18.01.2014 Views

Analytic gradients in the random-phase approximation

Analytic gradients in the random-phase approximation

Analytic gradients in the random-phase approximation

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

081101-2 Rekkedal et al. J. Chem. Phys. 139, 081101(2013)<br />

eigenvectors of <strong>the</strong> symplectic eigenvalue problem<br />

( ) ( )<br />

A B X Xω<br />

= . (6)<br />

B A)(<br />

Y −Yω<br />

Here, ω = diag(ω 1 ,ω 2 , ··· ,ω N )are<strong>the</strong>dRPAs<strong>in</strong>gletexcitation<br />

energies and<br />

A aibj = F ba δ ij − F ij δ ab + B aibj , B aibj = 2(ai|bj ). (7)<br />

The positive def<strong>in</strong>iteness of B guarantees <strong>the</strong> existence of X −1<br />

and <strong>the</strong> negative def<strong>in</strong>iteness of Z. 7 As shown <strong>in</strong> Ref. 7, Z may<br />

be obta<strong>in</strong>ed directly from <strong>the</strong> CARE<br />

R(Z) = B + AZ + ZA+ ZBZ = 0. (8)<br />

In SOSEX, 6 exchange screen<strong>in</strong>g is re<strong>in</strong>troduced by calculat<strong>in</strong>g<br />

<strong>the</strong> energy from <strong>the</strong> dRPA amplitudes via<br />

E c = 1 ∑ (<br />

Z aibj Bbj ai − 1 2<br />

2<br />

B biaj)<br />

. (9)<br />

aibj<br />

The total dRPA [SOSEX] energy is def<strong>in</strong>ed as <strong>the</strong> sum of<br />

Eqs. (4) and (5) [(9)]. While SOSEX elim<strong>in</strong>ates selfcorrelation<br />

for one-electron systems, <strong>the</strong> static correlation<br />

captured by dRPA is ru<strong>in</strong>ed. 10<br />

To compute derivatives of dRPA/SOSEX energies, we<br />

must consider <strong>the</strong> variations <strong>in</strong> Eqs. (2) and (8) due to variations<br />

<strong>in</strong> <strong>the</strong> orbitals. For a set of orthonormal orbitals { ˜φ},<br />

Eq. (2) determ<strong>in</strong>es <strong>the</strong> orbital rotation parameters κ pq =−κ qp<br />

such that φ p = ∑ q ˜φ q [exp(−κ)] qp . Us<strong>in</strong>g Eqs. (2) and (8) as<br />

constra<strong>in</strong>ts and <strong>in</strong>troduc<strong>in</strong>g <strong>the</strong> Lagrange multipliers ¯Z and ¯κ,<br />

<strong>the</strong> dRPA/SOSEX Lagrangian becomes<br />

L =E HF (κ) + E c (κ, Z)<br />

+ ∑ ¯Z aibj R aibj (κ, Z) + ∑ ¯κ pq F pq (κ). (10)<br />

p>q<br />

ai≥bj<br />

To obta<strong>in</strong> <strong>the</strong> dRPA/SOSEX Lagrangian for a Kohn–Sham<br />

(KS) reference, simply replace <strong>the</strong> Fock matrix of <strong>the</strong> last<br />

term with <strong>the</strong> KS matrix. While Z and ¯Z are symmetric, κ<br />

and ¯κ are antisymmetric and symmetric, respectively, and<br />

¯κ pp = 0. The variational conditions on <strong>the</strong> multipliers give<br />

Eqs. (2) and (8).ThevariationalconditiononZ gives <strong>the</strong> Lyapunov<br />

equation for ¯Z,<br />

G ¯Z + ¯ZG T =−B, G(Z) = A + BZ, (11)<br />

which is solved by <strong>the</strong> conjugate-gradient method. 11, 12 The<br />

variational condition on κ gives an equation for ¯κ,<br />

¯κA =−η, (12)<br />

where A depends on orbital energies and two-electron <strong>in</strong>tegrals,<br />

while η depends also on Z and ¯Z. Toconstruct<strong>the</strong><br />

Lagrangian, we compute κ from Eq. (2) and <strong>the</strong>n Z from<br />

Eq. (8); next,weobta<strong>in</strong> ¯Z from Eq. (11) and f<strong>in</strong>ally ¯κ from<br />

Eq. (12). ThesameprocedureappliestoSOSEX,withmodified<br />

right-hand sides of Eqs. (11) and (12).<br />

The variational Lagrangian Eq. (10) may be recast as<br />

L = ∑ pq<br />

D pq h pq + 1 ∑<br />

d pqrs (pq|rs), (13)<br />

2<br />

pqrs<br />

where D and d are <strong>the</strong> variational one- and two-electron density<br />

matrices, chosen to be permutationally symmetric. We<br />

may <strong>the</strong>n compute forces <strong>in</strong> <strong>the</strong> usual manner, 8<br />

L (1) = ∑ µν<br />

− ∑ µν<br />

D µν h (1)<br />

µν + 1 ∑<br />

d µνκλ (µν|κλ) (1)<br />

2<br />

µνκλ<br />

F eff<br />

µν S(1) µν , (14)<br />

where superscript (1) denotes <strong>the</strong> first derivative with respect<br />

to a nuclear coord<strong>in</strong>ate at <strong>the</strong> reference geometry, S<br />

is <strong>the</strong> atomic-orbital (AO) overlap matrix, and Greek <strong>in</strong>dices<br />

denote AOs. The AO density matrices are given by<br />

D µν = ∑ pqC µp D pq C νq and d µνκλ = ∑ pqrsC µp C νq d pqrs C κr C λs<br />

where C conta<strong>in</strong>s <strong>the</strong> canonical MO coefficients at <strong>the</strong> reference<br />

geometry. As <strong>in</strong> CC gradient <strong>the</strong>ory, 13 <strong>the</strong> reorthonormalization<br />

term is computed through a generalized effective<br />

Fock matrix backtransformed to AO basis,<br />

F eff<br />

pq = ∑ t<br />

D pt h tq + 1 ∑<br />

(d ptrs + d tprs )(tq|rs). (15)<br />

2<br />

trs<br />

The solution of <strong>the</strong> CARE, Eq. (8),canbechalleng<strong>in</strong>g. 10<br />

Only one of <strong>the</strong> multiple solutions corresponds to <strong>the</strong> ground<br />

state of <strong>the</strong> symplectic eigenvalue problem <strong>in</strong> Eq. (6). The<br />

(physical) desired solution is stabiliz<strong>in</strong>g, mean<strong>in</strong>gthat<strong>the</strong><br />

nonsymmetric matrix G(Z) hasonlypositiveeigenvalues.A<br />

stabiliz<strong>in</strong>g solution to Eq. (8) is not necessarily unique, however.<br />

Among <strong>the</strong> non-stabiliz<strong>in</strong>g solutions, one is of particular<br />

<strong>in</strong>terest. Start<strong>in</strong>g from <strong>the</strong> paired eigenvalue problem,<br />

( ) ( )<br />

A B Y Yω<br />

=−<br />

(16)<br />

B A)(<br />

X −Xω<br />

and repeat<strong>in</strong>g <strong>the</strong> derivation of Ref. 7,weobta<strong>in</strong><strong>the</strong>CAREfor<br />

<strong>the</strong> <strong>in</strong>verse amplitudes ˜Z = XY −1 = Z −1 .BothZ and Z −1<br />

are guaranteed to exist <strong>in</strong> dRPA s<strong>in</strong>ce B is positive def<strong>in</strong>ite. 7<br />

If (as assumed) Z is stabiliz<strong>in</strong>g, <strong>the</strong>n ˜Z is not stabiliz<strong>in</strong>g s<strong>in</strong>ce<br />

<strong>the</strong> eigenvalues of G( ˜Z) =−YωY −1 are all negative. Use of<br />

<strong>the</strong> <strong>in</strong>verse solution to compute <strong>the</strong> correlation energy from<br />

Eq. (5) will not reproduce <strong>the</strong> plasmon formula Eq. (1). Instead,<br />

<strong>the</strong> correct energy may be obta<strong>in</strong>ed directly from <strong>the</strong> <strong>in</strong>verse<br />

solution accord<strong>in</strong>g to E c =−Tr( ˜ZB)/2 − Tr A, which<br />

may be used to set up an alternative Lagrangian for this particular<br />

non-stabiliz<strong>in</strong>g solution. In general, a range of nonstabiliz<strong>in</strong>g<br />

solutions, whose amplitudes are not <strong>the</strong> <strong>in</strong>verse of<br />

<strong>the</strong> physical solution, may be obta<strong>in</strong>ed and <strong>the</strong> positive def<strong>in</strong>iteness<br />

of G(Z) is<strong>the</strong>onlyusefulcriterionforidentify<strong>in</strong>ga<br />

stabiliz<strong>in</strong>g CARE solution.<br />

To solve Eq. (8), we use an iterative Newton-like algorithm<br />

comb<strong>in</strong>ed with direct <strong>in</strong>version <strong>in</strong> <strong>the</strong> iterative subspace<br />

(DIIS) 14 to accelerate convergence. The iterative procedure is<br />

def<strong>in</strong>ed by 15 Z (k+1) = Z (k) + N (k) , (17)<br />

where N (k) is an approximate solution of <strong>the</strong> Lyapunov equation<br />

G T (Z (k) )N (k) + N (k) G(Z (k) ) =−R(Z (k) ), obta<strong>in</strong>ed by<br />

Downloaded 27 Aug 2013 to 193.157.137.233. This article is copyrighted as <strong>in</strong>dicated <strong>in</strong> <strong>the</strong> abstract. Reuse of AIP content is subject to <strong>the</strong> terms at: http://jcp.aip.org/about/rights_and_permissions

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!