16.01.2014 Views

Transport in PEMFC Stacks - DOE Hydrogen and Fuel Cells ...

Transport in PEMFC Stacks - DOE Hydrogen and Fuel Cells ...

Transport in PEMFC Stacks - DOE Hydrogen and Fuel Cells ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<strong>Transport</strong> <strong>in</strong> <strong>PEMFC</strong> <strong>Stacks</strong><br />

G<strong>in</strong>er, Inc.<br />

Hui Xu<br />

Junq<strong>in</strong>g Ma<br />

Cortney Mittelsteadt (PI)<br />

University of South Carol<strong>in</strong>a<br />

John Van Zee<br />

Sirivatch Shimpalee<br />

Visarn Lilavivat<br />

Jason Morgan<br />

Ballard Material Products<br />

Don Connors<br />

Guy Ebbrell<br />

Virg<strong>in</strong>ia Tech<br />

James McGrath<br />

Yu Chen<br />

Jarrett Rowle<br />

Andy Shaver<br />

Chang Hyun Lee<br />

Tech Etch<br />

Kev<strong>in</strong> Russell<br />

Project ID #<br />

FC054<br />

This presentation does not conta<strong>in</strong> any proprietary, confidential,<br />

or otherwise restricted <strong>in</strong>formation<br />

1


<strong>Transport</strong> <strong>in</strong> <strong>PEMFC</strong> <strong>Stacks</strong><br />

Timel<strong>in</strong>e<br />

• Project Start Date: 11/1/2009<br />

• Project End Date: 8/31/2013<br />

• Percent Complete: 60%<br />

Budget<br />

• Total Project Fund<strong>in</strong>g: $3.340M<br />

– <strong>DOE</strong> Share $2.662M<br />

– Cost Share $ 0.678M<br />

• Fund<strong>in</strong>g Received <strong>in</strong> FY11: $786K<br />

• Planned Fund<strong>in</strong>g for FY12: $300K<br />

Barriers Addressed<br />

• Performance<br />

• Water <strong>Transport</strong> with<strong>in</strong> Stack<br />

• System Thermal <strong>and</strong> Water Management<br />

• Start-Up <strong>and</strong> Shut Down<br />

Technical Targets<br />

• Cold Start-up Times<br />

• Specific Power Density<br />

• Stack Power Density<br />

• Stack Efficiency<br />

Partners<br />

• University of South Carol<strong>in</strong>a<br />

• Virg<strong>in</strong>ia Tech<br />

• Tech Etch<br />

• Eng<strong>in</strong>eered Fiber Technologies<br />

This presentation does not conta<strong>in</strong> any proprietary, confidential,<br />

or otherwise restricted <strong>in</strong>formation<br />

2


Approach: Team <strong>and</strong> Tasks<br />

Objective: Improve Underst<strong>and</strong><strong>in</strong>g/Correlation Between<br />

Material Properties <strong>and</strong> Model Equations<br />

Diffusion<br />

Media<br />

Fabrication<br />

<strong>and</strong> Properties<br />

EFT<br />

Synthesis <strong>and</strong><br />

nano-scale PEM<br />

characterization<br />

Virg<strong>in</strong>ia Tech<br />

<strong>Fuel</strong> Cell<br />

Test<strong>in</strong>g <strong>and</strong><br />

Model<strong>in</strong>g<br />

University of<br />

South Carol<strong>in</strong>a<br />

MEA<br />

Fabrication<br />

<strong>and</strong> Properties<br />

G<strong>in</strong>er<br />

GES<br />

Bipolar Plate<br />

Fabrication<br />

<strong>and</strong> Properties<br />

Tech-Etch<br />

• Generate model<br />

• Supply model relevant transport numbers<br />

• Stress the model by develop<strong>in</strong>g different<br />

materials with different transport<br />

properties<br />

• Determ<strong>in</strong>e sensitivity of fuel cell<br />

performance to different factors<br />

• Guide research<br />

Milestone Plan Complete Actual Complete<br />

Basel<strong>in</strong>e PFSA model, with overall results correlat<strong>in</strong>g with<strong>in</strong> +-20% of each other.<br />

Design the new apparatus for extend<strong>in</strong>g the range of electroosmotic drag <strong>and</strong> diffusivity.<br />

Extend Model to a variety of membranes, catalyst content, GDM’s, <strong>and</strong> flow fields. The<br />

model should be able to demonstrate prediction of the actual data with<strong>in</strong> +-20% of the<br />

experimental results.<br />

4/15/2011 4/1/2011<br />

8/15/2012 60%<br />

This presentation does not conta<strong>in</strong> any proprietary, confidential,<br />

or otherwise restricted <strong>in</strong>formation<br />

3


Approach & Milestones<br />

Year Techniques Materials Model<strong>in</strong>g<br />

Year 1<br />

Year 2<br />

Year 3<br />

(Period 2)<br />

New technique generation for static <strong>and</strong><br />

dynamic diffusion, EODC, through plane<br />

conductivity confirmation with Basel<strong>in</strong>e<br />

materials. (90%)<br />

Current Distribution Board Demonstration<br />

(100%)<br />

Techniques applied to alternative<br />

materials.<br />

Diffusivity apparatus used to characterize<br />

alternative diffusion media.<br />

Low Temperature Studies<br />

Basel<strong>in</strong>e hydrocarbon PEM<br />

generated <strong>and</strong> down selected<br />

(80%)<br />

Basel<strong>in</strong>e Gas diffusion Media<br />

Delivered (100%)<br />

First Etched Plates (100%)<br />

Scale-up of Basel<strong>in</strong>e PEM<br />

Integration of catalysts<br />

Modification of diffusion media<br />

Alternative Plates & Design of<br />

larger plates.<br />

Delivery of Large PEMs<br />

Current Distribution board for<br />

larger plate<br />

Fabrication of larger plate <strong>and</strong><br />

current distribution board<br />

Set-Up of Model<br />

Use of Basel<strong>in</strong>e materials for<br />

Test<strong>in</strong>g Model Sensitivity<br />

Test<strong>in</strong>g<br />

Performance <strong>and</strong> water<br />

balance modeled <strong>and</strong><br />

confirmed with basel<strong>in</strong>e<br />

materials <strong>and</strong> hydrocarbon<br />

PEM. (50%)<br />

Alternative diffusion media<br />

tested.<br />

Model<strong>in</strong>g extended to larger<br />

cells.<br />

Effect of coolant/heat transfer.<br />

Model confirmation with<br />

current distribution <strong>and</strong> water<br />

balance.<br />

This presentation does not conta<strong>in</strong> any proprietary, confidential,<br />

or otherwise restricted <strong>in</strong>formation<br />

4


Relevance: Use of Model<strong>in</strong>g <strong>in</strong> <strong>Fuel</strong> Cell Development is Widespread.<br />

Agreement on Fundamentals is Not.<br />

• In develop<strong>in</strong>g a model for transport <strong>in</strong><br />

fuel cell systems, the first th<strong>in</strong>g that is<br />

needed is the key transport numbers<br />

– Diffusivity<br />

– Water Uptake<br />

– Electro-osmotic Drag<br />

– Through Plane Conductivity<br />

• NOTHING EVEN RESEMBLING<br />

CONSENSUS ON THESE<br />

FUNDAMENTALS<br />

• Systematic approach of generat<strong>in</strong>g <strong>and</strong><br />

develop<strong>in</strong>g various materials with<br />

better characterization methods is<br />

needed<br />

Diffusion Coefficient (cm 2 s -1 X 10 6 )<br />

30.00<br />

25.00<br />

20.00<br />

15.00<br />

10.00<br />

5.00<br />

Zawodz<strong>in</strong>ski, et. al.<br />

Our Data<br />

0.00<br />

0.00 2.00 4.00 6.00 8.00 10.00 12.00 14.00<br />

Average Water Content (λ)<br />

Fuller, et. al.<br />

White, et. al.<br />

T.A. Zawodz<strong>in</strong>ski, M. Neeman, L.O. Sillerud <strong>and</strong> S. Gottesfeld, J. Phys.<br />

Chem., 95, 6040 (1990)<br />

T.F. Fuller, Ph.D. Thesis, University of California, Berkeley, CA (1992)<br />

T.V. Nguyen <strong>and</strong> R.E. White, J. Electrochem. Soc., 140, 2178 (1993)<br />

Equations of the form of: S. Motupally, A.J. Becker <strong>and</strong> J.W. Weidner, J.<br />

Electrochem. Soc., 147, 3171 (2000)<br />

This presentation does not conta<strong>in</strong> any proprietary, confidential,<br />

or otherwise restricted <strong>in</strong>formation<br />

5


Achievements: New Membranes: HQS100-6FPAEB<br />

BPSH100*<br />

O<br />

O<br />

H O 3 S<br />

O<br />

S<br />

O<br />

Chemical Formula: C 24 H 16 O 10 S 3<br />

••<br />

Molecular Weight: 560.57<br />

IEC = 3.57 meq/g<br />

SO 3 H<br />

*BiPhenol Sulfone, 100% sulfonated H + form<br />

n<br />

HQSH100*<br />

O<br />

IEC = 4.13 meq/g<br />

O<br />

H O 3 S<br />

O<br />

S<br />

O<br />

SO 3 H<br />

Chemical Formula: C 18 H 12 O 10 S 3<br />

••<br />

Molecular Weight: 484.48<br />

*Hydroqu<strong>in</strong>one Sulfone, 100% sulfonated H + form<br />

n<br />

SQSH*<br />

O<br />

SO 3<br />

H<br />

O<br />

H O 3 S<br />

O<br />

S<br />

O<br />

SO 3<br />

H<br />

Chemical Formula: C 18 H 12 O 13 S 4<br />

••<br />

Molecular Weight: 564.54<br />

IEC = 5.31 meq/g<br />

*Sulfonated Qu<strong>in</strong>one-Sulfone, H + form<br />

n<br />

• Provide design guidel<strong>in</strong>es for PEMs on impact of structure <strong>and</strong> segregation of charges<br />

• G<strong>in</strong>er to use polymer powders to determ<strong>in</strong>e fundamental properties, generate MEAs<br />

• USC to use model to predict performance based on fundamental properties<br />

Proton conductivity@80 o C [Scm -1 ]<br />

10 0<br />

10 -1<br />

(4)<br />

(3)<br />

10 -2<br />

10 -3<br />

10 -4<br />

(2)<br />

(1)<br />

(1) Nafion 212<br />

(2) 6FPAEB-BPSH 9k-9k<br />

(3) 6FPAEB-HQSH 6k-6k<br />

(4) 6FPAEB-HQSH 9k-9k<br />

20 30 40 50 60 70 80 90 100<br />

Relative humidity [%]<br />

This presentation does not conta<strong>in</strong> any proprietary, confidential,<br />

or otherwise restricted <strong>in</strong>formation<br />

6


Achievements: New Membranes: MEA Fabrication<br />

Solution<br />

Cast<br />

Decal<br />

Transfer<br />

4'' x 4''<br />

50cm 2 FCT plates<br />

VA Tech: Polymer<br />

Synthesis<br />

12'' x 5''<br />

G<strong>in</strong>er: Membrane cast & characterization:<br />

water uptake, diffusivity, electro-osmotic drag<br />

coefficient (EODC), MEA fabrication<br />

50cm 2 GM plates<br />

South Carol<strong>in</strong>a:<br />

Performance evaluation<br />

<strong>and</strong> model validation<br />

This presentation does not conta<strong>in</strong> any proprietary, confidential,<br />

or otherwise restricted <strong>in</strong>formation<br />

7<br />

7


Achievements: New Technique: Simultaneous Water Uptake <strong>and</strong> Diffusivity<br />

oven<br />

pressure transducer<br />

membrane<br />

N212 at 80°C<br />

water reservoir<br />

pulse valve<br />

membrane<br />

chamber<br />

manual valve<br />

3-way valve<br />

water trap<br />

vacuum pump<br />

Non-membrane diffusion is elim<strong>in</strong>ated by avoid<strong>in</strong>g <strong>in</strong>erts <strong>in</strong> the system<br />

• Automation of dynamic system assures cont<strong>in</strong>uous diffusivity measurements at a variety of relative<br />

humidity;<br />

• Process simple, effective, <strong>and</strong> accurate, open to other researchers <strong>in</strong> fuel cell community<br />

This presentation does not conta<strong>in</strong> any proprietary, confidential,<br />

or otherwise restricted <strong>in</strong>formation<br />

8


Achievements: New Technique: Simultaneous Water Uptake <strong>and</strong> Diffusivity<br />

Operation T: 80°C<br />

Diffusivity (cm 2 /s, 10 -6 )<br />

4.0<br />

3.5<br />

3.0<br />

2.5<br />

2.0<br />

1.5<br />

1.0<br />

Nafion 112 (static result)<br />

Nafion 112 (Dynamic test)<br />

BPSH-6FBA 7k-7k Cast at G<strong>in</strong>er 3mil (Static results)<br />

BPSH-6FBA 7k-7k Cast at G<strong>in</strong>er 1.5-2mil (Static results)<br />

BPSH-6FBA 7k-7k Cast at G<strong>in</strong>er 3mil (dynamic results)<br />

BPSH-6FBA Na form 7k-7k Cast at G<strong>in</strong>er 3mil (dynamic results)<br />

0.5<br />

Nafion is a registered trademark of E.I. du Pont de Nemours <strong>and</strong> Company<br />

0.0<br />

0 2 4 6 8 10<br />

Lamda (mol H 2 O/mol SO 3 )<br />

Similar Isotherms seen for both PFSA <strong>and</strong> hydrocarbon-based ionomers<br />

Diffusivity of PFSA > Block Hydrocarbons <strong>in</strong> H + form >> Na + form<br />

This presentation does not conta<strong>in</strong> any proprietary, confidential,<br />

or otherwise restricted <strong>in</strong>formation<br />

9


Achievements: New Technique: EODC<br />

Water Reservoir<br />

Micro-flow Meter<br />

H 2<br />

Pressure Controller<br />

Saturator Oven<br />

H 2 O<br />

Membrane<br />

Saturator<br />

H 2 +H 2 O<br />

Insulated<br />

Heat Pipe<br />

Pressure<br />

Transducer<br />

H 2 Pump Oven<br />

RH Meter<br />

???<br />

#H 2 O/H +<br />

H 2 - 2e - → 2H + 2H + + 2e - → H 2<br />

H 2 Pump Cell<br />

Pressure<br />

Transducer<br />

RH Meter<br />

Proportional<br />

Valve<br />

• Water/H 2 <strong>in</strong>let ratio<br />

controlled by<br />

controll<strong>in</strong>g saturator<br />

temperature <strong>and</strong> H 2<br />

pressure<br />

• If ratio is too high, not<br />

enough water is<br />

dragged across <strong>and</strong> cell<br />

floods <strong>and</strong> fails<br />

• If ratio is too low,<br />

membrane dries out<br />

<strong>and</strong> cell fails<br />

• At Water/H 2 =<br />

2*EODC Cell operates<br />

<strong>in</strong> quasi-stable state<br />

Vacuum Pump<br />

Water Trap<br />

All gas/gas diffusion is elim<strong>in</strong>ated<br />

This presentation does not conta<strong>in</strong> any proprietary, confidential,<br />

or otherwise restricted <strong>in</strong>formation<br />

10


Cell Voltage (V)<br />

Maxiumum Stabilibity Time (m<strong>in</strong>)<br />

0.8<br />

0.7<br />

0.6<br />

0.5<br />

0.4<br />

0.3<br />

0.2<br />

0.1<br />

0<br />

Feed ratio 0.21 Feed ratio 0.42<br />

Feed ratio 0.58 Feed ratio 0.71<br />

Feed ratio 0.76 Feed ratio 0.85<br />

0 20 40 60 80 100 120 140<br />

Time (m<strong>in</strong>ute)<br />

140<br />

120<br />

100<br />

80<br />

60<br />

40<br />

20<br />

0<br />

Nafion 115 Expt. 1<br />

Nafion 115 Expt. 2<br />

Nafion 115 Expt. 3<br />

Dry<strong>in</strong>g<br />

out<br />

Achievements: New Technique: EODC<br />

Nafion ® 115, 80 °C <strong>and</strong> 82% RH, 100 mA/cm 2<br />

0 0.2 0.4 0.6 0.8 1<br />

Feed Ratio (F)<br />

Flood<strong>in</strong>g<br />

EODC nH2O/H +<br />

EODC nH2O/H +<br />

2.0<br />

2.0<br />

1.5<br />

1.5<br />

1.0<br />

1.0<br />

0.5<br />

0.5<br />

0.0<br />

0.0<br />

This presentation does not conta<strong>in</strong> any proprietary, confidential,<br />

or otherwise restricted <strong>in</strong>formation<br />

Nafion<br />

Nafion 112,<br />

112,<br />

112, 80°C<br />

80°C<br />

80°C<br />

Nafion Nafion 117, 117, 80°C 80°C<br />

1:<br />

Nafion 1: Fuller Fuller et<br />

117, et al (Nafion<br />

80°C al (Nafion 117, 117, 25°C) 25°C)<br />

2: Zawodz<strong>in</strong>ski et al (Nafion 117, 30°C)<br />

Nafion 2: Zawodz<strong>in</strong>ski 112, 80°C et al (Nafion Nafion 117, 117, 30°C)<br />

3: Aotani et al (Nafion 115, 70°C)<br />

80°C<br />

VT 3: 6FPAEB-BPSH100 Aotani et al (Nafion 7k-7k, 115, 70°C) 1.55IEC<br />

4: Ge et al (Nafion 117, 30°C)<br />

VT VT 6FPAEB-BPSH100 7k-7k, 7k-7k, 1.55IEC 1.55IEC<br />

VT<br />

VT<br />

VT 6FPAEB-BPSH100<br />

6FPAEB-BPSH100 14k-14k,<br />

14k-14k, 1.55IEC<br />

1.55IEC<br />

0 0 2 2 4 4 6 6 8 8 10 10 12<br />

12<br />

Lamda nH nH 2 O/SOH 2 3<br />

3<br />

• EODC of hydrocarbon-based materials slightly lower, but similar trend<br />

• Still work<strong>in</strong>g on consensus<br />

11


Achievements: New Materials: Diffusion Media<br />

• Ballard added to the<br />

program recently<br />

• Started with Toray<br />

Materials<br />

– Variable Wet-Proof<strong>in</strong>g<br />

– Microporous Layer<br />

• Ballard will provide more<br />

custom materials<br />

• Want to generate<br />

differences <strong>in</strong>:<br />

– MacMull<strong>in</strong> Number<br />

• Porosity<br />

• Tortuosity<br />

– Hydrophobicity<br />

•Tortuosity<br />

– Ratio of the actual path<br />

length through the pores to<br />

the shortest l<strong>in</strong>ear distance<br />

between two po<strong>in</strong>ts.<br />

•Porosity<br />

– Ratio of void volume (volume<br />

of pores) to the total volume.<br />

•MacMull<strong>in</strong> Number<br />

– Function of tortuosity <strong>and</strong><br />

pososity.<br />

N<br />

M<br />

L<br />

t<br />

V Pores<br />

V Total<br />

n<br />

τ<br />

= f ( τε , ) =<br />

m<br />

ε<br />

τ =<br />

L<br />

t<br />

V<br />

ε =<br />

V<br />

Pores<br />

Total<br />

This presentation does not conta<strong>in</strong> any proprietary, confidential,<br />

or otherwise restricted <strong>in</strong>formation<br />

12


Achievements: Design of Gas Diffusion Media<br />

Substrate<br />

P50<br />

EP40<br />

P75<br />

Diffusivity<br />

Modification<br />

Low<br />

High<br />

MPL 1<br />

MPL 2<br />

Carbon Substrate<br />

MPL 1/MPL2<br />

(carbon particle size)<br />

Small/Large<br />

Large/Small<br />

Basel<strong>in</strong>e Material at start<br />

of program was Toray<br />

H060<br />

The new design of GDLs have<br />

been modified from st<strong>and</strong>ard<br />

Ballard GDLs by add<strong>in</strong>g two<br />

micro porous layers. Each set<br />

has been treated with two<br />

different methods <strong>in</strong> order to<br />

provide two different values of<br />

diffusivity.<br />

Total of 12 new papers generated<br />

5 characterized ex-situ to date<br />

This presentation does not conta<strong>in</strong> any proprietary, confidential,<br />

or otherwise restricted <strong>in</strong>formation<br />

13


Achievements: Design of Gas Diffusion Media<br />

Comparison of Mercury pore size distributions of new design GDLs<br />

Cumulative Intrusion Volume (mL/g)<br />

Incremental Intrusion Volume (mL/g)<br />

4.5<br />

4<br />

3.5<br />

3<br />

2.5<br />

2<br />

1.5<br />

1<br />

0.5<br />

0<br />

0.001 0.01 0.1 1 10 100 1000<br />

Pore Size Diameter (µm)<br />

1.4<br />

1.2<br />

1<br />

0.8<br />

0.6<br />

0.4<br />

0.2<br />

Basel<strong>in</strong>e Substrates<br />

EP40T<br />

P50T<br />

P75T<br />

EP40T<br />

P50T<br />

P75T<br />

0<br />

0.001 0.01 0.1 1 10 100 1000<br />

Pore Size Diameter (µm)<br />

Cumulative Intrusion Volume (mL/g)<br />

Incremental Intrusion Volume (mL/g)<br />

2.5<br />

2<br />

1.5<br />

Cumulative pore volume<br />

1<br />

0.5<br />

0<br />

0.001 0.01 0.1 1 10 100 1000<br />

Pore Size Diameter (µm)<br />

0.7<br />

0.6<br />

0.5<br />

0.4<br />

0.3<br />

0.2<br />

0.1<br />

P50T_basel<strong>in</strong>e<br />

P50_Low<br />

P50_High<br />

Differential pore volume<br />

Modified Substrates<br />

P50T_basel<strong>in</strong>e<br />

P50_Low<br />

P50_High<br />

0<br />

0.001 0.01 0.1 1 10 100 1000<br />

Pore Size Diameter (µm)<br />

This presentation does not conta<strong>in</strong> any proprietary, confidential,<br />

or otherwise restricted <strong>in</strong>formation<br />

EP40T has largest<br />

pore volume,<br />

concentrated at 50<br />

µm<br />

Modification greatly<br />

reduces volume of<br />

large pores<br />

14


Voltage (V)<br />

Voltage (V)<br />

1<br />

0.9<br />

0.8<br />

0.7<br />

0.6<br />

0.5<br />

0.4<br />

0.3<br />

0.2<br />

0 500 1000 1500 2000<br />

1<br />

0.9<br />

0.8<br />

0.7<br />

0.6<br />

0.5<br />

0.4<br />

0.3<br />

Achievements: Design of Gas Diffusion Media<br />

Gore 57 Series 80°C<br />

P50T<br />

EP40T<br />

P75T<br />

Current density (mA/cm 2 )<br />

A: P75T, C: EP40T<br />

25%/25% RH anode/cathode:80 o C, 1.5/2.0 Stoich<br />

P50T<br />

EP40T<br />

P75T<br />

A: P75T, C: EP40T<br />

75%/25% RH anode/cathode:80 o C, 1.5/2.0 Stoich<br />

0.2<br />

0 500 1000 1500 2000<br />

Current density (mA/cm 2 )<br />

Voltage (V)<br />

This presentation does not conta<strong>in</strong> any proprietary, confidential,<br />

or otherwise restricted <strong>in</strong>formation<br />

1<br />

0.9<br />

0.8<br />

0.7<br />

0.6<br />

0.5<br />

0.4<br />

0.3<br />

0.2<br />

P50T<br />

EP40T<br />

P75T<br />

A: P75T, C: EP40T<br />

100%/50% RH anode/cathode:80 o C,1.5/2.0Stoich<br />

5psi<br />

0 500 1000 1500 2000<br />

Current density (mA/cm 2 )<br />

• P75T GDL shows the highest performance at lower<br />

humidity condition whereas EP40T shows the<br />

highest performance at higher humidity condition.<br />

• P75T will be used <strong>in</strong> the anode <strong>and</strong> EP40T will be<br />

used <strong>in</strong> the cathode <strong>in</strong> follow<strong>in</strong>g basel<strong>in</strong>e test<strong>in</strong>g<br />

15


Achievements: Design of Gas Diffusion Media: Wet Proof<strong>in</strong>g<br />

MacMull<strong>in</strong> Number (Dimensionless)<br />

6<br />

5<br />

4<br />

3<br />

2<br />

1<br />

0<br />

Papers with MPL<br />

Ballard Papers<br />

Toray Papers<br />

Modified Ballard Papers<br />

0 10 40 10-<br />

10<br />

10-<br />

40<br />

40-<br />

10<br />

% Wet Proof<strong>in</strong>g Substrate-<br />

MPL<br />

MacMull<strong>in</strong> number as function<br />

of porosity<br />

Difficult to make general<br />

relationship of N M (ε)<br />

40-<br />

40<br />

MacMull<strong>in</strong> Number (Dimensionless)<br />

5<br />

4<br />

3<br />

2<br />

1<br />

0<br />

MacMull<strong>in</strong> number as function of wet<br />

proof<strong>in</strong>g <strong>in</strong> substrate <strong>and</strong> MPL<br />

Mitsubishi Rayon<br />

ε -3.8<br />

Toray 40%<br />

Toray 10% PTFE<br />

Bruggeman<br />

Ballard AdvCarb<br />

ε -1.5<br />

-1.5 Showa Denka SCT-<br />

NF2-1<br />

P50 Low<br />

P75 Low<br />

Toray 40-40 P50 High<br />

P75 High<br />

W.L. Gore Carbel,<br />

Carbon Cloth<br />

Carbon Papers Cloth<br />

Paper Carbon Carbon<br />

+MPL Papers Cloth<br />

Ballard Paper Carbon +MPL Basel<strong>in</strong>e Cloth Papers Paper<br />

Ballard Carbon Paper Modified Basel<strong>in</strong>e +MPL<br />

Papers Cloth Papers<br />

Toray 40-10<br />

Toray 10-10<br />

Toray H-120<br />

Ballard EP40T<br />

E-Tek Elat<br />

Toray 10-40<br />

Ballard P75T<br />

Ballard P50T<br />

Toray 0% PTFE<br />

SGL Sigracet 10BB<br />

0.4 0.5 0.6 0.7 0.8 0.9 1<br />

Porosity ε<br />

This presentation does not conta<strong>in</strong> any proprietary, confidential,<br />

or otherwise restricted <strong>in</strong>formation<br />

16


Achievements: <strong>Fuel</strong> Cell Flow-Fields<br />

50-cm 2 GM-Downthe-Channel<br />

flow-field<br />

(In-progress)<br />

50-cm 2 USC-serpent<strong>in</strong>e flow-field<br />

50-cm 2 USC-parallel flow-field (In-progress)<br />

Serpent<strong>in</strong>e Hardware (<strong>Fuel</strong> Cell Technologies)<br />

•Legacy Hardware<br />

•Most Common<br />

Th<strong>in</strong> Metal Plates (Tech Etch USC Design)<br />

•Closer to Automotive<br />

•Allows m<strong>in</strong>imization of pressure drop to flow fields<br />

Th<strong>in</strong> Graphite Plates (GM)<br />

•Also common<br />

•Open design allows comparison/collaboration<br />

Current Distribution Boards Designed for All 3<br />

This presentation does not conta<strong>in</strong> any proprietary, confidential,<br />

or otherwise restricted <strong>in</strong>formation<br />

17


Current density (mA/cm 2 )<br />

1200<br />

1000<br />

800<br />

600<br />

400<br />

200<br />

0<br />

Achievement: Model Verification: Serpent<strong>in</strong>e<br />

At potential=0.3V<br />

Exp<br />

CFD<br />

Current density (mA/cm 2 )<br />

1400<br />

1200<br />

1000<br />

800<br />

600<br />

400<br />

200<br />

0<br />

Exp<br />

CFD<br />

Anode 25%RH, Cathode 25%RH<br />

Average current density = 809 mA/cm 2<br />

1 2<br />

3 4<br />

5 6<br />

7 8<br />

9 10<br />

Current density (mA/cm 2 )<br />

1600<br />

1400<br />

1200<br />

1000<br />

800<br />

600<br />

400<br />

200<br />

0<br />

Anode 75%RH, Cathode 25%RH<br />

Average current density = 1094 mA/cm 2<br />

Exp<br />

CFD<br />

Anode 100%RH, Cathode 50%RH<br />

Average current density = 1250 mA/cm 2<br />

This presentation does not conta<strong>in</strong> any proprietary, confidential,<br />

or otherwise restricted <strong>in</strong>formation<br />

18


Achievements: Flow Field Model<strong>in</strong>g: Th<strong>in</strong> Metallic Plates<br />

Cathode <strong>in</strong>let<br />

1 6<br />

2 7<br />

3 8<br />

4 9<br />

5 10<br />

Anode <strong>in</strong>let<br />

Average current density = 1200 mA/cm 2<br />

Cathode <strong>in</strong>let Anode <strong>in</strong>let<br />

1 6<br />

2 7<br />

3 8<br />

4 9<br />

5 10<br />

Average current density = 294 mA/cm 2<br />

Operat<strong>in</strong>g condition:<br />

Anode Stoich. = 1.5<br />

Anode RH = 100%<br />

Cathode Stoich. = 2.0<br />

Cathode RH = 50%<br />

Tcell = 80 o C<br />

System pressure = 136kPa<br />

High Current Wet<br />

Model Predicts Equally Well<br />

•High i/Wet<br />

•Low i/Dry<br />

Low Current Dry<br />

Operat<strong>in</strong>g condition:<br />

Anode Stoich. = 1.5<br />

Anode RH = 25%<br />

Cathode Stoich. = 2.0<br />

Cathode RH = 25%<br />

Tcell = 80 o C<br />

System pressure = 101kPa<br />

This presentation does not conta<strong>in</strong> any proprietary, confidential,<br />

or otherwise restricted <strong>in</strong>formation<br />

19


Achievement: Model Verification:<br />

Distributions of current density <strong>and</strong> temperature of 50-cm 2 GM-Down-the-Channel flow-field compared with<br />

www.pemfcdata.prg<br />

( I avg = 1.5 A/cm 2 , counter-current flow: 50/50%RH, 150/150kPa, 80 o C, 1.5/2.0 stoich)<br />

USC CFD prediction<br />

Current Distribution<br />

www.pemfcdata.org<br />

USC CFD prediction<br />

Temperature Distribution<br />

Cell potential (V)<br />

1.0<br />

0.8<br />

0.6<br />

0.4<br />

0.2<br />

0.0<br />

Data are also validated with<br />

www.pemfcdata.org<br />

provided by GM.<br />

GM-Down-the-Channel: USC-Experiment<br />

GM-Down-the-Channel: Model<strong>in</strong>g<br />

0 200 400 600 800 1000 1200 1400 1600<br />

Current density (mA/cm 2 )<br />

www.pemfcdata.org<br />

USC data matches published data very well, both with performance <strong>and</strong> model results<br />

This presentation does not conta<strong>in</strong> any proprietary, confidential,<br />

or otherwise restricted <strong>in</strong>formation<br />

20


Achievement: Model Verification:<br />

Humidity<br />

Chamber<br />

Thermocouple<br />

Ice bath<br />

(Future)<br />

Scale<br />

Flexible tube<br />

<strong>Fuel</strong> cell<br />

Water trap bottle<br />

Water Balance experiment <strong>and</strong><br />

numerical result of GM Down-the-<br />

Channel flow-field<br />

( counter-current flow: 50/50%RH, 101/101kPa,<br />

80 o C, 1.5/2.0 stoich)<br />

New <strong>Transport</strong> Numbers Greatly<br />

Improve Prediction of Water Mass<br />

Balance<br />

Anode Water Balance (mg/sec) Cathode Water Balance (mg/sec)<br />

i<br />

A/cm 2 RH<br />

Cross to Water<br />

Water Cross from<br />

Water <strong>in</strong> Water out<br />

Gen.<br />

Cathode <strong>in</strong><br />

out Anode<br />

EXP 0.4 50 0.86 0.34 0.51 2.68 1.87 5.02 0.47<br />

CFD(new) 0.4 50 0.90 0.33 0.57 2.70 1.87 5.08 0.51<br />

CFD(old) 0.4 50 0.90 0.37 0.53 2.70 1.87 5.12 0.55<br />

EXP 0.8 50 1.7 1.26 0.43 5.36 3.73 9.40 0.31<br />

CFD(new) 0.8 50 1.72 1.30 0.32 5.37 3.73 9.43 0.33<br />

CFD(old) 0.8 50 1.72 0.86 0.86 5.37 3.73 9.99 0.89<br />

This presentation does not conta<strong>in</strong> any proprietary, confidential,<br />

or otherwise restricted <strong>in</strong>formation<br />

21


Future Work<br />

• Period 1 (8/31/12)<br />

– Membrane Synthesis<br />

• F<strong>in</strong>ish Characterization of SQS Based Materials<br />

• Scale up production of select membranes<br />

– Materials Characterization<br />

• Diffusion <strong>and</strong> water transport of various GDL<br />

• Cont<strong>in</strong>ue Characterization of new materials<br />

– Model<strong>in</strong>g/Performance<br />

• New Membranes<br />

• New Diffusion Media<br />

• Concentrate on mixed flow conditions<br />

• Period 2<br />

– Generate larger membranes<br />

– Extend characterizations to sub-ambient regions<br />

– F<strong>in</strong>ish characterizations of alternative materials, develop non-empirical models<br />

– Utilize GM hardware for short stack performance/model<strong>in</strong>g<br />

This presentation does not conta<strong>in</strong> any proprietary, confidential,<br />

or otherwise restricted <strong>in</strong>formation<br />

22


SUMMARY<br />

• Membrane design <strong>and</strong> development, McGrath’s group at VA Tech:<br />

- Completed the synthesis of a full list of hydroqu<strong>in</strong>one based hydrophilic-hydrophobic block<br />

copolymers (HQSH-6FPAEB).<br />

- Provided ~20g of the 6FPAEB-BPSH <strong>and</strong> 6FPAEB-HQS100 polymer powders to G<strong>in</strong>er for<br />

member cast<strong>in</strong>g <strong>and</strong> test<strong>in</strong>g.<br />

• Membrane Characterization And Performance Test<strong>in</strong>g at G<strong>in</strong>er:<br />

- Successfully casted copolymer powders from VA Tech to membranes<br />

- Automated dynamic water uptake/diffusivity test system<br />

- Completed diffusivity measurements of VA Tech membranes<br />

- Measure EODC measurements of Nafion ® membrane us<strong>in</strong>g dead-ended H 2 pump<br />

- Obta<strong>in</strong>ed GM plates <strong>and</strong> flow paths <strong>and</strong> provided MEAs for test<strong>in</strong>g<br />

• <strong>Transport</strong> Model<strong>in</strong>g, GDL & Current Distribution Board Characterization at USC:<br />

- Designed new GDLs <strong>and</strong> completed pore size distributions with fuel cell performance test;<br />

- Simulated cell performance <strong>and</strong> current distribution at various water uptake, membrane diffusivity<br />

<strong>and</strong> electro-osmotic drag coefficient (EODC);<br />

- Compared model<strong>in</strong>g results with segmented cell data for both serpent<strong>in</strong>e <strong>and</strong> parallel flow-fields;<br />

- Completed simulation of GM Down-the-Channel fuel cell <strong>and</strong> compared with available data<br />

- Validated model<strong>in</strong>g result with water balance experiment.<br />

This presentation does not conta<strong>in</strong> any proprietary, confidential,<br />

or otherwise restricted <strong>in</strong>formation<br />

23


Technical Back Up Slides<br />

This presentation does not conta<strong>in</strong> any proprietary, confidential,<br />

or otherwise restricted <strong>in</strong>formation<br />

24


Model<strong>in</strong>g Input Parameters<br />

This presentation does not conta<strong>in</strong> any proprietary, confidential,<br />

or otherwise restricted <strong>in</strong>formation<br />

25


Model<strong>in</strong>g Input Parameters (Cont.)<br />

This presentation does not conta<strong>in</strong> any proprietary, confidential,<br />

or otherwise restricted <strong>in</strong>formation<br />

26


Model<strong>in</strong>g Outputs<br />

This presentation does not conta<strong>in</strong> any proprietary, confidential,<br />

or otherwise restricted <strong>in</strong>formation<br />

27

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!