11.01.2014 Views

1 Calculus III Exam 2 Practice Problems - Solutions

1 Calculus III Exam 2 Practice Problems - Solutions

1 Calculus III Exam 2 Practice Problems - Solutions

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<strong>Calculus</strong> <strong>III</strong>, <strong>Exam</strong> 2: Review <strong>Solutions</strong> 1<br />

1 <strong>Calculus</strong> <strong>III</strong> <strong>Exam</strong> 2 <strong>Practice</strong> <strong>Problems</strong> - <strong>Solutions</strong><br />

1. Compute all first and second partial derivatives for the following functions.<br />

(a) f(x, y) = (x + y) 2<br />

<strong>Solutions</strong>: f x = 2(x + y), f y = 2(x + y), f xx = 2, f xy = f yx = 2, f yy = 2<br />

(b) f(x, y, z) = x 2 y + x 2 z − yz 2<br />

<strong>Solutions</strong>: f x = 2xy + 2xz, f y = x 2 − z 2 , f z = x 2 − 2yz, f xx = 2y + 2z, f xy = f yx = 2x,<br />

f xz = f zx = 2x, f yy = 0, f yz = f zy = −2z, f zz − 2y<br />

(c) f(x, y) = e 2x+y2<br />

<strong>Solutions</strong>: f x = 2e 2x+y2 , f y = 2ye 2x+y2 , f xx = 4e 2x+y2 , f xy = f yx = 4ye 2x+y2 , f yy =<br />

2e 2x+y2 + 4y 2 e 2x+y2<br />

(d) f(x, y) = sin(2x + y)<br />

<strong>Solutions</strong>: f x = 2 cos(2x + y), f y = cos(2x + y), f xx = −4 sin(2x + y), f xy = f yx =<br />

−2 sin(2x + y), f yy = − sin(2x + y)<br />

(e) f(x, y, z) = sin x sin y sin z<br />

<strong>Solutions</strong>: f x = cos x sin y sin z, f y = sin x cos y sin z, f z = sin x sin y cos z, f xx = − sin x sin y sin z,<br />

f xy = f yx = cos x cos y sin z, f xz = f zx = cos x sin y cos z, f yy = − sin x sin y sin z, f yz = f zy =<br />

sin x cos y cos z, f zz = − sin x sin y sin z<br />

(f) f(x, y) = xe yz<br />

<strong>Solutions</strong>: f x = e yz , f y = xze yz , f z = xye yz , f xx = 0, f xy = f yx = ze yz , f xz = f zx = ye yz ,<br />

f yy = xz 2 e yz , f yz = f zy = xe yz + xz 2 e yz , f zz = xy 2 e yz<br />

2. Let the temperature of a flat plate be given by the function T (x, y) = 3x 2 + 2xy. What is the<br />

value of the directional derivative of this function at the point (3, −6) in the direction ⃗v = 4⃗ı − 3⃗j?<br />

In what direction is the plate cooling most rapidly?<br />

Solution: The unit vector in the direction of ⃗v is ⃗u = 〈4/5, −3/5〉, so D ⃗u T (3, −6) = ∇T (3, −6) ·<br />

〈4/5, −3/5〉 = 〈6x + 2y, 2x〉(3, −6) · 〈4/5, −3/5〉 = 〈6, 6〉 · 〈4/5, −3/5〉 = 24/5 − 18/5 = 6/5.<br />

The direction the in which the plate is cooling most rapidly is −∇T (3, −6) = −〈6, 6〉.<br />

3. Find and test all critical points of f(x, y) = x 3 + 3xy 2 + 3y 2 − 15x + 2.<br />

Solution: f x = 3x 2 + 3y 2 − 15 = 0 if and only if x 2 + y 2 = 5. f y = 6xy + 6y = 6y(x + 1) = 0 if<br />

and only if x = −1 or y = 0. Thus (−1, 2), (−1, −2), ( √ 5, 0), (− √ 5, 0) are the only possible critical<br />

points (since f x , f y exist everywhere). Now apply SDT: f xx = 6x, f xy = 6y, f yy = 6x + 6, so<br />

∆(−1, 2) = (−6)(0) − (12) 2 < 0 =⇒ saddle point<br />

∆(−1, 2) = (−6)(0) − (12) 2 < 0 =⇒ saddle point<br />

∆( √ 5, 0) = (6 √ 5)(6 √ 5 + 6) − (0) 2 > 0 and f xx ( √ 5, 0) = 6 √ 5 > 0 =⇒ local min<br />

∆(− √ 5, 0) = (−6 √ 5)(−6 √ 5 + 6) − (0) 2 > 0 and f xx (− √ 5, 0) = −6 √ 5 < 0 =⇒ local max<br />

4. Assume that f(x, y) = xy + y 2 − 3x − 3 = 0 defines y implicitly as a function of x. Use the chain<br />

rule to find dy<br />

dx .<br />

Solution: Differentiate with respect to x:<br />

dy<br />

dx<br />

= −(y − 3)/(x + 2y).<br />

5. Find the point on x + y − z = 3 that is closest to the point (1, −1, 2).<br />

df<br />

dx = ∂f<br />

∂x + ∂f dy<br />

dy<br />

= (y−3)+(x+2y) = 0. Therefore<br />

∂y dx dx<br />

Solution: We want to maximize the function d(x, y, z) = (x − 1) 2 + (y + 1) 2 + (z − 2) 2 subject to<br />

the constraint x + y − z − 3 = 0. So z = x + y − 3 and<br />

d(x, y) = (x − 1) 2 + (y + 1) 2 + [(x + y − 3) − 2] 2 = 2x 2 + 2xy + 2y 2 − 12x − 8y + 27.


<strong>Calculus</strong> <strong>III</strong>, <strong>Exam</strong> 2: Review <strong>Solutions</strong> 2<br />

Computing d x = 4x + 2y − 12 and d y = 2x + 4y − 8, we see both exist for all values of x, y, so<br />

the only critical points of d(x, y) occur where d x = d y = 0. Moreover, as d is defined for all (x, y),<br />

there is no boundary to consider, so any extreme points occur at critical points. Now d x = 0<br />

implies y = 6 − 2x. Plugging this in to the equation d y = 0 we obtain 2x + 4(6 − 2x) − 8 = 16 − 6x,<br />

so x = 8/3, y = 2/3, z = 1/3. Hence (8/3, 2/3, 1/3) is the point on the plane closest to (1, −1, 2).<br />

(The second derivative test, with d xx = 4, d xy = 2, d yy = 4, implies that D = 4 2 − 2 2 > 0 and<br />

d xx > 0 proves this is a minimum).<br />

6. Evaluate the following expressions.<br />

(a)<br />

lim<br />

(x,y)→(0,0)<br />

2 + y<br />

x + cos y = lim 2+y<br />

(0,0) x+cos y = 2+0<br />

0+1 = 2<br />

∂<br />

(b)<br />

∂x [tan−1 (x 2 y) + tan −1 (xy 2 )] =<br />

2xy<br />

y<br />

1+(x 2 y)<br />

+<br />

2<br />

2 1+(xy 2 ) 2<br />

(c) f xy (0, 1) where f(x, y) = (x 3 + x)y 2 : f x = (3x 2 + 1)y 2 so f xy = (3x 2 + 1)(2y) and f xy (0, 1) =<br />

(1)(2) = 2<br />

(d) ∇(x 3 y 4 ) = 〈3x 2 y 4 , 4x 3 y 3 〉<br />

(e) f x (2, 4) where f(x, y) = xe y/x : f x = e y/x + xe y/x (−yx −2 ) so f x (2, 4) = e 2 + 2e 2 (−1)<br />

(f) D ⃗u (x 2 − y 3 ) where ⃗u = 1 2 ⃗ı − √ 3<br />

2 ⃗j: D ⃗u(x 2 − y 3 ) = 〈2x, −3y 2 〉 · 〈1/2, √ 3/2〉 = x − (3 √ 3/2)y 2<br />

7. Find the local max, local min, and saddle points of f(x, y) = 4xy − x 4 − y 4 . Does f have any<br />

absolute extreme values?<br />

Solution: f x = 4y −4x 3 = 0 when y = x 3 . f y = 4x−4y 3 = 0 when x = y 3 . Combining these two,<br />

we need y = (y 3 ) 3 = y 9 , which only happens if y = 0, 1, −1 and so x = 0, 1, −1 correspondingly.<br />

That is, the only critical points of f are (0, 0), (1, 1), (−1, −1) (since f x , f y are defined for all x, y).<br />

Now apply SDT: f xx = −12x 2 , f xy = 4, f yy = −12y 2 , so<br />

∆(0, 0) = (0)(0) − (4) 2 < 0 =⇒ saddle point<br />

∆(1, 1) = (−12)(−12) − (4) 2 > 0 and f xx (1, 1) = −12 =⇒ local max<br />

∆(−1, −1) = (−12)(−12) − (4) 2 > 0 and f xx (−1, −1) = −12 =⇒ local max<br />

Lastly, f has an absolute max at both (1, 1) and (−1, −1), but it doesn’t have an absolute min,<br />

for as x 2 + y 2 → ∞, f → −∞.<br />

8. Find the directions of maximum increase and decrease for f(x, y) = x 2/3 + xy + y 2/3 at (−1, 1).<br />

What are the corresponding magnitudes of these changes?<br />

Solution: Max increase occurs in the direction of ∇f(−1, 1) = 〈2/(3x 1/3 )+y, x+2/(3y 1/3 )〉(−1, 1) =<br />

〈−2/3+1, −1+2/3〉 = 〈1/3, −1/3〉 and the magnitude of change in this direction is ||∇f(−1, 1)|| =<br />

√<br />

2/9. The greatest decrease occurs in the direction −∇f(−1, 1) = 〈−1/3, 1/3〉 with corresponding<br />

change − √ 2/9.<br />

9. Find ∂w<br />

∂s<br />

and<br />

∂w<br />

∂t given w = x2 + xy + y 2 with x = 2r + s and y = r − 2s.<br />

∂w<br />

Solution:<br />

∂r<br />

= ∂w<br />

∂x<br />

y)(1) + (x + 2y)(−2).<br />

∂x<br />

∂r + ∂w<br />

∂y<br />

∂y<br />

∂r<br />

∂w<br />

= (2x + y)(2) + (x + 2y)(1) and<br />

∂s<br />

= ∂w ∂x<br />

∂x ∂s + ∂w ∂y<br />

∂y ∂s = (2x +<br />

10. Find the extreme values of f(x, y) = xy in the region bounded by the positive x-axis, the positive<br />

y-axis, and the circle x 2 + y 2 − 10 = 0.<br />

Solution: First we look for critical points of f: f x = y = 0 and f y = x = 0 only at the origin,<br />

(0, 0), which is not an interior point of the domain, so the book and most people (including myself)<br />

will disagree in calling this a critical point. Technically, it is a boundary point of the domain, and<br />

so is not a critical point, but if you call it one, I won’t hurt you. What this does say, however,<br />

is that the function can only assume its max and min values on the boundary. Let’s consider


<strong>Calculus</strong> <strong>III</strong>, <strong>Exam</strong> 2: Review <strong>Solutions</strong> 3<br />

this, then. On x = 0, 0 ≤ y ≤ √ 10, the function is f(0, y) = 0 for all y. On y = 0 and<br />

0 ≤ x ≤ √ 10, f(x, 0) = 0 for all x. Finally, on x 2 + y 2 = 10, we have f(x, √ 10 − x 2 ) = x √ 10 − x 2<br />

(we know y = √ 10 − x 2 and not − √ 10 − x 2 since we are in the first quadrant so that y ≥ 0).<br />

Hence f ′ (x, √ 10 − x 2 ) = (x)[ 1 2 (10 − x2 ) −1/2 (−2x)] + √ 10 − x 2 = (10 − x 2 ) −1/2 [−x 2 + (10 − x 2 )] =<br />

(10 − x 2 ) −1/2 [10 − 2x 2 ]. This does not exist when x = √ 10 (so y = 0 and f = 0) and is zero when<br />

x = √ 5 (so y = √ 5 and f = 5). Hence the absolute minimum value of f is 0, which occurs for<br />

all values of (x, y) on the boundaries x = 0 and y = 0, and the absolute maximum value of f is 5<br />

which occurs at the point ( √ 5, √ 5).<br />

11. Evaluate the following iterated integrals.<br />

(a) ∫ 1<br />

∫ x<br />

3<br />

0<br />

e y/x dydx = ∫ 1<br />

0 [xey/x ] x3<br />

0 dx = ∫ 1<br />

0 [xex2 − xe 0 ]dx = [ 1 2 ex2 − 1 2 x]1 0 = 1 2<br />

0<br />

1<br />

2<br />

[e − 2]<br />

∫ 4−x<br />

2<br />

[(e − 1) − (1 − 0)] =<br />

(b) ∫ 2<br />

2xdydx = ∫ 2<br />

0 x 2 0 2x[y]4−x2 x<br />

dx = ∫ 2<br />

2 0 2x[(4 − x2 ) − (x 2 )]dx = ∫ 2<br />

0 (8x − 4x3 )dx = [4x 2 −<br />

x 4 ] 2 0 = 16 − 16 = 0<br />

(c) ∫ 2 ∫ 1<br />

dxdy = ∫ 1 ∫ 2x<br />

e<br />

0 y/2 ex2 x2 dydx = ∫ 1<br />

[y] 2x<br />

0 0 0 ex2 0 dx = ∫ 1<br />

[2x]dx = [e<br />

0 ex2 x2 ] 1 0 = e 1 − e 0 = e − 1<br />

(d) ∫ e ∫ x ∫ z<br />

1 1 0 (2y/z3 )dydzdx = ∫ e ∫ x<br />

1 1 (y2 /z 3 ) z 0dzdx = ∫ e ∫ x<br />

1 1 (1/z)dzdx = ∫ e<br />

1 [ln |z|]x 1dx = ∫ e<br />

ln xdx =<br />

1<br />

[x ln x − x] e 1 = (e − e) − (0 − 1) = 1<br />

(e) ∫ 3/2 ∫ √ √ 9−4y 2<br />

0<br />

ydxdy = ∫ √<br />

3/2<br />

y[x] √ 9−4y 2<br />

− 9−4y 2 0 = ∫ 3/2<br />

2y √ 9 − 4y<br />

− 9−4y 2 0 2 dy = [− 1 (9−4y 2 ) 3/2<br />

4 3/2<br />

] 3/2<br />

(− 1 6 )(9)3/2 = 27 6 = 9 2<br />

(f) ∫ 1<br />

0<br />

∫ x<br />

2 ∫ x+y<br />

0<br />

(2x−y−z)dzdydx = ∫ 1<br />

0 0<br />

1<br />

2 (x2 + 2xy + y 2 )]dydx = ∫ 1<br />

0<br />

∫ x<br />

2<br />

[ 3<br />

10 x5 − 1<br />

14 x7 ] 1 0 = 3<br />

10 − 1<br />

14 = 16<br />

70<br />

∫ x<br />

2<br />

0 [2xz−yz− 1 2 z2 ] x+y<br />

0 dydx = ∫ 1<br />

0<br />

∫ x<br />

2<br />

0 [ 3 2 x2 − 3 2 y2 ]dydx = ∫ 1<br />

0 [ 3 2 x2 y − 1 2 y3 ] x2<br />

0 dx = ∫ 1<br />

0 = − 1 6 (0)3/2 −<br />

0 [2x2 +2xy−xy−y 2 −<br />

0 [ 3 2 x4 − 1 2 x6 ]dx =<br />

12. The two legs of a right triangle are measured as 5 m and 12 m, respectively, with a possible error<br />

in measurement of at most 0.2 cm in each. Use differentials to estimate the maximum error in the<br />

calculated value of (a) the area of the triangle and (b) the length of the hypotenuse.<br />

Solution: (a) A = 1 2 bh, so dA = A bdb + A h dh = [ 1 2 h][db] + [ 1 2b][dh]. Thus, ∆A ≈ dA =<br />

[(12)(0.2) + (5)(0.2)] = 1.7.<br />

1<br />

2<br />

(b) H = √ b 2 + h 2 , so dH = H b db+H h dh = 1 2 (b2 +h 2 ) −1/2 [2b]db+ 1 2 (b2 +h 2 ) −1/2 [2h]dh. Therefore,<br />

∆H ≈ dH = (5 2 + 12 2 ) −1/2 [(12)(0.2) + (5)(0.2)] = 17<br />

65 .<br />

13. Find the volume of the solid bounded by the cylinder x 2 + y 2 = 4 and the planes z = 0 and<br />

y + z = 3.<br />

Solution: V = ∫ 2π ∫ 2 ∫ 3−r sin θ<br />

rdzdrdθ = ∫ 2π ∫ 2<br />

sin θ<br />

r[z]3−r<br />

θ=0 r=0 z=0 θ=0 r=0 0 drdθ = ∫ 2π ∫ 2<br />

θ=0 r=0 (3r−r2 sin θ)drdθ =<br />

∫ 2π<br />

θ=0 [ 3 2 r2 − 1 3 r3 sin θ] 2 0 = ∫ 2π<br />

0 [6 − 8 3 sin θ]dθ = [6θ + 8 3<br />

cos θ]2π 0 = (12π + 8 3 ) − (0 + 8 3 ) = 12π.<br />

14. Find the mass of a plate that occupies the region D bounded by the parabola x = 1 − y 2 and the<br />

coordinate axes in the first quadrant if the density function is δ(x, y) = y.<br />

Solution: M = ∫∫ D δ(x, y)dA = ∫ 1 ∫ 1−y<br />

2<br />

y=0 x=0 ydxdy = ∫ 1<br />

y=0 y[x]1−y2 0 dy = ∫ 1<br />

0 (y − y3 )dy = [ 1 2 y2 −<br />

1<br />

4 y4 ] 1 0 = 1 4 .<br />

15. Evaluate the following expressions.<br />

(a) ∫ 2 ∫ 4<br />

−2 0 (4x3 + 3xy 2 )dydx = ∫ 2<br />

−2 [4x3 y + xy 3 ] 4 0dx = ∫ 2<br />

−2 [16x3 + 64x]dx = [4x 4 + 32x 2 ] 2 −2 =<br />

(64 + 128) − (64 + 128) = 0<br />

(b) ∫ 2<br />

1<br />

∫ x<br />

2<br />

1<br />

0 x+y dydx = ∫ 2<br />

1<br />

[ln |x + y|]x2 0 dx = ∫ 2<br />

1) ln(1 + x) − x] 2 1 = [3 ln 3 − 2] − [2 ln 2 − 1] = 3 ln 3 − 2 ln 2 − 1<br />

1 [ln(x + x2 ) − ln x]dx = ∫ 2<br />

ln(1 + x)dx = [(x +<br />

1


<strong>Calculus</strong> <strong>III</strong>, <strong>Exam</strong> 2: Review <strong>Solutions</strong> 4<br />

(c) ∫ 1<br />

0<br />

1<br />

(d) ∫ 1<br />

0<br />

∫ 1<br />

y sin(x 2 )dxdy = ∫ 1 ∫ √ x<br />

y sin(x 2 )dydx = ∫ 1<br />

y 2 0 0<br />

[1 − cos 1]<br />

2 [− 1 2 cos(x2 )] 1 0 = 1 4 [− cos(1) + cos 0] = 1 4<br />

∫ x<br />

2 ∫ y<br />

0 0 y2 zdzdydx = ∫ 1 ∫ x<br />

2<br />

y 2 [ 1 0 0 2 z2 ] y 0 dydx = ∫ 1<br />

0<br />

[ 1<br />

0 sin(x2 )[ 1 √ x<br />

2 y2 ]<br />

∫ x<br />

2<br />

0<br />

0 dx = ∫ 1<br />

0 sin(x2 )[ 1 2 x]dx =<br />

1<br />

2 y4 dydx = ∫ 1<br />

0 [ 1<br />

10 y5 ] x2<br />

0 dx = ∫ 1 1<br />

0 10 x1 0dx =<br />

110 x11 ] 1 0 = 1<br />

110<br />

(e) ∫ 1 ∫ 1<br />

0 x ex/y dydx = ∫ 1 ∫ y<br />

0 0 ex/y dxdy = ∫ 1<br />

0 [yex/y ] y 0 dy = ∫ 1<br />

0 [ye − y]dy = [ e 2 y2 − 1 2 y2 ] 1 0 = 1 2<br />

(e − 1)<br />

(f) ∫ 1 ∫ 1√y ∫ y<br />

0 0 xydzdxdy = ∫ 1 ∫ 1√y<br />

xy[z] y 0<br />

0 dxdy = ∫ 1 ∫ 1√y<br />

xy 2 dxdy = ∫ 1<br />

0<br />

0 y2 [ 1 2 x2 ] 1 √ y<br />

dy = ∫ 1<br />

0 [ 1 2 y2 −<br />

1<br />

2 y3 ]dy = [ 1 6 y3 − 1 8 y4 ] 1 0 = 1 6 − 1 8 = 1<br />

24<br />

16. Use differentials to estimate the amount of tin in a closed tin can with diameter 8cm and height<br />

12 cm if the tin is 0.04 cm thick.<br />

Solution: The volume of tin is the volume of the exterior of the can minus the volume of the<br />

interior of the can. The volume of a cylinder of radius r and height h is V = πr 2 h, so ∆V ≈ dV =<br />

V r dr + V h dh = [2πrh][dr] + [πr 2 ][dh] = [2π(4)(12)][0.04] + [π(4) 2 ][0.04] = 112π<br />

25 .<br />

17. Find the volume under the cone z = √ x 2 + y 2 and above the ring 4 ≤ x 2 + y 2 ≤ 25.<br />

∫ 5 ∫ r<br />

r=2 z=0 rdzdrdθ = ∫ 2π ∫ 5<br />

0 2 r[z]r 0drdθ = ∫ 2π<br />

0<br />

Solution: V = ∫ 2π<br />

θ=0<br />

( 125<br />

3 − 8 3<br />

)[2π] = 78π.<br />

∫ 5<br />

2 r2 drdθ = ∫ 2π<br />

0 [ 1 3 r3 ] 5 2dθ =<br />

18. Find the average height of the paraboloid z = x 2 + y 2 over the rectangle R = {(x, y) : 0 ≤ x ≤<br />

2, 0 ≤ y ≤ 1}.<br />

∫∫<br />

1<br />

Solution: The average height is<br />

Area(R) R zdA = ∫ 1 2 ∫ 1 ∫<br />

2 0 0 (x2 + y 2 )dydx = 1 2<br />

2 0 [x2 y + 1 3 y3 ] 1 0dx =<br />

∫ 2<br />

0 [x2 + 1 3 ]dx = 1 2 [ 1 3 x3 + 1 3 x]2 0 = 1 6 [(8 + 2) − (0 + 0)] = 5 3 .<br />

1<br />

2

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!