17.01.2014 Views

Introduction to the special issue on movement timing and coordination

Introduction to the special issue on movement timing and coordination

Introduction to the special issue on movement timing and coordination

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Brain <strong>and</strong> Cogniti<strong>on</strong> 48, 1–6 (2002)<br />

doi:10.1006/brcg.2001.1300, available <strong>on</strong>line at http://www.idealibrary.com <strong>on</strong><br />

INTRODUCTION<br />

Representati<strong>on</strong>al Models <strong>and</strong> N<strong>on</strong>linear<br />

Dynamics: Irrec<strong>on</strong>cilable Approaches <str<strong>on</strong>g>to</str<strong>on</strong>g> Human<br />

Movement Timing <strong>and</strong> Coordinati<strong>on</strong> or Two Sides<br />

of <str<strong>on</strong>g>the</str<strong>on</strong>g> Same Coin? <str<strong>on</strong>g>Introducti<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>to</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> Special<br />

Issue <strong>on</strong> Movement Timing <strong>and</strong> Coordinati<strong>on</strong><br />

Ralf Th. Krampe, Ralf Engbert, <strong>and</strong> Reinhold Kliegl<br />

University of Potsdam, Germany<br />

Published <strong>on</strong>line August 17, 2001<br />

For several years research <strong>on</strong> human <strong>movement</strong> <strong>timing</strong> <strong>and</strong> coordinati<strong>on</strong> has been<br />

dominated by two different frameworks, namely representati<strong>on</strong>al models <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>on</strong>e<br />

h<strong>and</strong> <strong>and</strong> dynamical systems <str<strong>on</strong>g>the</str<strong>on</strong>g>ory <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> o<str<strong>on</strong>g>the</str<strong>on</strong>g>r. Numerous publicati<strong>on</strong>s in recent<br />

years reflect both frameworks’ potentials <str<strong>on</strong>g>to</str<strong>on</strong>g> motivate original empirical research <strong>and</strong><br />

<str<strong>on</strong>g>to</str<strong>on</strong>g> foster methodological progress. Unfortunately <str<strong>on</strong>g>the</str<strong>on</strong>g> progress that has undoubtedly<br />

been made occurred largely within frameworks. Until more recently few attempts<br />

have been made <str<strong>on</strong>g>to</str<strong>on</strong>g> develop complementary or even integrative perspectives. Therefore,<br />

it is not uncomm<strong>on</strong> <str<strong>on</strong>g>to</str<strong>on</strong>g> find <str<strong>on</strong>g>issue</str<strong>on</strong>g>s of Journal of Experimental Psychology: Human<br />

Percepti<strong>on</strong> <strong>and</strong> Performance, Journal of Mo<str<strong>on</strong>g>to</str<strong>on</strong>g>r Behavior, or Brain <strong>and</strong> Cogniti<strong>on</strong><br />

where <str<strong>on</strong>g>the</str<strong>on</strong>g> tables of c<strong>on</strong>tent promise articles <strong>on</strong> similar <str<strong>on</strong>g>to</str<strong>on</strong>g>pics; closer reading<br />

reveals little overlap in <str<strong>on</strong>g>the</str<strong>on</strong>g>oretical perspective, methods used, or even <str<strong>on</strong>g>the</str<strong>on</strong>g> cited references.<br />

This state of affairs partly stems from his<str<strong>on</strong>g>to</str<strong>on</strong>g>rical developments <strong>and</strong> limited exchange<br />

am<strong>on</strong>g disciplines. Timing research within experimental psychology gained<br />

much of its momentum from <str<strong>on</strong>g>the</str<strong>on</strong>g> two-level <strong>timing</strong> model proposed by Wing <strong>and</strong><br />

Kris<str<strong>on</strong>g>to</str<strong>on</strong>g>ffers<strong>on</strong> (1973a, 1973b). The two-level c<strong>on</strong>cepti<strong>on</strong> refers <str<strong>on</strong>g>to</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> distincti<strong>on</strong> between<br />

a central, unitary clock or timer <strong>and</strong> temporal delays caused by a sec<strong>on</strong>d level,<br />

peripheral mo<str<strong>on</strong>g>to</str<strong>on</strong>g>r implementati<strong>on</strong>. The s<str<strong>on</strong>g>to</str<strong>on</strong>g>chastic properties of central <strong>timing</strong> <strong>and</strong> peripheral<br />

mo<str<strong>on</strong>g>to</str<strong>on</strong>g>r comp<strong>on</strong>ents (notably <str<strong>on</strong>g>the</str<strong>on</strong>g> assumed independence of <str<strong>on</strong>g>the</str<strong>on</strong>g> two levels)<br />

allow <str<strong>on</strong>g>the</str<strong>on</strong>g> estimati<strong>on</strong> of <str<strong>on</strong>g>the</str<strong>on</strong>g> variances c<strong>on</strong>tributed by each model comp<strong>on</strong>ent through<br />

linear methods. The empirical basis for this estimati<strong>on</strong> are <str<strong>on</strong>g>the</str<strong>on</strong>g> covariances in <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

time series obtained from discrete intervals in repetitive tapping tasks. In its original<br />

form <str<strong>on</strong>g>the</str<strong>on</strong>g> two-level model is open-loop; that is, it has no feedback or error correcti<strong>on</strong><br />

mechanism.<br />

Its capability <str<strong>on</strong>g>to</str<strong>on</strong>g> explain critical empirical phenomena observed in simple tapping<br />

studies, its c<strong>on</strong>ceptual parsim<strong>on</strong>y, <strong>and</strong> its ma<str<strong>on</strong>g>the</str<strong>on</strong>g>matical elegance made <str<strong>on</strong>g>the</str<strong>on</strong>g> two-level<br />

Address corresp<strong>on</strong>dence <strong>and</strong> reprint requests <str<strong>on</strong>g>to</str<strong>on</strong>g> Max Planck Institute for Human Development <strong>and</strong><br />

Educati<strong>on</strong>, Lentzeallee 94, D-14 195 Berlin, Germany. E-mail-krampe@mpib-berlin.mpg.de.<br />

1<br />

0278-2626/01 $35.00<br />

© 2001 Elsevier Science<br />

All rights reserved.


2 KRAMPE, ENGBERT, AND KLIEGL<br />

<strong>timing</strong> model <strong>on</strong>e key reference for <str<strong>on</strong>g>the</str<strong>on</strong>g> discussi<strong>on</strong> of <strong>timing</strong> in simple as well as more<br />

complex tasks ever since. Several authors proposed models for <str<strong>on</strong>g>the</str<strong>on</strong>g> synchr<strong>on</strong>izati<strong>on</strong><br />

of tapping with a metr<strong>on</strong>ome that combine <str<strong>on</strong>g>the</str<strong>on</strong>g> two-levels c<strong>on</strong>cept with linear error<br />

correcti<strong>on</strong> mechanisms (Mates, 1994; Schulze, 1992; Schulze & Vorberg, 2001;<br />

Semjen, Vorberg, & Schulze, 1998; Vorberg & Wing, 1996). Extended versi<strong>on</strong>s of<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> two-level <strong>timing</strong> model (Vorberg & Hambuch, 1978, 1984) successfully accounted<br />

for <strong>timing</strong> performance in synchr<strong>on</strong>ized bimanual tapping or alternate tapping<br />

tasks (Semjen, 2001; Wing, Church, & Gentner, 1989). More recently, <str<strong>on</strong>g>the</str<strong>on</strong>g> noti<strong>on</strong><br />

of a single, central clock was challenged by studies illustrating variance reducti<strong>on</strong><br />

in synchr<strong>on</strong>ized, bimanual tapping (Helmuth & Ivry, 1996) or dem<strong>on</strong>strati<strong>on</strong>s of<br />

parallel, partly h<strong>and</strong>-independent <strong>timing</strong> in bimanual rhythm tasks (Krampe, Kliegl,<br />

Mayr, Engbert, & Vorberg, 2000; Pressing, Summers, & Magill, 1996). With respect<br />

<str<strong>on</strong>g>to</str<strong>on</strong>g> rhythmic <strong>timing</strong>, investigati<strong>on</strong>s of <str<strong>on</strong>g>the</str<strong>on</strong>g> covariance structures in time series obtained<br />

from rhythmic tasks revealed str<strong>on</strong>g limitati<strong>on</strong>s of <str<strong>on</strong>g>the</str<strong>on</strong>g> original Wing–Kris<str<strong>on</strong>g>to</str<strong>on</strong>g>ffers<strong>on</strong><br />

model. Based <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g>se findings Vorberg <strong>and</strong> Hambuch (1978, 1984), proposed a different<br />

c<strong>on</strong>cept centered <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> noti<strong>on</strong> of timekeepers. The timekeeper c<strong>on</strong>cept maintains<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> idea of s<str<strong>on</strong>g>to</str<strong>on</strong>g>chastic <strong>timing</strong> mechanisms operating at two independent levels <strong>and</strong><br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> modeling of covariances as a critical test of underlying c<strong>on</strong>trol structures, but<br />

gives up <str<strong>on</strong>g>the</str<strong>on</strong>g> noti<strong>on</strong> of a central, unitary clock as <str<strong>on</strong>g>the</str<strong>on</strong>g> single mechanism resp<strong>on</strong>sible<br />

for <str<strong>on</strong>g>the</str<strong>on</strong>g> observed <strong>timing</strong> behavior. Timekeepers are programmable, single-usage representati<strong>on</strong>s<br />

of interval durati<strong>on</strong>s that c<strong>on</strong>trol time periods between successive events.<br />

More recently, Vorberg <strong>and</strong> Wing (1996) elaborated <str<strong>on</strong>g>the</str<strong>on</strong>g> timekeeper approach in<str<strong>on</strong>g>to</str<strong>on</strong>g> a<br />

framework explicitly designed <str<strong>on</strong>g>to</str<strong>on</strong>g> account for rhythmic <strong>timing</strong>, <str<strong>on</strong>g>the</str<strong>on</strong>g> rhythm program<br />

hypo<str<strong>on</strong>g>the</str<strong>on</strong>g>sis. This model assumes that higher-level representati<strong>on</strong>s of rhythmic patterns<br />

(namely rhythm programs) are transformed in<str<strong>on</strong>g>to</str<strong>on</strong>g> executable timekeepers during performance<br />

by a hierarchical parameter specificati<strong>on</strong> process. So c<strong>on</strong>ceived, <str<strong>on</strong>g>the</str<strong>on</strong>g> rhythm<br />

program hypo<str<strong>on</strong>g>the</str<strong>on</strong>g>sis combines <str<strong>on</strong>g>the</str<strong>on</strong>g> s<str<strong>on</strong>g>to</str<strong>on</strong>g>chastic properties of <str<strong>on</strong>g>the</str<strong>on</strong>g> two-level model with<br />

a noti<strong>on</strong> typical of cognitive models, <str<strong>on</strong>g>the</str<strong>on</strong>g> relevance of abstract mental representati<strong>on</strong>s.<br />

The assumpti<strong>on</strong> of <strong>timing</strong> <strong>and</strong> coordinati<strong>on</strong> being under <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>trol of abstract<br />

(although not necessarily c<strong>on</strong>scious) mental representati<strong>on</strong>s is <str<strong>on</strong>g>the</str<strong>on</strong>g> most critical difference<br />

between representati<strong>on</strong>al models <strong>and</strong> models originating from dynamical systems<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g>ory. One important implicati<strong>on</strong> in representati<strong>on</strong>al models is that <str<strong>on</strong>g>the</str<strong>on</strong>g>re exists<br />

a certain level of c<strong>on</strong>trol at which it is irrelevant which effec<str<strong>on</strong>g>to</str<strong>on</strong>g>rs (muscles, joints,<br />

or tendants) ultimately implement (execute) <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>movement</strong> under c<strong>on</strong>siderati<strong>on</strong>. It is<br />

this implicati<strong>on</strong> that dynamical models of <strong>timing</strong> <strong>and</strong> coordinati<strong>on</strong> take str<strong>on</strong>g <str<strong>on</strong>g>issue</str<strong>on</strong>g><br />

with. According <str<strong>on</strong>g>to</str<strong>on</strong>g> dynamical systems <str<strong>on</strong>g>the</str<strong>on</strong>g>ory <str<strong>on</strong>g>the</str<strong>on</strong>g> critical observable phenomena in<br />

human <strong>timing</strong> <strong>and</strong> coordinati<strong>on</strong> must be viewed as properties emerging from n<strong>on</strong>linear,<br />

oscilla<str<strong>on</strong>g>to</str<strong>on</strong>g>ry processes in <str<strong>on</strong>g>the</str<strong>on</strong>g> brain <strong>and</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> mo<str<strong>on</strong>g>to</str<strong>on</strong>g>r system <strong>and</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g>ir interacti<strong>on</strong>s<br />

(Haken, 1996; Kelso, 1995; Kelso, Holt, Rubin, & Kugler, 1981; Turvey, 1990).<br />

Ra<str<strong>on</strong>g>the</str<strong>on</strong>g>r than assuming abstract representati<strong>on</strong>s, prop<strong>on</strong>ents of <str<strong>on</strong>g>the</str<strong>on</strong>g> dynamical systems<br />

approach focus <strong>on</strong> sp<strong>on</strong>taneous pattern formati<strong>on</strong> <strong>and</strong> self-organizati<strong>on</strong> (Haken, 1988;<br />

Kugler & Turvey, 1987; Schöner & Kelso, 1988). It is this black-box approach that<br />

has irritated cognitive psychologists. At <str<strong>on</strong>g>the</str<strong>on</strong>g> same time <str<strong>on</strong>g>the</str<strong>on</strong>g> reemphasis of mo<str<strong>on</strong>g>to</str<strong>on</strong>g>r processes<br />

attracted researchers in Movement Sciences <strong>and</strong> Mo<str<strong>on</strong>g>to</str<strong>on</strong>g>r Behavior <str<strong>on</strong>g>to</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> dynamical<br />

systems framework. This his<str<strong>on</strong>g>to</str<strong>on</strong>g>rical development is best exemplified by a comparis<strong>on</strong><br />

of <str<strong>on</strong>g>the</str<strong>on</strong>g> articles collected in <str<strong>on</strong>g>the</str<strong>on</strong>g> original <strong>and</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> more recent editi<strong>on</strong>s of G. E.<br />

Stelmach’s famous ‘‘Tu<str<strong>on</strong>g>to</str<strong>on</strong>g>rials in Mo<str<strong>on</strong>g>to</str<strong>on</strong>g>r Behavior.’’<br />

The research <strong>on</strong> human <strong>timing</strong> <strong>and</strong> coordinati<strong>on</strong> motivated from <str<strong>on</strong>g>the</str<strong>on</strong>g> dynamical<br />

systems perspective focuses <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> stability <strong>and</strong> qualitative changes (phase transiti<strong>on</strong>s<br />

or bifurcati<strong>on</strong>s) during <strong>movement</strong> producti<strong>on</strong> <strong>and</strong> phenomena like coupling between<br />

limbs or <str<strong>on</strong>g>the</str<strong>on</strong>g> entrainment of oscillating systems with o<str<strong>on</strong>g>the</str<strong>on</strong>g>r internal or external signals.<br />

Within psychology <strong>and</strong> <strong>movement</strong> sciences, related research had its classics in two


REPRESENTATIONAL MODELS AND NONLINEAR DYNAMICS 3<br />

studies dem<strong>on</strong>strating tempo-induced phase transiti<strong>on</strong>s from anti-phase <str<strong>on</strong>g>to</str<strong>on</strong>g> in-phase<br />

<strong>movement</strong>s in bimanual finger tapping (Yamanishi, Kawa<str<strong>on</strong>g>to</str<strong>on</strong>g>, & Suzuki, 1979; Yamanishi,<br />

Kawa<str<strong>on</strong>g>to</str<strong>on</strong>g>, & Suzuki, 1980) or finger wiggling tasks (Haken, Kelso, & Bunz,<br />

1985). The observed qualitative changes in <str<strong>on</strong>g>the</str<strong>on</strong>g> coordinati<strong>on</strong> pattern of <str<strong>on</strong>g>the</str<strong>on</strong>g> h<strong>and</strong>s<br />

cannot be explained by extant linear models; <str<strong>on</strong>g>the</str<strong>on</strong>g>y were however, successfully accounted<br />

for by models of coupled, n<strong>on</strong>linear oscilla<str<strong>on</strong>g>to</str<strong>on</strong>g>rs. One critical variable in dynamical<br />

models is <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>trol parameter (<strong>movement</strong> frequency in <str<strong>on</strong>g>the</str<strong>on</strong>g> above examples)<br />

that governs <str<strong>on</strong>g>the</str<strong>on</strong>g> momentary stability state <strong>and</strong> transiti<strong>on</strong>s <str<strong>on</strong>g>to</str<strong>on</strong>g> o<str<strong>on</strong>g>the</str<strong>on</strong>g>r states in a<br />

complex dynamical system. Experiments in <str<strong>on</strong>g>the</str<strong>on</strong>g> dynamical systems traditi<strong>on</strong> typically<br />

apply induced variati<strong>on</strong>s in tempo during or introduce perturbati<strong>on</strong>s <str<strong>on</strong>g>to</str<strong>on</strong>g> stable systems.<br />

As an example, Peper, Beek, <strong>and</strong> van Wieringen (1995a) <strong>and</strong> Peper, Beek, <strong>and</strong> van<br />

Wieringen (1995b) had drummers produce a complex polyrhythmic pattern (3:8)<br />

while <str<strong>on</strong>g>the</str<strong>on</strong>g> audi<str<strong>on</strong>g>to</str<strong>on</strong>g>ry pacing signal increased its frequency. The authors found systematic<br />

transiti<strong>on</strong>s from more complex <str<strong>on</strong>g>to</str<strong>on</strong>g> increasingly simpler frequency ratios that could<br />

be accounted for by Farey–Tree principles characterizing <str<strong>on</strong>g>the</str<strong>on</strong>g>ir n<strong>on</strong>linear oscilla<str<strong>on</strong>g>to</str<strong>on</strong>g>r<br />

model. Related phenomena are bey<strong>on</strong>d <str<strong>on</strong>g>the</str<strong>on</strong>g> scope of linear models because <str<strong>on</strong>g>the</str<strong>on</strong>g>ir data<br />

analysis <str<strong>on</strong>g>to</str<strong>on</strong>g>ols make relatively str<strong>on</strong>g assumpti<strong>on</strong>s regarding <str<strong>on</strong>g>the</str<strong>on</strong>g> stati<strong>on</strong>arity of timeseries.<br />

At <str<strong>on</strong>g>the</str<strong>on</strong>g> same time, n<strong>on</strong>linear models resist analytical soluti<strong>on</strong> (which is always<br />

possible for linear models) such that simulati<strong>on</strong> or surrogate data approaches became<br />

important methodological <str<strong>on</strong>g>to</str<strong>on</strong>g>ols in <str<strong>on</strong>g>the</str<strong>on</strong>g> dynamical systems traditi<strong>on</strong>.<br />

Linearity is not per se a c<strong>on</strong>stituent property of representati<strong>on</strong>al models. From a<br />

dynamical systems perspective linear models describe <str<strong>on</strong>g>special</str<strong>on</strong>g>, stable states within<br />

complex systems that typically have n<strong>on</strong>linear properties. This is <str<strong>on</strong>g>to</str<strong>on</strong>g> say that n<strong>on</strong>linear<br />

models assuming mental representati<strong>on</strong>s are perfectly feasible, as it is true of linear<br />

models that come without mental representati<strong>on</strong>s. Likewise representati<strong>on</strong>al models<br />

<strong>and</strong> dynamical system <str<strong>on</strong>g>the</str<strong>on</strong>g>ory are not irrec<strong>on</strong>cilable with respect <str<strong>on</strong>g>to</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>ir preferred<br />

clock metaphors (i.e., s<str<strong>on</strong>g>to</str<strong>on</strong>g>chastic timekeepers vs n<strong>on</strong>linear oscilla<str<strong>on</strong>g>to</str<strong>on</strong>g>rs). Any clock<br />

mechanism has <str<strong>on</strong>g>to</str<strong>on</strong>g> live up <str<strong>on</strong>g>to</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> accumulated evidence for certain phenomena, like<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> negative lag-1 au<str<strong>on</strong>g>to</str<strong>on</strong>g>correlati<strong>on</strong>, <str<strong>on</strong>g>the</str<strong>on</strong>g> Weber-type increase of variance with interval<br />

durati<strong>on</strong>, or <str<strong>on</strong>g>the</str<strong>on</strong>g> phase transiti<strong>on</strong>s in bimanual performance (see Gregor Schöner’s<br />

discussi<strong>on</strong> in this <str<strong>on</strong>g>issue</str<strong>on</strong>g>). From this perspective, extant models in both frameworks<br />

have some way <str<strong>on</strong>g>to</str<strong>on</strong>g> go. More recently <str<strong>on</strong>g>the</str<strong>on</strong>g>re have indeed been attempts <str<strong>on</strong>g>to</str<strong>on</strong>g> rec<strong>on</strong>cile<br />

s<str<strong>on</strong>g>to</str<strong>on</strong>g>chastic properties of timekeeping with n<strong>on</strong>linear error correcti<strong>on</strong> or coupling<br />

mechanisms (Beek, Peper, & Daffertshofer, this <str<strong>on</strong>g>issue</str<strong>on</strong>g>; Daffertshofer, 1998; Engbert,<br />

Krampe, Kurths, & Kliegl, this <str<strong>on</strong>g>issue</str<strong>on</strong>g>; Engbert et al., 1997; Turvey, Schmidt, & Rosenblum,<br />

1989).<br />

It seems fair <str<strong>on</strong>g>to</str<strong>on</strong>g> say that representati<strong>on</strong>al models have for <str<strong>on</strong>g>to</str<strong>on</strong>g>o l<strong>on</strong>g abstracted from<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> critical c<strong>on</strong>tributi<strong>on</strong> of processes <strong>and</strong> structures in <str<strong>on</strong>g>the</str<strong>on</strong>g> mo<str<strong>on</strong>g>to</str<strong>on</strong>g>r system in <str<strong>on</strong>g>the</str<strong>on</strong>g>ir explanati<strong>on</strong>s.<br />

At <str<strong>on</strong>g>the</str<strong>on</strong>g> same time it seems questi<strong>on</strong>able whe<str<strong>on</strong>g>the</str<strong>on</strong>g>r physical reducti<strong>on</strong>ism will be<br />

successful in accounting for performance in tasks with explicit <strong>timing</strong> or coordinati<strong>on</strong><br />

requirements that individuals manage <str<strong>on</strong>g>to</str<strong>on</strong>g> deliberately c<strong>on</strong>trol, like in musical performance.<br />

At <str<strong>on</strong>g>the</str<strong>on</strong>g> level of much simpler tasks this point is elaborated in two recent<br />

articles by Semjen (this <str<strong>on</strong>g>issue</str<strong>on</strong>g>; Semjen & Ivry, 2001). At this stage a closer c<strong>on</strong>vergence<br />

of <str<strong>on</strong>g>the</str<strong>on</strong>g>oretical perspectives inherent <str<strong>on</strong>g>to</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> two frameworks appears at least a<br />

promising route <str<strong>on</strong>g>to</str<strong>on</strong>g> models that have a broader explana<str<strong>on</strong>g>to</str<strong>on</strong>g>ry scope.<br />

The collecti<strong>on</strong> of articles in this <str<strong>on</strong>g>special</str<strong>on</strong>g> <str<strong>on</strong>g>issue</str<strong>on</strong>g> were authored by researchers who<br />

were critically involved in <str<strong>on</strong>g>the</str<strong>on</strong>g> investigati<strong>on</strong> of <strong>timing</strong> <strong>and</strong> synchr<strong>on</strong>izati<strong>on</strong> of repetitive<br />

<strong>movement</strong>s, rhythm producti<strong>on</strong>, bimanual coordinati<strong>on</strong>, <strong>and</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> neuropsychology<br />

of <strong>timing</strong>. Initially <str<strong>on</strong>g>the</str<strong>on</strong>g> authors were brought <str<strong>on</strong>g>to</str<strong>on</strong>g>ge<str<strong>on</strong>g>the</str<strong>on</strong>g>r by a c<strong>on</strong>ference staged in<br />

Potsdam, Germany, in September 1999 (funded by Deutsche Forschungsgemeinschaft).<br />

In organizing that c<strong>on</strong>ference we deliberately invited researchers who represent<br />

ei<str<strong>on</strong>g>the</str<strong>on</strong>g>r <str<strong>on</strong>g>the</str<strong>on</strong>g> representati<strong>on</strong>al or <str<strong>on</strong>g>the</str<strong>on</strong>g> dynamical systems framework for each of <str<strong>on</strong>g>the</str<strong>on</strong>g>


4 KRAMPE, ENGBERT, AND KLIEGL<br />

above <str<strong>on</strong>g>to</str<strong>on</strong>g>pics. Not surprisingly <str<strong>on</strong>g>the</str<strong>on</strong>g> talks at <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>ference elicited heated, c<strong>on</strong>troversial<br />

discussi<strong>on</strong>s about central <str<strong>on</strong>g>the</str<strong>on</strong>g>oretical tenets. At <str<strong>on</strong>g>the</str<strong>on</strong>g> same time it became evident that<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g>re was more comm<strong>on</strong> ground than previously thought <strong>and</strong> that <str<strong>on</strong>g>the</str<strong>on</strong>g>re exist many<br />

open questi<strong>on</strong>s of mutual interest that require complementing methods of data analyses.<br />

In this spirit <str<strong>on</strong>g>the</str<strong>on</strong>g> attendants decided <str<strong>on</strong>g>to</str<strong>on</strong>g> transform <str<strong>on</strong>g>the</str<strong>on</strong>g> presentati<strong>on</strong>s of <str<strong>on</strong>g>the</str<strong>on</strong>g>ir own<br />

c<strong>on</strong>cepts <strong>and</strong> empirical findings in<str<strong>on</strong>g>to</str<strong>on</strong>g> articles that explicitly address related research<br />

motivated by <str<strong>on</strong>g>the</str<strong>on</strong>g> o<str<strong>on</strong>g>the</str<strong>on</strong>g>r framework. All c<strong>on</strong>tribu<str<strong>on</strong>g>to</str<strong>on</strong>g>rs made significant attempts <str<strong>on</strong>g>to</str<strong>on</strong>g> go<br />

bey<strong>on</strong>d <str<strong>on</strong>g>the</str<strong>on</strong>g>ir own <str<strong>on</strong>g>the</str<strong>on</strong>g>oretical commitments <strong>and</strong> put <str<strong>on</strong>g>the</str<strong>on</strong>g> accumulating findings in<str<strong>on</strong>g>to</str<strong>on</strong>g> a<br />

broader perspective, <strong>and</strong> pointed out directi<strong>on</strong>s for integrative approaches. The results<br />

of <str<strong>on</strong>g>the</str<strong>on</strong>g>se efforts are <str<strong>on</strong>g>the</str<strong>on</strong>g> articles assembled in this <str<strong>on</strong>g>special</str<strong>on</strong>g> <str<strong>on</strong>g>issue</str<strong>on</strong>g>.<br />

The articles in this <str<strong>on</strong>g>special</str<strong>on</strong>g> <str<strong>on</strong>g>issue</str<strong>on</strong>g> are grouped in<str<strong>on</strong>g>to</str<strong>on</strong>g> four secti<strong>on</strong>s. The first secti<strong>on</strong><br />

c<strong>on</strong>tains three articles that introduce <strong>and</strong> discuss representati<strong>on</strong>al <strong>and</strong> dynamical systems<br />

approaches at a c<strong>on</strong>ceptual level. Alan Wing argues for an informati<strong>on</strong> processing<br />

perspective <strong>on</strong> <strong>movement</strong> <strong>timing</strong> by linking findings from neuropsychological<br />

<strong>and</strong> neurophysiological studies <str<strong>on</strong>g>to</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> two-level distincti<strong>on</strong> in<str<strong>on</strong>g>to</str<strong>on</strong>g> central timekeeping<br />

<strong>and</strong> peripheral mo<str<strong>on</strong>g>to</str<strong>on</strong>g>r implementati<strong>on</strong> processes. Gregor Schöner gives a detailed introducti<strong>on</strong><br />

<str<strong>on</strong>g>to</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> basic c<strong>on</strong>cepts <strong>and</strong> modeling approaches in <str<strong>on</strong>g>the</str<strong>on</strong>g> dynamical systems<br />

framework. In this c<strong>on</strong>text he also addresses <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>ceptual <strong>and</strong> formal requirements<br />

of <str<strong>on</strong>g>the</str<strong>on</strong>g> clock metaphor which is inherent in any model of <strong>timing</strong>. David Rosenbaum<br />

presents an extended versi<strong>on</strong> of his broadcast <str<strong>on</strong>g>the</str<strong>on</strong>g>ory of <strong>timing</strong> that dem<strong>on</strong>strates that<br />

critical phenomena in human <strong>movement</strong> <strong>timing</strong> <strong>and</strong> rhythm producti<strong>on</strong> can be likewise<br />

explained by representati<strong>on</strong>al <strong>and</strong> dynamical systems models.<br />

The sec<strong>on</strong>d secti<strong>on</strong> combines articles that address <str<strong>on</strong>g>the</str<strong>on</strong>g> empirical study of sensorimo<str<strong>on</strong>g>to</str<strong>on</strong>g>r<br />

synchr<strong>on</strong>izati<strong>on</strong> during simple, repetitive <strong>movement</strong>s. Gisa Aschersleben reviews<br />

evidence for <str<strong>on</strong>g>the</str<strong>on</strong>g> role of different feedback systems (i.e., audi<str<strong>on</strong>g>to</str<strong>on</strong>g>ry, tactile) that<br />

c<strong>on</strong>tribute <str<strong>on</strong>g>to</str<strong>on</strong>g> error correcti<strong>on</strong> <strong>and</strong> systematic dis<str<strong>on</strong>g>to</str<strong>on</strong>g>rti<strong>on</strong>s of asynchr<strong>on</strong>ies in tapping<br />

<str<strong>on</strong>g>to</str<strong>on</strong>g> a metr<strong>on</strong>ome. Her results highlight <str<strong>on</strong>g>the</str<strong>on</strong>g> necessity <str<strong>on</strong>g>to</str<strong>on</strong>g> c<strong>on</strong>sider <str<strong>on</strong>g>the</str<strong>on</strong>g> role of nerve<br />

c<strong>on</strong>ducti<strong>on</strong> as well as strategic aspects in synchr<strong>on</strong>izati<strong>on</strong> tapping. Hans-Henning<br />

Schulze <strong>and</strong> Dirk Vorberg describe linear models of phase correcti<strong>on</strong> in synchr<strong>on</strong>ized<br />

tapping. Using M<strong>on</strong>te-Carlo simulati<strong>on</strong>s <str<strong>on</strong>g>the</str<strong>on</strong>g>y dem<strong>on</strong>strate that even apparently simple,<br />

linear models face serious problems of parameter identifiability <strong>and</strong> estimati<strong>on</strong>.<br />

Mingzhou Ding, Yanqing Chen, <strong>and</strong> Scott Kelso describe <str<strong>on</strong>g>the</str<strong>on</strong>g> use of au<str<strong>on</strong>g>to</str<strong>on</strong>g>correlati<strong>on</strong><br />

<strong>and</strong> spectral density functi<strong>on</strong>s <str<strong>on</strong>g>to</str<strong>on</strong>g> identify comp<strong>on</strong>ent ‘‘memory’’ processes in very<br />

l<strong>on</strong>g (10 min) tapping trials. Their approach amounts <str<strong>on</strong>g>to</str<strong>on</strong>g> using scaling exp<strong>on</strong>ents for<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g>se functi<strong>on</strong>s as a method <str<strong>on</strong>g>to</str<strong>on</strong>g> separate out task-specific processes. The approach<br />

proposed by Engbert, Krampe, Kurths, <strong>and</strong> Kliegl also involves l<strong>on</strong>ger time series<br />

from synchr<strong>on</strong>izati<strong>on</strong> tapping tasks. They introduce <str<strong>on</strong>g>the</str<strong>on</strong>g> method of identifying unstable<br />

periodic orbits <str<strong>on</strong>g>to</str<strong>on</strong>g> test a model that combines a s<str<strong>on</strong>g>to</str<strong>on</strong>g>chastic timekeeper comp<strong>on</strong>ent<br />

with n<strong>on</strong>linear error correcti<strong>on</strong>.<br />

The articles in <str<strong>on</strong>g>the</str<strong>on</strong>g> third secti<strong>on</strong> address bimanual <strong>timing</strong> tasks <strong>and</strong> rhythm producti<strong>on</strong>.<br />

Richard Ivry <strong>and</strong> Thomas Richards<strong>on</strong> propose a multiple timer model with a<br />

gating mechanism that can account for specific phenomena in bimanual tapping tasks<br />

that were outside <str<strong>on</strong>g>the</str<strong>on</strong>g> scope of <str<strong>on</strong>g>the</str<strong>on</strong>g> original central timer model. Andras Semjen compares<br />

<strong>timing</strong> performance in discrete <strong>and</strong> c<strong>on</strong>tinuous tasks. He c<strong>on</strong>cludes that dynamical<br />

models are more tuned <str<strong>on</strong>g>to</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>timing</strong> phenomena observed in c<strong>on</strong>tinuous task<br />

performance. With regard <str<strong>on</strong>g>to</str<strong>on</strong>g> discrete tapping tasks, Semjen argues for <str<strong>on</strong>g>the</str<strong>on</strong>g> existence<br />

of <strong>timing</strong> goals, a c<strong>on</strong>cept that, in his view, speaks for <str<strong>on</strong>g>the</str<strong>on</strong>g> assumpti<strong>on</strong> of mental<br />

representati<strong>on</strong>s at some level. Peter Beek, Lieke Peper, <strong>and</strong> Andreas Daffertshofer<br />

discuss past extensi<strong>on</strong>s of <str<strong>on</strong>g>the</str<strong>on</strong>g> original Haken–Kelso–Bunz model (Haken et al.,<br />

1985) <str<strong>on</strong>g>to</str<strong>on</strong>g> bimanual <strong>and</strong> polyrhythmic tapping. To overcome some of <str<strong>on</strong>g>the</str<strong>on</strong>g> apparent<br />

limitati<strong>on</strong>s of <str<strong>on</strong>g>the</str<strong>on</strong>g>se earlier models <str<strong>on</strong>g>the</str<strong>on</strong>g>y propose a new two-level oscilla<str<strong>on</strong>g>to</str<strong>on</strong>g>r structure<br />

that may not <strong>on</strong>ly be viewed as <str<strong>on</strong>g>the</str<strong>on</strong>g> dynamical analog of <str<strong>on</strong>g>the</str<strong>on</strong>g> two-level <strong>timing</strong> model


REPRESENTATIONAL MODELS AND NONLINEAR DYNAMICS 5<br />

(Wing & Kris<str<strong>on</strong>g>to</str<strong>on</strong>g>ffers<strong>on</strong>, 1973a), but also opens up <str<strong>on</strong>g>the</str<strong>on</strong>g> possibility of incorporating this<br />

<strong>and</strong> related timekeeper models within <str<strong>on</strong>g>the</str<strong>on</strong>g> dynamical systems approach. The article by<br />

Jeff Summers addresses <str<strong>on</strong>g>the</str<strong>on</strong>g> microgenesis of rhythmic skill, e<str<strong>on</strong>g>special</str<strong>on</strong>g>ly <str<strong>on</strong>g>the</str<strong>on</strong>g> changes<br />

in performance when participants encounter <strong>and</strong> adapt <str<strong>on</strong>g>to</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>straints inherent<br />

in multifrequency tapping. The adaptati<strong>on</strong> <str<strong>on</strong>g>to</str<strong>on</strong>g> performance c<strong>on</strong>straints in bimanual<br />

rhythm producti<strong>on</strong> is also <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>to</str<strong>on</strong>g>pic of <str<strong>on</strong>g>the</str<strong>on</strong>g> last article in this secti<strong>on</strong>. Ralf Krampe, Ralf<br />

Engbert, <strong>and</strong> Reinhold Kliegl propose <str<strong>on</strong>g>to</str<strong>on</strong>g> view observed interindividual differences in<br />

performance as <str<strong>on</strong>g>the</str<strong>on</strong>g> result of adaptive changes occurring in <str<strong>on</strong>g>the</str<strong>on</strong>g> course of aging or<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> l<strong>on</strong>g-term acquisiti<strong>on</strong> of high-level expertise.<br />

The final secti<strong>on</strong> of this <str<strong>on</strong>g>special</str<strong>on</strong>g> <str<strong>on</strong>g>issue</str<strong>on</strong>g> c<strong>on</strong>sists of two articles that focus <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

neural substrates of <strong>timing</strong> <strong>and</strong> perceptuo-mo<str<strong>on</strong>g>to</str<strong>on</strong>g>r coordinati<strong>on</strong>. Warren Meck <strong>and</strong><br />

Aimee Bens<strong>on</strong> describe how <str<strong>on</strong>g>the</str<strong>on</strong>g> fr<strong>on</strong>tal–striatal circuitry can implement <str<strong>on</strong>g>the</str<strong>on</strong>g> internal<br />

clock <strong>and</strong> also regulate <str<strong>on</strong>g>the</str<strong>on</strong>g> attenti<strong>on</strong>al aspects of time estimati<strong>on</strong> <strong>and</strong> producti<strong>on</strong>.<br />

Chris Miall <strong>and</strong> G. Z. Reckess focus <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> role of <str<strong>on</strong>g>the</str<strong>on</strong>g> cerebellum in coordinating<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> visual input in guiding <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>timing</strong> of h<strong>and</strong> <strong>movement</strong>s during a c<strong>on</strong>tinuous<br />

tracking task.<br />

Many of <str<strong>on</strong>g>the</str<strong>on</strong>g> articles in this <str<strong>on</strong>g>special</str<strong>on</strong>g> <str<strong>on</strong>g>issue</str<strong>on</strong>g> point out directi<strong>on</strong>s for integrating or at<br />

least complementing <str<strong>on</strong>g>the</str<strong>on</strong>g> hi<str<strong>on</strong>g>the</str<strong>on</strong>g>r<str<strong>on</strong>g>to</str<strong>on</strong>g> almost irrec<strong>on</strong>cilable <str<strong>on</strong>g>the</str<strong>on</strong>g>oretical perspectives expressed<br />

in <str<strong>on</strong>g>the</str<strong>on</strong>g> dynamical systems view <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>on</strong>e h<strong>and</strong>, <strong>and</strong> representati<strong>on</strong>al approaches<br />

<strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> o<str<strong>on</strong>g>the</str<strong>on</strong>g>r. It is <str<strong>on</strong>g>to</str<strong>on</strong>g>o early <str<strong>on</strong>g>to</str<strong>on</strong>g> tell whe<str<strong>on</strong>g>the</str<strong>on</strong>g>r such integrative attempts will<br />

provide <str<strong>on</strong>g>the</str<strong>on</strong>g> answers <str<strong>on</strong>g>to</str<strong>on</strong>g> those questi<strong>on</strong>s that n<strong>on</strong>e of <str<strong>on</strong>g>the</str<strong>on</strong>g> two frameworks has sufficiently<br />

addressed so far. However, we think that this collecti<strong>on</strong> of articles preserved<br />

some of <str<strong>on</strong>g>the</str<strong>on</strong>g> spirit of open-mindedness prevailing at <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>ference. We believe that<br />

this spirit has all <str<strong>on</strong>g>the</str<strong>on</strong>g> potential <str<strong>on</strong>g>to</str<strong>on</strong>g> motivate <str<strong>on</strong>g>the</str<strong>on</strong>g> necessary future research <strong>and</strong> collaborative<br />

efforts.<br />

REFERENCES<br />

Beek, P., Peper, C. E., & Daffertshofer, A. (2001). Modeling rhythmic interlimb coordinati<strong>on</strong>: Bey<strong>on</strong>d<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> Haken–Kelso–Bunz model. Brain <strong>and</strong> Cogniti<strong>on</strong>, doi:10.1006/brcg.2001.1310.<br />

Daffertshofer, A. (1998). Effects of noise <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> phase dynamics of n<strong>on</strong>linear oscilla<str<strong>on</strong>g>to</str<strong>on</strong>g>rs. Physical Review<br />

E, 58, 327–338.<br />

Engbert, R., Krampe, R. T., Kurths, J., & Kliegl, R. (2001). Synchr<strong>on</strong>izing <strong>movement</strong>s with <str<strong>on</strong>g>the</str<strong>on</strong>g> metr<strong>on</strong>ome:<br />

N<strong>on</strong>linear error correcti<strong>on</strong> <strong>and</strong> unstable periodic orbits. Brain <strong>and</strong> Cogniti<strong>on</strong>, doi:10.1006/<br />

brcg.2001.1307.<br />

Engbert, R., Scheffczyk, C., Krampe, R. T., Rosenblum, M., Kurths, J., & Kliegl, R. (1997). Tempoinduced<br />

transiti<strong>on</strong>s in polyrhythmic h<strong>and</strong> <strong>movement</strong>s. Physical Review E, 56, 5823–5833.<br />

Haken, H. (1988). Informati<strong>on</strong> <strong>and</strong> self-organizati<strong>on</strong>. Berlin: Springer.<br />

Haken, H. (1996). Principles of brain functi<strong>on</strong>ing. Berlin: Springer.<br />

Haken, H., Kelso, J. A. S., & Bunz, H. (1985). A <str<strong>on</strong>g>the</str<strong>on</strong>g>oretical model of phase transiti<strong>on</strong> in human h<strong>and</strong><br />

<strong>movement</strong>s. Biological Cybernetics, 51, 347–356.<br />

Helmuth, L. L., & Ivry, R. B. (1996). When two h<strong>and</strong>s are better than <strong>on</strong>e: Reduced <strong>timing</strong> variability<br />

during bimanual <strong>movement</strong>. Journal of Experimental Psychology: Human Percepti<strong>on</strong> <strong>and</strong> Performance,<br />

22, 278–293.<br />

Kelso, J. A. S. (1995). Dynamic patterns: The self-organizati<strong>on</strong> of brain <strong>and</strong> behavior. Cambridge, MA:<br />

MIT Press.<br />

Kelso, J. A. S., Holt, K. G., Rubin, P., & Kugler, P. N. (1981). Patterns of human interlimb coordinati<strong>on</strong><br />

emerge from <str<strong>on</strong>g>the</str<strong>on</strong>g> properties of n<strong>on</strong>-linear, limit cycle oscilla<str<strong>on</strong>g>to</str<strong>on</strong>g>ry processes: Theory <strong>and</strong> data. Journal<br />

of Mo<str<strong>on</strong>g>to</str<strong>on</strong>g>r Behavior, 13(4), 226–261.<br />

Krampe, R. T., Kliegl, R., Mayr, U., Engbert, R., & Vorberg, D. (2000). The fast <strong>and</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> slow of skilled<br />

bimanual rhythm producti<strong>on</strong>: Parallel vs. integrated <strong>timing</strong>. Journal of Experimental Psychology:<br />

Human Percepti<strong>on</strong> <strong>and</strong> Performance, 26, 206–233.<br />

Kugler, P. N., & Turvey, M. T. (1987). Informati<strong>on</strong>, natural law <strong>and</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> self-assembly of rhythmic<br />

<strong>movement</strong>s. Hillsdale, NJ: Erlbaum.


6 KRAMPE, ENGBERT, AND KLIEGL<br />

Mates, J. (1994). A model of synchr<strong>on</strong>izati<strong>on</strong> of mo<str<strong>on</strong>g>to</str<strong>on</strong>g>r acts <str<strong>on</strong>g>to</str<strong>on</strong>g> a stimulus sequence I: Timing <strong>and</strong> error<br />

correcti<strong>on</strong>s. Biological Cybernetics, 70, 463–473.<br />

Peper, C., Beek, P. J., & van Wieringen, P. C. W. (1995a). Multifrequency coordinati<strong>on</strong> in bimanual<br />

tapping: Asymmetrical coupling <strong>and</strong> signs of supercriticality. Journal of Experimental Psychology:<br />

Human Percepti<strong>on</strong> <strong>and</strong> Performance, 21, 1117–1138.<br />

Peper, C. E., Beek, P. J., & van Wieringen, P. C. W. (1995b). Frequency induced transiti<strong>on</strong>s in bimanual<br />

tapping. Biological Cybernetics, 73, 301–309.<br />

Pressing, J., Summers, J., & Magill, J. (1996). Cognitive multiplicity in polyrhythmic pattern performance.<br />

Journal of Experimental Psychology: Human Percepti<strong>on</strong> <strong>and</strong> Performance, 22(5), 1127–<br />

1148.<br />

Schöner, G. (2001). Timing, clocks, <strong>and</strong> dynamical systems. Brain <strong>and</strong> Cogniti<strong>on</strong>, doi:10.1006/<br />

brcg.2001. 1302.<br />

Schöner, G., & Kelso, J. A. S. (1988). Dynamic pattern generati<strong>on</strong> in behavioral <strong>and</strong> neural systems.<br />

Science, 239, 1513–1520.<br />

Schulze, H.-H. (1992). The error correcti<strong>on</strong> model for <str<strong>on</strong>g>the</str<strong>on</strong>g> tracking of a r<strong>and</strong>om metr<strong>on</strong>ome: Statistical<br />

properties <strong>and</strong> empirical test. In F. Macar, V. Pouthas, & W. J. Friedman (Eds.), Time, acti<strong>on</strong>, <strong>and</strong><br />

cogniti<strong>on</strong>: Towards bridging <str<strong>on</strong>g>the</str<strong>on</strong>g> gap (pp. 275–286). Dordrecht: Kluwer Academic.<br />

Schulze, H.-H., & Vorberg, D. (2001). Models of linear phase correcti<strong>on</strong> for synchr<strong>on</strong>ized tapping:<br />

Problems of parameter identifiability <strong>and</strong> estimati<strong>on</strong>. Brain <strong>and</strong> Cogniti<strong>on</strong>, doi:10.1006/brcg.<br />

2001.1305.<br />

Semjen, A. (2001). On <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>timing</strong> basis of bimanual coordinati<strong>on</strong> in discrete <strong>and</strong> c<strong>on</strong>tinuous tasks. Brain<br />

<strong>and</strong> Cogniti<strong>on</strong>, doi:10.1006/brcg.2001.1309.<br />

Semjen, A., & Ivry, R. B. (2001). The coupled oscilla<str<strong>on</strong>g>to</str<strong>on</strong>g>r model of between-h<strong>and</strong> coordinati<strong>on</strong> in alternate-h<strong>and</strong><br />

tapping: A reappraisal. Journal of Experimental Psychology: Human Percepti<strong>on</strong> <strong>and</strong><br />

Performance, 27, 251–265.<br />

Semjen, A., Vorberg, D., & Schulze, H.-H. (1998). Getting synchr<strong>on</strong>ized with <str<strong>on</strong>g>the</str<strong>on</strong>g> metr<strong>on</strong>ome: Comparis<strong>on</strong>s<br />

between phase <strong>and</strong> period correcti<strong>on</strong>. Psychological Research, 61, 44–55.<br />

Turvey, M. T. (1990). Coordinati<strong>on</strong>. American Psychologist, 45(8), 938–953.<br />

Turvey, M. T., Schmidt, R. C., & Rosenblum, L. D. (1989). ‘Clock’ <strong>and</strong> ‘mo<str<strong>on</strong>g>to</str<strong>on</strong>g>r’ comp<strong>on</strong>ents in absolute<br />

coordinati<strong>on</strong> of rhythmic <strong>movement</strong>s. Neuroscience, 33, 1–10.<br />

Vorberg, D., & Hambuch, R. (1978). On <str<strong>on</strong>g>the</str<strong>on</strong>g> temporal c<strong>on</strong>trol of rhythmic performance. In J. Requin<br />

(Ed.), Attenti<strong>on</strong> <strong>and</strong> performance (Vol. 7, pp. 535–555). Hillsdale, NJ: Erlbaum.<br />

Vorberg, D., & Hambuch, R. (1984). Timing of two-h<strong>and</strong>ed rhythmic performance. In J. Gibb<strong>on</strong> & L.<br />

Allan (Eds.), Annals of <str<strong>on</strong>g>the</str<strong>on</strong>g> New York Academy of Sciences: Vol. 423. Timing <strong>and</strong> time percepti<strong>on</strong><br />

(pp. 390–406). New York Academy of Sciences.<br />

Vorberg, D., & Wing, A. M. (1996). Modelling variability <strong>and</strong> dependence in <strong>timing</strong>. In H. Heuer &<br />

S. W. Keele (Eds.), H<strong>and</strong>book of percepti<strong>on</strong> <strong>and</strong> acti<strong>on</strong>: Vol. 3. Mo<str<strong>on</strong>g>to</str<strong>on</strong>g>r skills (pp. 181–261). L<strong>on</strong>d<strong>on</strong>:<br />

Academic Press.<br />

Wing, A. M., Church, R. M., & Gentner, D. R. (1989). Variability in <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>timing</strong> of resp<strong>on</strong>ses during<br />

repetitive tapping with alternate h<strong>and</strong>s. Psychological Research, 51, 28–37.<br />

Wing, A. M., & Kris<str<strong>on</strong>g>to</str<strong>on</strong>g>ffers<strong>on</strong>, A. B. (1973a). Resp<strong>on</strong>se delays <strong>and</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>timing</strong> of discrete mo<str<strong>on</strong>g>to</str<strong>on</strong>g>r resp<strong>on</strong>ses.<br />

Percepti<strong>on</strong> & Psychophysics, 14, 5–12.<br />

Wing, A. M., & Kris<str<strong>on</strong>g>to</str<strong>on</strong>g>ffers<strong>on</strong>, A. B. (1973b). The <strong>timing</strong> of interresp<strong>on</strong>se intervals. Percepti<strong>on</strong> & Psychophysics,<br />

13, 455–460.<br />

Yamanishi, J., Kawa<str<strong>on</strong>g>to</str<strong>on</strong>g>, M., & Suzuki, R. (1979). Studies <strong>on</strong> human finger tapping neural networks by<br />

phase transiti<strong>on</strong> curves. Biological Cybernetics, 33, 199–208.<br />

Yamanishi, J., Kawa<str<strong>on</strong>g>to</str<strong>on</strong>g>, M., & Suzuki, R. (1980). Two coupled oscilla<str<strong>on</strong>g>to</str<strong>on</strong>g>rs as a model for <str<strong>on</strong>g>the</str<strong>on</strong>g> coordinated<br />

finger tapping in both h<strong>and</strong>s. Biological Cybernetics, 37, 219–225.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!