />

0 [x2 + 1 3 ]dx = 1 2 [ 1 3 x3 + 1 3 x]2 0 = 1 6 [(8 + 2) − (0 + 0)] = 5 3 .<br />

1<br />

2

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!