26.10.2012 Views

Ecology of the striped skunk (Mephitis mephitis) on tall-grass prairie

Ecology of the striped skunk (Mephitis mephitis) on tall-grass prairie

Ecology of the striped skunk (Mephitis mephitis) on tall-grass prairie

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

THE INFLUENCE OF HOST ECOLOGY AND LAND COVER CHANGE ON RABIES<br />

VIRUS EPIDEMIOLOGY IN THE FLINT HILLS<br />

by<br />

SARAH ELIZABETH BOWE<br />

B.S., Furman University, 2007<br />

A THESIS<br />

submitted in partial fulfillment <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> requirements for <str<strong>on</strong>g>the</str<strong>on</strong>g> degree<br />

MASTER OF SCIENCE<br />

Divisi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Biology<br />

College <str<strong>on</strong>g>of</str<strong>on</strong>g> Arts and Sciences<br />

KANSAS STATE UNIVERSITY<br />

Manhattan, Kansas<br />

2009<br />

Approved by:<br />

Major Pr<str<strong>on</strong>g>of</str<strong>on</strong>g>essor<br />

Samantha M. Wisely


Copyright<br />

SARAH ELIZABETH BOWE<br />

2009


Abstract<br />

As human populati<strong>on</strong>s increase world-wide, land use and land cover are altered to<br />

support <str<strong>on</strong>g>the</str<strong>on</strong>g> rapid anthropogenic expansi<strong>on</strong>. These landscape alterati<strong>on</strong>s influence patterns <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

zo<strong>on</strong>otic infectious disease emergence and propagati<strong>on</strong>. It is <str<strong>on</strong>g>the</str<strong>on</strong>g>refore becoming increasingly<br />

important to study emerging and re-emerging diseases to predict and manage for future<br />

epidemics. Studies <str<strong>on</strong>g>of</str<strong>on</strong>g> directly-transmitted infectious diseases should c<strong>on</strong>sider three comp<strong>on</strong>ents<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> disease epidemiology: characteristics <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> pathogen, ecology <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> host, and habitat<br />

c<strong>on</strong>figurati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> underlying landscape. I studied <str<strong>on</strong>g>the</str<strong>on</strong>g> influence <str<strong>on</strong>g>of</str<strong>on</strong>g> both <str<strong>on</strong>g>the</str<strong>on</strong>g> host ecology <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

<str<strong>on</strong>g>striped</str<strong>on</strong>g> <str<strong>on</strong>g>skunk</str<strong>on</strong>g> (<str<strong>on</strong>g>Mephitis</str<strong>on</strong>g> <str<strong>on</strong>g>mephitis</str<strong>on</strong>g>) and <str<strong>on</strong>g>the</str<strong>on</strong>g> alterati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> underlying landscape <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

epidemiology <str<strong>on</strong>g>of</str<strong>on</strong>g> rabies virus in <str<strong>on</strong>g>the</str<strong>on</strong>g> Flint Hills <str<strong>on</strong>g>of</str<strong>on</strong>g> Kansas. This <strong>tall</strong>-<strong>grass</strong> <strong>prairie</strong> is experiencing<br />

woody expansi<strong>on</strong> due to anthropogenic disturbance, altering <str<strong>on</strong>g>the</str<strong>on</strong>g> landscape <strong>on</strong> which <str<strong>on</strong>g>the</str<strong>on</strong>g> rabies<br />

virus emerges and spreads. We first studied <str<strong>on</strong>g>the</str<strong>on</strong>g> behavioral and social ecology <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>striped</str<strong>on</strong>g><br />

<str<strong>on</strong>g>skunk</str<strong>on</strong>g> using field and genetic methods. We c<strong>on</strong>cluded that 1) <str<strong>on</strong>g>striped</str<strong>on</strong>g> <str<strong>on</strong>g>skunk</str<strong>on</strong>g>s reached high<br />

populati<strong>on</strong> densities in anthropogenically disturbed habitats, 2) <str<strong>on</strong>g>the</str<strong>on</strong>g>se individuals were not closely<br />

related, and 3) c<strong>on</strong>tact rates could be influenced by temperature. Using habitat-specific <str<strong>on</strong>g>skunk</str<strong>on</strong>g><br />

densities from this initial study, we created spatially-explicit c<strong>on</strong>tact networks <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>skunk</str<strong>on</strong>g><br />

populati<strong>on</strong>s across <str<strong>on</strong>g>the</str<strong>on</strong>g> Upper Kansas River Watershed and simulated <str<strong>on</strong>g>the</str<strong>on</strong>g> emergence and spread<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> rabies through <str<strong>on</strong>g>the</str<strong>on</strong>g> system. This modeling approach revealed a threshold <str<strong>on</strong>g>of</str<strong>on</strong>g> forest habitat<br />

bey<strong>on</strong>d which <str<strong>on</strong>g>striped</str<strong>on</strong>g> <str<strong>on</strong>g>skunk</str<strong>on</strong>g>s became increasingly c<strong>on</strong>nected and <str<strong>on</strong>g>the</str<strong>on</strong>g> rabies virus reached greater<br />

extents across <str<strong>on</strong>g>the</str<strong>on</strong>g> landscape. Based <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g>se findings we recommend fire regimes and land<br />

cover alterati<strong>on</strong>s to reduce woody encroachment across <str<strong>on</strong>g>the</str<strong>on</strong>g> Flint Hills and to avoid future disease<br />

epidemics in <str<strong>on</strong>g>the</str<strong>on</strong>g> regi<strong>on</strong>.


Table <str<strong>on</strong>g>of</str<strong>on</strong>g> C<strong>on</strong>tents<br />

List <str<strong>on</strong>g>of</str<strong>on</strong>g> Figures ................................................................................................................................ vi<br />

List <str<strong>on</strong>g>of</str<strong>on</strong>g> Tables ................................................................................................................................. ix<br />

Acknowledgements ........................................................................................................................ xi<br />

CHAPTER 1 - Introducti<strong>on</strong> ............................................................................................................ 1<br />

The pathogen ........................................................................................................................... 2<br />

The host ................................................................................................................................... 3<br />

The changing landscape .......................................................................................................... 4<br />

Integrating epidemiological comp<strong>on</strong>ents ................................................................................ 6<br />

References ................................................................................................................................... 8<br />

Figures and Tables .................................................................................................................... 11<br />

CHAPTER 2 - <str<strong>on</strong>g>Ecology</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>striped</str<strong>on</strong>g> <str<strong>on</strong>g>skunk</str<strong>on</strong>g> (<str<strong>on</strong>g>Mephitis</str<strong>on</strong>g> <str<strong>on</strong>g>mephitis</str<strong>on</strong>g>) <strong>on</strong> <strong>tall</strong>-<strong>grass</strong> <strong>prairie</strong>:<br />

Implicati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> anthropogenic habitat alterati<strong>on</strong>s <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> distributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> a disease host. ....... 12<br />

Abstract ..................................................................................................................................... 12<br />

Introducti<strong>on</strong> ............................................................................................................................... 13<br />

Methods .................................................................................................................................... 17<br />

Study Area ............................................................................................................................ 17<br />

Spatial Analysis .................................................................................................................... 18<br />

Genetic Analysis ................................................................................................................... 21<br />

Results ....................................................................................................................................... 23<br />

Data Collecti<strong>on</strong> ..................................................................................................................... 23<br />

Spatial Analysis .................................................................................................................... 24<br />

Genetic Analysis ................................................................................................................... 26<br />

Discussi<strong>on</strong> ................................................................................................................................. 27<br />

High <str<strong>on</strong>g>skunk</str<strong>on</strong>g> densities in disturbed landscapes ....................................................................... 28<br />

Genetic admixture and mobility in <str<strong>on</strong>g>striped</str<strong>on</strong>g> <str<strong>on</strong>g>skunk</str<strong>on</strong>g>s ............................................................... 30<br />

Implicati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> climate change <strong>on</strong> host c<strong>on</strong>tact rates ........................................................... 31<br />

C<strong>on</strong>clusi<strong>on</strong>s ........................................................................................................................... 32<br />

References ................................................................................................................................. 34<br />

iv


Figures and Tables .................................................................................................................... 39<br />

CHAPTER 3 - Modeling disease spread <strong>on</strong> spatially-explicit c<strong>on</strong>tact networks: The influence <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

woody encroachment <strong>on</strong> rabies epidemiology in <str<strong>on</strong>g>the</str<strong>on</strong>g> Flint Hills ........................................... 46<br />

Abstract ..................................................................................................................................... 46<br />

Introducti<strong>on</strong> ............................................................................................................................... 47<br />

Methods .................................................................................................................................... 50<br />

Network C<strong>on</strong>structi<strong>on</strong> ........................................................................................................... 50<br />

Simulati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> disease spread ............................................................................................... 53<br />

Network Analyses ................................................................................................................. 54<br />

Results ....................................................................................................................................... 57<br />

Network statistics .................................................................................................................. 57<br />

Simulati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> disease spread ............................................................................................... 59<br />

Habitat analyses .................................................................................................................... 60<br />

Discussi<strong>on</strong> ................................................................................................................................. 61<br />

Increased network c<strong>on</strong>nectivity ............................................................................................ 61<br />

Increased forest propagates disease emergence .................................................................... 63<br />

Decreased effectiveness <str<strong>on</strong>g>of</str<strong>on</strong>g> habitat barriers ........................................................................... 65<br />

Unpredictable cluster formati<strong>on</strong> ........................................................................................... 66<br />

C<strong>on</strong>clusi<strong>on</strong>s ........................................................................................................................... 67<br />

References ................................................................................................................................. 69<br />

Figures and Tables .................................................................................................................... 72<br />

CHAPTER 4 - C<strong>on</strong>clusi<strong>on</strong>s .......................................................................................................... 82<br />

References ................................................................................................................................. 87<br />

v


List <str<strong>on</strong>g>of</str<strong>on</strong>g> Figures<br />

Figure 1.1 Distributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> terrestrial variants <str<strong>on</strong>g>of</str<strong>on</strong>g> rabies virus in <str<strong>on</strong>g>the</str<strong>on</strong>g> United States. Blue, orange,<br />

and green divisi<strong>on</strong>s are variants <str<strong>on</strong>g>of</str<strong>on</strong>g> rabies in <str<strong>on</strong>g>skunk</str<strong>on</strong>g>s; red represents racco<strong>on</strong> rabies; and<br />

purple and brown divisi<strong>on</strong>s define fox rabies variants. Adapted from Blant<strong>on</strong> et al. 2007. 11<br />

Figure 2.1 Map <str<strong>on</strong>g>of</str<strong>on</strong>g> four study areas near Manhattan, Kansas. Study areas are labeled as follows:<br />

1) K<strong>on</strong>za Prairie Biological Stati<strong>on</strong> (KPBS) sou<str<strong>on</strong>g>the</str<strong>on</strong>g>rn <strong>tall</strong>-<strong>grass</strong> <strong>prairie</strong> (undisturbed), 2)<br />

town <str<strong>on</strong>g>of</str<strong>on</strong>g> Ashland and nor<str<strong>on</strong>g>the</str<strong>on</strong>g>rn KPBS (disturbed), 3) suburbs <str<strong>on</strong>g>of</str<strong>on</strong>g> Manhattan (disturbed), and<br />

4) town <str<strong>on</strong>g>of</str<strong>on</strong>g> Ogden (disturbed). ............................................................................................... 39<br />

Figure 2.2 High and low temperatures for <str<strong>on</strong>g>the</str<strong>on</strong>g> extent <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> study period with percentages <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<str<strong>on</strong>g>skunk</str<strong>on</strong>g>s in and out <str<strong>on</strong>g>of</str<strong>on</strong>g> den sites. High, or daytime temperatures, are shown in red (solid),<br />

while low, or nighttime temperatures, are displayed in blue (dotted). Black vertical bars <strong>on</strong><br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> upper porti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> figure represent percentages <str<strong>on</strong>g>of</str<strong>on</strong>g> located <str<strong>on</strong>g>skunk</str<strong>on</strong>g>s moving at night,<br />

while vertical bars <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> lower porti<strong>on</strong> represent percentages <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>skunk</str<strong>on</strong>g>s in den sites at<br />

night. Average daytime temperatures were significantly lower for den locati<strong>on</strong>s than<br />

movement locati<strong>on</strong>s (ANOVA, F=35.37, p


watershed, while Network 2 (b) represents a 25% increase in forest, Network 3 (c) is a 50%<br />

increase in forest, and Network 4 (d) has a 78% increase in forest. Nodes were placed in<br />

each network based <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> same habitat specific densities <str<strong>on</strong>g>of</str<strong>on</strong>g> 2.5 <str<strong>on</strong>g>skunk</str<strong>on</strong>g>s/km 2 in forest, 2.1<br />

<str<strong>on</strong>g>skunk</str<strong>on</strong>g>s/km 2 in urban habitat, and 0.06 <str<strong>on</strong>g>skunk</str<strong>on</strong>g>s/km 2 in <strong>grass</strong>land and agricultural lands....... 72<br />

Figure 3.2 Forest habitat increase in proporti<strong>on</strong> to total habitat area in each <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> four<br />

watersheds divided by <str<strong>on</strong>g>the</str<strong>on</strong>g> Kansas River. Forest habitat north <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> Kansas River is<br />

indicated in blue and south is indicated in red. The watersheds were delineated based <strong>on</strong><br />

simulated increases in forested habitat area, with Watershed 1 representing <str<strong>on</strong>g>the</str<strong>on</strong>g> original<br />

habitat c<strong>on</strong>figurati<strong>on</strong>, Watershed 2 representing a 25% increase in forest habitat, Watershed<br />

3 representing a 50% increase, and Watershed 4 representing a 78% increase. Forest<br />

proporti<strong>on</strong> in <str<strong>on</strong>g>the</str<strong>on</strong>g> south increased much less with each 25% increase in forest area than in<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> north. ............................................................................................................................... 73<br />

Figure 3.3 Node degree by habitat for Network 1 nodes south <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> river (a) and north (b) and<br />

Network 4 nodes south <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> river (c) and north (d). Dark green lines represent forest<br />

habitat, light green represent <strong>grass</strong>lands, red represent agricultural lands, and blue represent<br />

urban habitat. Networks 1 and 4 represent <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>tact networks <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>striped</str<strong>on</strong>g> <str<strong>on</strong>g>skunk</str<strong>on</strong>g>s before<br />

and after a 78% increase in forested habitat. The north <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> watershed is dominated by<br />

forested habitat and <str<strong>on</strong>g>the</str<strong>on</strong>g> 78% increase greatly increased <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>nectivity <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> network.<br />

The sou<str<strong>on</strong>g>the</str<strong>on</strong>g>rn porti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> watershed is predominantly <strong>grass</strong>lands and agriculture and <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

increase in forested habitat did not have as significant effect <strong>on</strong> c<strong>on</strong>nectivity. .................... 74<br />

Figure 3.4 Disease spread by viral initiati<strong>on</strong> locati<strong>on</strong> for each <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> four networks (a.-d.). Red<br />

squares represent initiati<strong>on</strong> in Juncti<strong>on</strong> City, green triangles are Manhattan, purple crosses<br />

are Riley, blue stars are Fort Riley, and orange circles are initiati<strong>on</strong> in <str<strong>on</strong>g>the</str<strong>on</strong>g> south <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

watershed. ............................................................................................................................. 75<br />

Figure 3.5 Comparis<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> habitat compositi<strong>on</strong> for underlying landscape within network clusters<br />

(blue bars) and landscape outside <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> clusters (red bars) for each <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> four networks (a-<br />

d). These clusters were delineated to determine areas <str<strong>on</strong>g>of</str<strong>on</strong>g> high c<strong>on</strong>nectivity and to identify<br />

epidemic hotspots. An edge clustering coefficient was estimated by calculating <str<strong>on</strong>g>the</str<strong>on</strong>g> number<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> triangles an edge bel<strong>on</strong>ged to divided by <str<strong>on</strong>g>the</str<strong>on</strong>g> number it could bel<strong>on</strong>g to based <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> node<br />

degree <str<strong>on</strong>g>of</str<strong>on</strong>g> adjacent nodes. Clusters were defined by removing edges with clustering<br />

coefficients < 7.4 x 10 -4 , a value which maximized clustering <str<strong>on</strong>g>of</str<strong>on</strong>g> nodes. ............................. 76<br />

vii


Figure 3.6 Habitat compositi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> area <str<strong>on</strong>g>of</str<strong>on</strong>g> rabies spread through each network. Network 1 is<br />

blue, Network 2 red, Network 3 green, and Network 4 purple. Each graph represents an<br />

initiati<strong>on</strong> locati<strong>on</strong>: a) Juncti<strong>on</strong> City, b) Manhattan, c) Fort Riley, d) Town <str<strong>on</strong>g>of</str<strong>on</strong>g> Riley, and e)<br />

South. .................................................................................................................................... 77<br />

Figure 3.7 Example <str<strong>on</strong>g>of</str<strong>on</strong>g> an increase in <str<strong>on</strong>g>the</str<strong>on</strong>g> number <str<strong>on</strong>g>of</str<strong>on</strong>g> nodes with high site betweenness. Node 1<br />

has high site betweenness and removing this node would separate <str<strong>on</strong>g>the</str<strong>on</strong>g> network. However,<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> additi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> nodes 2 and 3 increases <str<strong>on</strong>g>the</str<strong>on</strong>g> average site betweenness and separati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

network requires <str<strong>on</strong>g>the</str<strong>on</strong>g> removal <str<strong>on</strong>g>of</str<strong>on</strong>g> 3 nodes. ............................................................................. 78<br />

viii


List <str<strong>on</strong>g>of</str<strong>on</strong>g> Tables<br />

Table 2.1 Ranking matrices for <str<strong>on</strong>g>striped</str<strong>on</strong>g> <str<strong>on</strong>g>skunk</str<strong>on</strong>g> habitat preference comparing locati<strong>on</strong> data to home<br />

range habitat compositi<strong>on</strong> based <strong>on</strong> a) all locati<strong>on</strong> data, b) movement locati<strong>on</strong>s <strong>on</strong>ly, c) den<br />

site locati<strong>on</strong>s <strong>on</strong>ly. The sign <str<strong>on</strong>g>of</str<strong>on</strong>g> each t-value is indicated by + or -. A triple sign indicates a<br />

significant deviati<strong>on</strong> from random at p < 0.05. ..................................................................... 44<br />

Table 2.2 Summary statistics <str<strong>on</strong>g>of</str<strong>on</strong>g> eight microsatellite markers for <str<strong>on</strong>g>striped</str<strong>on</strong>g> <str<strong>on</strong>g>skunk</str<strong>on</strong>g>s and Hardy-<br />

Weinberg equilibrium values. ............................................................................................... 45<br />

Table 3.1 General network descriptors for <str<strong>on</strong>g>the</str<strong>on</strong>g> four spatially explicit c<strong>on</strong>tact networks based <strong>on</strong><br />

increases in tree area. Network 1 is based <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> current habitat c<strong>on</strong>figurati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> Upper<br />

Kansas River Watershed, while Networks 2-4 are based <strong>on</strong> increased forested habitat as<br />

indicated. Nodes representing individual <str<strong>on</strong>g>skunk</str<strong>on</strong>g> dens were placed across <str<strong>on</strong>g>the</str<strong>on</strong>g>se habitat<br />

c<strong>on</strong>figurati<strong>on</strong>s based <strong>on</strong> habitat-specific density estimates. Edges, or links, between 2 nodes<br />

were determined based <strong>on</strong> pairwise proximity probabilities. Density is a measure <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

network sparseness calculated based <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> number <str<strong>on</strong>g>of</str<strong>on</strong>g> edges versus <str<strong>on</strong>g>the</str<strong>on</strong>g> number <str<strong>on</strong>g>of</str<strong>on</strong>g> nodes<br />

within each network. Densities


Table 3.3 Landscape metrics comparing habitat c<strong>on</strong>figurati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> observed viral habitat use<br />

against expected habitat use for <str<strong>on</strong>g>the</str<strong>on</strong>g> four spatially explicit c<strong>on</strong>tact networks based <strong>on</strong><br />

predicted forest increase across <str<strong>on</strong>g>the</str<strong>on</strong>g> Upper Kansas River Watershed at each rabies initiati<strong>on</strong><br />

locati<strong>on</strong> for disease spread simulati<strong>on</strong>s. ................................................................................ 81<br />

x


Acknowledgements<br />

Over <str<strong>on</strong>g>the</str<strong>on</strong>g> course <str<strong>on</strong>g>of</str<strong>on</strong>g> completing my master’s program, I have relied <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> support, advice,<br />

and encouragement <str<strong>on</strong>g>of</str<strong>on</strong>g> many people, including fellow graduate students, family, friends,<br />

members <str<strong>on</strong>g>of</str<strong>on</strong>g> my advisory committee, and several field assistants.<br />

I would first like to thank Samantha Wisely for all <str<strong>on</strong>g>of</str<strong>on</strong>g> her much needed and greatly<br />

appreciated guidance and support throughout <str<strong>on</strong>g>the</str<strong>on</strong>g> past 2 years. She was always available to<br />

answer any questi<strong>on</strong>s including those in very early morning ph<strong>on</strong>e calls for <str<strong>on</strong>g>skunk</str<strong>on</strong>g> trapping<br />

advice. Her help has made my time in this program very rewarding. John Harringt<strong>on</strong> and<br />

Kimberly With have also provided very helpful comments and suggesti<strong>on</strong>s throughout my<br />

master’s program over <str<strong>on</strong>g>the</str<strong>on</strong>g> course <str<strong>on</strong>g>of</str<strong>on</strong>g> several committee meetings. They have also each supplied<br />

invaluable knowledge from <str<strong>on</strong>g>the</str<strong>on</strong>g>ir own research through independent studies and course work.<br />

The assistance <str<strong>on</strong>g>of</str<strong>on</strong>g> Patrick Shields in early morning and late night field work was greatly<br />

appreciated and Shelly and Drew Ricketts helped catch almost half <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> radio-tagged <str<strong>on</strong>g>striped</str<strong>on</strong>g><br />

<str<strong>on</strong>g>skunk</str<strong>on</strong>g>s and <str<strong>on</strong>g>the</str<strong>on</strong>g>n helped us trap <str<strong>on</strong>g>the</str<strong>on</strong>g>m all again to remove <str<strong>on</strong>g>the</str<strong>on</strong>g> tags. It was a lot <str<strong>on</strong>g>of</str<strong>on</strong>g> fragrant work<br />

and I am grateful for <str<strong>on</strong>g>the</str<strong>on</strong>g>ir help. I would also like to thank all <str<strong>on</strong>g>the</str<strong>on</strong>g> fellow members <str<strong>on</strong>g>of</str<strong>on</strong>g> my lab who<br />

have assisted in questi<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> genetic analyses, GIS troubleshooting, and field work. In additi<strong>on</strong>,<br />

I am very grateful to <str<strong>on</strong>g>the</str<strong>on</strong>g> staff <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> K<strong>on</strong>za Prairie Biological Stati<strong>on</strong> where most <str<strong>on</strong>g>of</str<strong>on</strong>g> my field<br />

work was c<strong>on</strong>ducted.<br />

I would like to thank members <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> Sunflower Networking Group in <str<strong>on</strong>g>the</str<strong>on</strong>g> Department <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Computer and Electrical Engineering at Kansas State including Caterina Scoglio, Phillip<br />

Schumm, and Ali Sydney. Their disease modeling efforts and advice were essential to <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

modeling efforts <str<strong>on</strong>g>of</str<strong>on</strong>g> this <str<strong>on</strong>g>the</str<strong>on</strong>g>sis.<br />

xi


My family provided l<strong>on</strong>g-distance encouragement when things were stressful and were<br />

excellent listeners to all <str<strong>on</strong>g>of</str<strong>on</strong>g> my ideas and worries. My husband, Robert, helped push me out <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

door at two in <str<strong>on</strong>g>the</str<strong>on</strong>g> morning and never complained about <str<strong>on</strong>g>skunk</str<strong>on</strong>g>y clo<str<strong>on</strong>g>the</str<strong>on</strong>g>s and shoes piled by <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

washer.<br />

For financial support, I would like to thank <str<strong>on</strong>g>the</str<strong>on</strong>g> Kansas State Divisi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Biology, <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

K<strong>on</strong>za Prairie LTER program, Kansas EPSCoR, and <str<strong>on</strong>g>the</str<strong>on</strong>g> Center for Ecological Forecasting.<br />

xii


CHAPTER 1 - Introducti<strong>on</strong><br />

The rate at which new diseases are emerging is increasing world-wide due to increased<br />

human mobility and rapid landscape alterati<strong>on</strong> (Field 2009). The majority <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> diseases<br />

emerging or re-emerging share two comm<strong>on</strong> characteristics. Almost 75% <str<strong>on</strong>g>of</str<strong>on</strong>g> emerging infectious<br />

diseases are zo<strong>on</strong>otic (Field 2009) and most are significantly influenced by human expansi<strong>on</strong> and<br />

disturbance to <str<strong>on</strong>g>the</str<strong>on</strong>g> envir<strong>on</strong>ment (Barrett et al. 1998, Daszak 2001, Patz et al. 2004, Crowl et al.<br />

2008, Grimm et al. 2008). The direct effects <str<strong>on</strong>g>of</str<strong>on</strong>g> land use change <strong>on</strong> disease epidemiology are<br />

complex, as anthropogenic disturbance alters <str<strong>on</strong>g>the</str<strong>on</strong>g> ecology and evoluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> host species and host-<br />

pathogen dynamics (Patz et al. 2004, Wilcox and Gubler 2005). Examples <str<strong>on</strong>g>of</str<strong>on</strong>g> this phenomen<strong>on</strong><br />

have been documented for a variety <str<strong>on</strong>g>of</str<strong>on</strong>g> zo<strong>on</strong>otic diseases. In <str<strong>on</strong>g>the</str<strong>on</strong>g> nor<str<strong>on</strong>g>the</str<strong>on</strong>g>rn United States,<br />

anthropogenic factors including forest fragmentati<strong>on</strong>, urbanizati<strong>on</strong>, and <str<strong>on</strong>g>the</str<strong>on</strong>g> subsequent loss <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

species richness are directly associated with increased risk <str<strong>on</strong>g>of</str<strong>on</strong>g> Lyme disease (Schmidt and Ostfeld<br />

2001, Patz et al. 2004). West Nile virus exposure in s<strong>on</strong>gbirds has been linked to urbanizati<strong>on</strong><br />

and related land use alterati<strong>on</strong>s in Atlanta, Georgia (Bradley et al. 2008). Additi<strong>on</strong>al zo<strong>on</strong>otic<br />

diseases, including Nipah virus (Daszak et al. 2001, Field 2009), Leptospirosis (Vijayachari et al.<br />

2008), and several urban bacterial zo<strong>on</strong>oses (Comer 2001) have all been associated with<br />

developing and expanding urban areas throughout <str<strong>on</strong>g>the</str<strong>on</strong>g> world. With rapidly changing land use<br />

and land cover due to anthropogenic activity, it is critical to study and m<strong>on</strong>itor <str<strong>on</strong>g>the</str<strong>on</strong>g> subsequent<br />

emergence <str<strong>on</strong>g>of</str<strong>on</strong>g> novel disease to mitigate and prevent human health crises (Grimm et al. 2000,<br />

Morens et al. 2004).<br />

The epidemiological properties <str<strong>on</strong>g>of</str<strong>on</strong>g> a disease are dependent <strong>on</strong> three comp<strong>on</strong>ents: <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

pathogen, <str<strong>on</strong>g>the</str<strong>on</strong>g> host, and <str<strong>on</strong>g>the</str<strong>on</strong>g> underlying landscape. These three comp<strong>on</strong>ents are interrelated and<br />

1


should be c<strong>on</strong>sidered in any comprehensive study <str<strong>on</strong>g>of</str<strong>on</strong>g> disease emergence and spread. In this<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g>sis, I have studied <str<strong>on</strong>g>the</str<strong>on</strong>g>se three disease comp<strong>on</strong>ents in <str<strong>on</strong>g>the</str<strong>on</strong>g> rabies virus, which is episodic in <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

central United States, to determine future risks for humans, compani<strong>on</strong> animals, and livestock.<br />

This research not <strong>on</strong>ly elucidates future hot spots <str<strong>on</strong>g>of</str<strong>on</strong>g> disease emergence for <str<strong>on</strong>g>the</str<strong>on</strong>g> rabies virus, but<br />

also provides innovative methods that can be integrated into studies <str<strong>on</strong>g>of</str<strong>on</strong>g> a broad range <str<strong>on</strong>g>of</str<strong>on</strong>g> emerging<br />

infectious diseases dependent <strong>on</strong> zo<strong>on</strong>otic hosts. This introducti<strong>on</strong> will focus <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> three<br />

epidemiological comp<strong>on</strong>ents associated with rabies and <str<strong>on</strong>g>the</str<strong>on</strong>g> methods used in this study to<br />

c<strong>on</strong>sider <str<strong>on</strong>g>the</str<strong>on</strong>g>se disease factors.<br />

The pathogen<br />

Rabies is a zo<strong>on</strong>otic viral disease that has influenced human populati<strong>on</strong>s for at least <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

last 2,000 years (Kaplan 1985). The virus is a member <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> lyssavirus genus <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> family<br />

Rhabdoviridae (Nel and Markotter 2007). These viruses are ‘bullet shaped’ and are an average<br />

180 nm in length and 75 nm in width (Davies et al. 1963). The RNA genome codes for 5 viral<br />

proteins which include nucleoprotein (N), phosphoprotein (P), and RNA polymerase (L) for<br />

formati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>densed nucleocapsid, matrix protein (M) for virus budding, and surface<br />

glycoproteins (G) al<strong>on</strong>g <str<strong>on</strong>g>the</str<strong>on</strong>g> host-derived envelope integral in viral pathogenesis (Nel and<br />

Markotter 2007). Rabies causes encephalitis in infected individuals and almost always results in<br />

death after clinical symptoms have developed (Kaplan 1985). Once infected with <str<strong>on</strong>g>the</str<strong>on</strong>g> virus, an<br />

individual may not display symptoms for several weeks or m<strong>on</strong>ths, depending <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> species. In<br />

general, symptoms fall into <strong>on</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g> two categories (Kaplan 1985, Brandao 2009). Spill-over into<br />

n<strong>on</strong>-host species that are not carnivores typically results in <str<strong>on</strong>g>the</str<strong>on</strong>g> paralytic form <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> disease<br />

which results in paralysis prior to death. Host species and carnivore spill-over species most<br />

comm<strong>on</strong>ly display <str<strong>on</strong>g>the</str<strong>on</strong>g> furious form <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> disease. In <str<strong>on</strong>g>the</str<strong>on</strong>g> furious form, <str<strong>on</strong>g>the</str<strong>on</strong>g> infected become<br />

2


more pr<strong>on</strong>e to attack and display abnormal behavior patterns, such as daytime movement in<br />

nocturnal animals (Kaplan 1985). In both forms <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> disease, <str<strong>on</strong>g>the</str<strong>on</strong>g> infectious animal excretes <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

rabies virus in saliva and urine creating a significant risk <str<strong>on</strong>g>of</str<strong>on</strong>g> spread to o<str<strong>on</strong>g>the</str<strong>on</strong>g>r individuals.<br />

Over 70,000 people world-wide die each year due to rabies infecti<strong>on</strong> (Dietzschold et al.<br />

2008). In <str<strong>on</strong>g>the</str<strong>on</strong>g> United States, over $300 milli<strong>on</strong> is spent each year <strong>on</strong> rabies preventi<strong>on</strong> and<br />

c<strong>on</strong>trol programs, which results in few human fatalities in <str<strong>on</strong>g>the</str<strong>on</strong>g> country (Center for Disease<br />

C<strong>on</strong>trol and Preventi<strong>on</strong> 2007). Rabies has been eradicated from <str<strong>on</strong>g>the</str<strong>on</strong>g> domestic dog populati<strong>on</strong> in<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> United States due to strict vaccinati<strong>on</strong> programs (Velasco-Villa et al. 2008); however, <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

disease is still widely prevalent and circulates through wildlife hosts. There are several<br />

terrestrial host species for rabies variants in <str<strong>on</strong>g>the</str<strong>on</strong>g> United States (Figure 1.1) and variants in bat<br />

species are found throughout <str<strong>on</strong>g>the</str<strong>on</strong>g> country (Blant<strong>on</strong> et al. 2007).<br />

The host<br />

Striped <str<strong>on</strong>g>skunk</str<strong>on</strong>g>s (<str<strong>on</strong>g>Mephitis</str<strong>on</strong>g> <str<strong>on</strong>g>mephitis</str<strong>on</strong>g>) are meso-carnivores with a geographic range that<br />

covers most <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> United States, sou<str<strong>on</strong>g>the</str<strong>on</strong>g>rn Canada, and nor<str<strong>on</strong>g>the</str<strong>on</strong>g>rn Mexico (Rosatte and Larivière<br />

2003). As habitat generalists, <str<strong>on</strong>g>the</str<strong>on</strong>g>y take advantage <str<strong>on</strong>g>of</str<strong>on</strong>g> most habitat types within this range, but<br />

typically prefer forest-edge z<strong>on</strong>es (Bixler and Gittleman 2000, Larivière and Messier 2000) and<br />

agricultural areas (Larivière and Messier 1999), but is also an urban-adapted species (Gehrt<br />

2005, Weissinger et al. 2009). Body mass in adult <str<strong>on</strong>g>skunk</str<strong>on</strong>g>s ranges from 1.2 to 5.3 kg (Verts<br />

1967). Body mass is lost in <str<strong>on</strong>g>the</str<strong>on</strong>g> winter, with losses ranging from 31.6-47.7% (Verts 1967) as<br />

individuals limit above ground activity during cold wea<str<strong>on</strong>g>the</str<strong>on</strong>g>r. Dens are typically located<br />

underground during <str<strong>on</strong>g>the</str<strong>on</strong>g> winter and can shelter multiple females or several females with <strong>on</strong>e<br />

male. Communal dens <str<strong>on</strong>g>of</str<strong>on</strong>g> multiple males are uncomm<strong>on</strong> and communal denning <str<strong>on</strong>g>of</str<strong>on</strong>g> adults does<br />

not typically occur during <str<strong>on</strong>g>the</str<strong>on</strong>g> summer m<strong>on</strong>ths (Verts 1967).<br />

3


Skunks are insectivorous and forage by digging in soil with l<strong>on</strong>g, curved fr<strong>on</strong>t claws<br />

(Wade-Smith and Verts 1982). They <str<strong>on</strong>g>of</str<strong>on</strong>g>ten carry ec<strong>on</strong>omic importance due to <str<strong>on</strong>g>the</str<strong>on</strong>g>ir c<strong>on</strong>sumpti<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> crop-damaging insects (Rosatte and Larivière 2003). They will also feed <strong>on</strong> berries and nuts<br />

as well as small mammals and bird nests (Rosatte and Larivière 2003). As meso-predators,<br />

<str<strong>on</strong>g>striped</str<strong>on</strong>g> <str<strong>on</strong>g>skunk</str<strong>on</strong>g>s play an important role in <str<strong>on</strong>g>the</str<strong>on</strong>g> ecosystem. Although <str<strong>on</strong>g>the</str<strong>on</strong>g>y do not dominate<br />

ecosystem food webs like larger carnivores, meso-carnivores can have significant influences <strong>on</strong><br />

nutrient flows in a system, drive prey community structure and distributi<strong>on</strong>, and fill distinct<br />

niches, such as seed distributors (Roemer et al. 2009). As disease reservoirs, <str<strong>on</strong>g>the</str<strong>on</strong>g>se meso-<br />

carnivores can influence and temper <str<strong>on</strong>g>the</str<strong>on</strong>g> effects <str<strong>on</strong>g>of</str<strong>on</strong>g> larger carnivores in an ecosystem. With high<br />

cross-species infecti<strong>on</strong> rates, <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>skunk</str<strong>on</strong>g> reservoir can infect and kill larger carnivores thus<br />

altering dominant carnivore densities and populati<strong>on</strong> structures (Roemer et al. 2009). The<br />

<str<strong>on</strong>g>striped</str<strong>on</strong>g> <str<strong>on</strong>g>skunk</str<strong>on</strong>g> is <str<strong>on</strong>g>the</str<strong>on</strong>g> host species for <str<strong>on</strong>g>the</str<strong>on</strong>g> rabies virus in California, sou<str<strong>on</strong>g>the</str<strong>on</strong>g>rn Ariz<strong>on</strong>a, and <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

central United States.<br />

The changing landscape<br />

Human populati<strong>on</strong>s are rapidly increasing at a rate <str<strong>on</strong>g>of</str<strong>on</strong>g> almost 80 milli<strong>on</strong> people per year<br />

(United States Bureau <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> Census 2009). In resp<strong>on</strong>se to this global increase in human<br />

populati<strong>on</strong> size, land use and land cover change c<strong>on</strong>tinues to accommodate <str<strong>on</strong>g>the</str<strong>on</strong>g> needs <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

developing and migrating populati<strong>on</strong>s (Grimm et al. 2008). These anthropogenic landscape<br />

alterati<strong>on</strong>s encompass numerous disturbances to natural ecosystem processes. Urbanizati<strong>on</strong>,<br />

water use and management, and agricultural land uses are all examples landscape alterati<strong>on</strong>s at a<br />

local scale. These local disturbances influence much broader, global envir<strong>on</strong>mental changes<br />

including declines in water quality, air polluti<strong>on</strong>, and climate change (Patz et al. 2004).<br />

Although <str<strong>on</strong>g>the</str<strong>on</strong>g>se broad scale envir<strong>on</strong>mental alterati<strong>on</strong>s have str<strong>on</strong>g impacts across <str<strong>on</strong>g>the</str<strong>on</strong>g> world, local<br />

4


land use change can have a significant influence <strong>on</strong> important, more fine-scaled ecological<br />

processes, such as species diversity, invasive species, and disease spread (Bradley and Altizer<br />

2006, Crowl et al. 2008). Fine-scale land use alterati<strong>on</strong> is regi<strong>on</strong> specific. In c<strong>on</strong>sidering <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

effects <str<strong>on</strong>g>of</str<strong>on</strong>g> anthropogenic disturbance <strong>on</strong> local ecological processes, <strong>on</strong>e must focus <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

alterati<strong>on</strong>s occurring at <str<strong>on</strong>g>the</str<strong>on</strong>g> regi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> interest.<br />

Over <str<strong>on</strong>g>the</str<strong>on</strong>g> past 150 years, <str<strong>on</strong>g>the</str<strong>on</strong>g> natural <strong>prairie</strong> ecosystem <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> Great Plains in <str<strong>on</strong>g>the</str<strong>on</strong>g> central<br />

United States has experienced intense land use alterati<strong>on</strong>s. The eastern mesic <strong>grass</strong>lands have<br />

been reduced by 82 to 99% since <str<strong>on</strong>g>the</str<strong>on</strong>g> initiati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> eastern plains homesteads in 1830 (Sams<strong>on</strong> and<br />

Knopf 1994). Most <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> early reducti<strong>on</strong> in <strong>grass</strong>lands occurred due to <str<strong>on</strong>g>the</str<strong>on</strong>g> creati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

agricultural fields and intensive grazing practices (Coppedge et al. 2001). Although agricultural<br />

expansi<strong>on</strong> has slowed in <str<strong>on</strong>g>the</str<strong>on</strong>g> last decades, <strong>prairie</strong> habitat c<strong>on</strong>tinues to decline due to<br />

exurbanizati<strong>on</strong> and woody encroachment in <str<strong>on</strong>g>the</str<strong>on</strong>g> regi<strong>on</strong> (Abrams 1986, Sams<strong>on</strong> and Knopf 1994,<br />

Briggs et al. 2005). Exurbanizati<strong>on</strong> is <str<strong>on</strong>g>the</str<strong>on</strong>g> movement <str<strong>on</strong>g>of</str<strong>on</strong>g> urban residents to rural envir<strong>on</strong>ments.<br />

Because <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> different land use needs and values <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>se new rural residents, altered<br />

management practices are <str<strong>on</strong>g>of</str<strong>on</strong>g>ten enforced in <str<strong>on</strong>g>the</str<strong>on</strong>g>se rural envir<strong>on</strong>ments (Egan and Lul<str<strong>on</strong>g>of</str<strong>on</strong>g>f 2000).<br />

This rural migrati<strong>on</strong> transforms <str<strong>on</strong>g>the</str<strong>on</strong>g> landscape by c<strong>on</strong>centrating resources for local wildlife, and<br />

alters basic ecosystem processes, such as fire and grazing patterns. These envir<strong>on</strong>mental<br />

changes lead to additi<strong>on</strong>al land cover alterati<strong>on</strong>s, such as woody encroachment. In <str<strong>on</strong>g>the</str<strong>on</strong>g> Flint Hills<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> Kansas in <str<strong>on</strong>g>the</str<strong>on</strong>g> central porti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> Great Plains, <str<strong>on</strong>g>the</str<strong>on</strong>g>re has been a 28% increase in shrub<br />

habitat and a 58% increase in forested habitat over <str<strong>on</strong>g>the</str<strong>on</strong>g> past 60 years (Briggs et al. 2005). This<br />

increase may be attributed to two specific causes. First, landscape fragmentati<strong>on</strong> due to<br />

agriculture and exurbanizati<strong>on</strong> patterns have led to decreased fire frequencies and increased seed<br />

source availability (Briggs et al. 2005). Natural <strong>prairie</strong> fires have been reduced to protect homes<br />

5


and fields, allowing gallery forest to expand from stream sides and shrubs to increase al<strong>on</strong>g<br />

slopes. Sec<strong>on</strong>d, <str<strong>on</strong>g>the</str<strong>on</strong>g> natural and migratory grazers <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>prairie</strong> ecosystem, bis<strong>on</strong>, have been<br />

virtually eradicated and intensive cattle grazing practices have been introduced. This grazing<br />

pattern reduces fuel load for fires, thus stopping fires from reaching intensities str<strong>on</strong>g enough to<br />

reduce woody invasi<strong>on</strong>. Even in high and intermediate fire regimes, areas <str<strong>on</strong>g>of</str<strong>on</strong>g> intense grazing<br />

have shown increased woody vegetati<strong>on</strong> in <strong>grass</strong>lands (Briggs et al. 2002). These land use and<br />

land cover alterati<strong>on</strong>s may have a significant impact <strong>on</strong> an endemic zo<strong>on</strong>otic disease in <str<strong>on</strong>g>the</str<strong>on</strong>g> area,<br />

rabies.<br />

Integrating epidemiological comp<strong>on</strong>ents<br />

The rabies disease study system <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> Central Plains is dependent <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> integrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> viral properties <str<strong>on</strong>g>of</str<strong>on</strong>g> rabies, <str<strong>on</strong>g>the</str<strong>on</strong>g> host ecology <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>striped</str<strong>on</strong>g> <str<strong>on</strong>g>skunk</str<strong>on</strong>g>, and <str<strong>on</strong>g>the</str<strong>on</strong>g> changing habitat <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>tall</strong>-<strong>grass</strong> <strong>prairie</strong>. To c<strong>on</strong>sider <str<strong>on</strong>g>the</str<strong>on</strong>g>se disease factors in predicting rabies risk to human health,<br />

I first studied <str<strong>on</strong>g>the</str<strong>on</strong>g> movement and behavioral characteristics <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>striped</str<strong>on</strong>g> <str<strong>on</strong>g>skunk</str<strong>on</strong>g> through <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

combinati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> field and genetic methods. Skunks were radio-tagged and tracked across<br />

anthropogenically disturbed and undisturbed habitats within <str<strong>on</strong>g>the</str<strong>on</strong>g> Flint Hills regi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Kansas.<br />

Tissue samples were collected and analyzed from marked individuals as well as additi<strong>on</strong>al<br />

<str<strong>on</strong>g>skunk</str<strong>on</strong>g>s from <str<strong>on</strong>g>the</str<strong>on</strong>g> study regi<strong>on</strong>. Results from <str<strong>on</strong>g>the</str<strong>on</strong>g>se studies provided informati<strong>on</strong> <strong>on</strong> <str<strong>on</strong>g>striped</str<strong>on</strong>g> <str<strong>on</strong>g>skunk</str<strong>on</strong>g><br />

habitat preference, densities, social behaviors, and dispersal characteristics; ecological factors<br />

that can have a str<strong>on</strong>g influence <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> spread <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> rabies virus. These findings are described in<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> sec<strong>on</strong>d chapter <str<strong>on</strong>g>of</str<strong>on</strong>g> this <str<strong>on</strong>g>the</str<strong>on</strong>g>sis.<br />

Based <strong>on</strong> habitat-specific density estimates from this study and <str<strong>on</strong>g>the</str<strong>on</strong>g> literature,<br />

<str<strong>on</strong>g>striped</str<strong>on</strong>g> <str<strong>on</strong>g>skunk</str<strong>on</strong>g> den locati<strong>on</strong>s were integrated into an individual-based c<strong>on</strong>tact network across <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

broader regi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> Upper Kansas River Watershed. In this modeling approach I had <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

6


opportunity to integrate properties <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> rabies virus and <str<strong>on</strong>g>the</str<strong>on</strong>g> underlying and altered landscape <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> Flint Hills with <str<strong>on</strong>g>the</str<strong>on</strong>g> characteristics <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> disease host. A complex systems network approach<br />

was applied to <str<strong>on</strong>g>the</str<strong>on</strong>g> data, in which real-world systems are modeled in an attempt to avoid<br />

unrealistic assumpti<strong>on</strong>s (Barrat et al. 2008). With data storage and processing capabilities<br />

c<strong>on</strong>tinually growing, complex interacti<strong>on</strong>s are increasingly modeled through <str<strong>on</strong>g>the</str<strong>on</strong>g> use <str<strong>on</strong>g>of</str<strong>on</strong>g> network<br />

representati<strong>on</strong>s in diverse fields such as human social interacti<strong>on</strong>s, ec<strong>on</strong>omic markets, and<br />

ecosystem food webs (Barrat et al. 2008, Lewis et al. 2008, Bascompte 2009, Schweitzer et al.<br />

2009). These models are also very useful in ecological forecasting as predicted ecosystem<br />

alterati<strong>on</strong>s can be used as a basis for network design. This complex network was spatially<br />

explicit and was placed <strong>on</strong> both <str<strong>on</strong>g>the</str<strong>on</strong>g> current landscape as well as future landscapes predicted<br />

based <strong>on</strong> woody expansi<strong>on</strong> in <str<strong>on</strong>g>the</str<strong>on</strong>g> regi<strong>on</strong>. Using <str<strong>on</strong>g>the</str<strong>on</strong>g> complex network as a background, an SEIR<br />

(susceptible-exposed-infected-removed) approach was used to simulate rabies spread through <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

network. The disease will spread am<strong>on</strong>g individual <str<strong>on</strong>g>skunk</str<strong>on</strong>g>s following a series <str<strong>on</strong>g>of</str<strong>on</strong>g> infecti<strong>on</strong><br />

probabilities based <strong>on</strong> both spatial distance and specific properties <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> rabies virus. This<br />

modeling approach incorporated each <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> three comp<strong>on</strong>ents <str<strong>on</strong>g>of</str<strong>on</strong>g> disease spread: 1) host<br />

distributi<strong>on</strong> and behavior were integrated via habitat-specific densities and c<strong>on</strong>tact rates in <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

creati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> nodes and links <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> network; 2) viral properties were integrated through <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

probabilities <str<strong>on</strong>g>of</str<strong>on</strong>g> infecti<strong>on</strong> in <str<strong>on</strong>g>the</str<strong>on</strong>g> SEIR simulati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> rabies spread through <str<strong>on</strong>g>the</str<strong>on</strong>g> network; and 3)<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> changing landscape was modeled through <str<strong>on</strong>g>the</str<strong>on</strong>g> spatially explicit placement <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> network <strong>on</strong><br />

varying levels <str<strong>on</strong>g>of</str<strong>on</strong>g> woody expansi<strong>on</strong> across <str<strong>on</strong>g>the</str<strong>on</strong>g> Kansas watershed. The results <str<strong>on</strong>g>of</str<strong>on</strong>g> this modeling<br />

approach are described in <str<strong>on</strong>g>the</str<strong>on</strong>g> third <str<strong>on</strong>g>the</str<strong>on</strong>g>sis chapter.<br />

7


References<br />

Abrams, M.D. 1986. Historical development <str<strong>on</strong>g>of</str<strong>on</strong>g> gallery forests in nor<str<strong>on</strong>g>the</str<strong>on</strong>g>ast Kansas. Vegetatio<br />

65:29-37.<br />

Barrett, R., C.W. Kuzawa, T. McDade, and G.J. Armelagos. 1998. Emerging and re-emerging<br />

infectious diseases: <str<strong>on</strong>g>the</str<strong>on</strong>g> third epidemiologic transiti<strong>on</strong>. Annual Review <str<strong>on</strong>g>of</str<strong>on</strong>g> Anthropology<br />

27:247-271.<br />

Bascompte, J. 2009. Disentangling <str<strong>on</strong>g>the</str<strong>on</strong>g> web <str<strong>on</strong>g>of</str<strong>on</strong>g> life. Science 325:416-419.<br />

Bixler, A., and J. Gittleman. 2000. Variati<strong>on</strong> in home range and use <str<strong>on</strong>g>of</str<strong>on</strong>g> habitat in <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>striped</str<strong>on</strong>g><br />

<str<strong>on</strong>g>skunk</str<strong>on</strong>g> (<str<strong>on</strong>g>Mephitis</str<strong>on</strong>g> <str<strong>on</strong>g>mephitis</str<strong>on</strong>g>). Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Zoology (L<strong>on</strong>d<strong>on</strong>) 251:525-33.<br />

Bradley, C.A., and S. Altizer. 2006. Urbanizati<strong>on</strong> and <str<strong>on</strong>g>the</str<strong>on</strong>g> ecology <str<strong>on</strong>g>of</str<strong>on</strong>g> wildlife diseases. Trends in<br />

<str<strong>on</strong>g>Ecology</str<strong>on</strong>g> and Evoluti<strong>on</strong> 22:95-102.<br />

Briggs, J.M., A.K. Knapp, B.L. Brock. 2002. Expansi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> woody plants in <strong>tall</strong>-<strong>grass</strong> <strong>prairie</strong>: A<br />

15-year study <str<strong>on</strong>g>of</str<strong>on</strong>g> fire and fire-grazing interacti<strong>on</strong>s. American Midland Naturalist 147:287-<br />

294.<br />

Briggs, J. M., A. K. Knapp, J. M. Blair, J. L. Heisler, G. A. Hoch, M. S. Lett, and J. K.<br />

McCarr<strong>on</strong>. 2005. An ecosystem in transiti<strong>on</strong>: Causes and c<strong>on</strong>sequences <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>versi<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> mesic <strong>grass</strong>land to shrubland. Bioscience 55:243-254.<br />

Center for Disease C<strong>on</strong>trol and Preventi<strong>on</strong>. 2007. Rabies. http://www.cdc.gov/rabies. Accessed<br />

07 September 2009.<br />

Coppedge, B.R., D.M. Engle, S.D. Fuhlendorf, R.E. Masters, and M.S. Gregory. 2001.<br />

Landscape cover types and pattern dynamics in fragmented Sou<str<strong>on</strong>g>the</str<strong>on</strong>g>rn Great Plains<br />

<strong>grass</strong>lands, USA. Landscape <str<strong>on</strong>g>Ecology</str<strong>on</strong>g> 16:677-690.<br />

Crowl, T.A., T.O. Crist, R.R. Paramenter, G. Belovsky, and A.E. Lugo. 2008. The spread <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

invasive species and infectious disease as drivers <str<strong>on</strong>g>of</str<strong>on</strong>g> ecosystem change. Fr<strong>on</strong>tiers in<br />

<str<strong>on</strong>g>Ecology</str<strong>on</strong>g> and <str<strong>on</strong>g>the</str<strong>on</strong>g> Envir<strong>on</strong>ment 6:238-246.<br />

Daszak P., A.A. Cunningham, and A.D. Hyatt. 2001. Anthropogenic envir<strong>on</strong>mental change and<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> emergence <str<strong>on</strong>g>of</str<strong>on</strong>g> infectious diseases in wildlife. Acta Tropica 78:103-116.<br />

Dietzschold, B., J. Li, M. Faber, and M. Schnell. 2008. C<strong>on</strong>cepts in <str<strong>on</strong>g>the</str<strong>on</strong>g> pathogenesis <str<strong>on</strong>g>of</str<strong>on</strong>g> rabies.<br />

Future Virology 3:481-190.<br />

Egan, A.F., and A.E. Lul<str<strong>on</strong>g>of</str<strong>on</strong>g>f. 2000. The exurbanizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> America’s forests. Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Forestry<br />

98:26-30.<br />

Field, H.E. 2009. Bats and emerging zo<strong>on</strong>oses: Henipaviruses and SARS. Zo<strong>on</strong>oses and Public<br />

8


Health 56:278-284.<br />

Gehrt, S.D. 2005. Seas<strong>on</strong>al survival and cause-specific mortality <str<strong>on</strong>g>of</str<strong>on</strong>g> urban and rural <str<strong>on</strong>g>striped</str<strong>on</strong>g><br />

<str<strong>on</strong>g>skunk</str<strong>on</strong>g>s in <str<strong>on</strong>g>the</str<strong>on</strong>g> absence <str<strong>on</strong>g>of</str<strong>on</strong>g> rabies. Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Mammalogy 86:1164-1170.<br />

Grimm, N.B., J.M. Grove, S.T.A. Pickett, and C.L. Redman. 2000. Integrated approaches to<br />

l<strong>on</strong>g-term studies <str<strong>on</strong>g>of</str<strong>on</strong>g> urban ecological systems. BioScience 50:571-584.<br />

Grimm N.B., D. Foster, P. Gr<str<strong>on</strong>g>of</str<strong>on</strong>g>fman, J.M. Grove, C.S. Hopkins, K.J. Nadelh<str<strong>on</strong>g>of</str<strong>on</strong>g>fer, D.E. Pataki,<br />

and D.P.C. Peters. 2008. The changing landscape: ecosystem resp<strong>on</strong>ses to urbanizati<strong>on</strong><br />

and polluti<strong>on</strong> across climatic and societal gradients. Fr<strong>on</strong>tiers in <str<strong>on</strong>g>Ecology</str<strong>on</strong>g> and <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

Envir<strong>on</strong>ment 6:264-272.<br />

Kaplan, C. 1985. Rabies: a worldwide disease. Pages 1-21 in P.J. Bac<strong>on</strong>, editor. Populati<strong>on</strong><br />

dynamics <str<strong>on</strong>g>of</str<strong>on</strong>g> rabies in wildlife. Academic Press, New York, New York.<br />

Larivière, S., L.R. Walt<strong>on</strong> and F. Messier. 1999. Selecti<strong>on</strong> by <str<strong>on</strong>g>striped</str<strong>on</strong>g> <str<strong>on</strong>g>skunk</str<strong>on</strong>g>s (<str<strong>on</strong>g>Mephitis</str<strong>on</strong>g> <str<strong>on</strong>g>mephitis</str<strong>on</strong>g>)<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> farmsteads and buildings as denning sites. American Midland Naturalist 142:96-101.<br />

Larivière, S., and F. Messier. 2000. Habitat selecti<strong>on</strong> and use <str<strong>on</strong>g>of</str<strong>on</strong>g> edges by <str<strong>on</strong>g>striped</str<strong>on</strong>g> <str<strong>on</strong>g>skunk</str<strong>on</strong>g>s in<br />

Canadian <strong>prairie</strong>s. Canadian Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Zoology 78:366-372.<br />

Lewis, K., J. Kaufman, M. G<strong>on</strong>zalez, A. Wimmer, and N. Christakis. 2008. Tastes, ties, and<br />

time: A new social network dataset using Facebook.com. Social Networks 30:330-342.<br />

Morens, D.M., G.K. Folkers, and A.S. Fauci. 2004. The challenge <str<strong>on</strong>g>of</str<strong>on</strong>g> emerging and re-emerging<br />

infectious diseases. Nature 430:242-249.<br />

Nel, L.H., and W. Markotter. 2007. Lyssaviruses. Critical Reviews in Microbiology 33:301-324.<br />

Patz J.A., P. Daszak, G.M. Tabor, A.A. Aguirre, M. Pearl, J. Epstein, N. D. Wolfe, A.M.<br />

Kilpatrick, J. Foufopoulos, D. Molyneux, D.J. Bradley, and Members <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> Working<br />

Group <strong>on</strong> Land Use Change and Disease Emergence. 2004. Unhealthy landscapes: policy<br />

recommendati<strong>on</strong>s <strong>on</strong> land use change and infectious disease emergence. Envir<strong>on</strong>mental<br />

Health Perspectives 112:1092-1098<br />

Roemer, G.W., M. E. Gompper, and B. Van Valkenburgh. 2009. The ecological role <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

mammalian mesocarnivore. BioScience 59:165-173.<br />

Rosatte, R., and S. Larivière. 2003. Skunks. Pages 692-707 in G.A. Feldhamer, B.C. Thomps<strong>on</strong>,<br />

and J.A. Chapman, eds. Wild Mammals <str<strong>on</strong>g>of</str<strong>on</strong>g> North America: Biology, Management, and<br />

C<strong>on</strong>servati<strong>on</strong>, 2 nd ed. John Hopkins University Press, Baltimore, MD.<br />

Samps<strong>on</strong>, F., and F. Knopf. 1994. Prairie c<strong>on</strong>servati<strong>on</strong> in North America. BioScience 44:418-<br />

421.<br />

9


Schweitzer, F., G. Fagiolo, D. Sornette, F. Vega-Red<strong>on</strong>do, A. Vespignani, and D.R. White. 2009.<br />

Ec<strong>on</strong>omic networks: <str<strong>on</strong>g>the</str<strong>on</strong>g> new challenges. Science 325:422-425.<br />

United State Bureau <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> Census. 2009. Internati<strong>on</strong>al Database: Annual World Populati<strong>on</strong><br />

Change. United States Bureau <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> Census, Washingt<strong>on</strong>, D.C.<br />

Velasco-Villa A., S.A. Reeder, L.A. Orciari, P.A. Yager, R. Franka, J.D. Blant<strong>on</strong>, L. Zuckero, P.<br />

Hunt, E.H. Oertli, L.E. Robins<strong>on</strong>, and C.E. Rupprecht. 2008. Enzootic rabies eliminati<strong>on</strong><br />

from dogs and reemergence in wild terrestrial carnivores, United States. Emerging<br />

Infectious Diseases 14:1849-1854.<br />

Verts, B. J. 1967. The biology <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>striped</str<strong>on</strong>g> <str<strong>on</strong>g>skunk</str<strong>on</strong>g>. University <str<strong>on</strong>g>of</str<strong>on</strong>g> Illinois Press, Urbana. 218pp.<br />

Wade-Smith, J., and B.J. Verts. 1982. <str<strong>on</strong>g>Mephitis</str<strong>on</strong>g> <str<strong>on</strong>g>mephitis</str<strong>on</strong>g>. Mammalian Species 173:1-7.<br />

Weissinger, M.D., T.C. Theimer, D.L. Bergman, and T.J. Deliberto. 2009. Nightly and seas<strong>on</strong>al<br />

movements, seas<strong>on</strong>al home range, and focal locati<strong>on</strong> photo-m<strong>on</strong>itoring <str<strong>on</strong>g>of</str<strong>on</strong>g> urban <str<strong>on</strong>g>striped</str<strong>on</strong>g><br />

<str<strong>on</strong>g>skunk</str<strong>on</strong>g>s (<str<strong>on</strong>g>Mephitis</str<strong>on</strong>g> <str<strong>on</strong>g>mephitis</str<strong>on</strong>g>): implicati<strong>on</strong>s for rabies transmissi<strong>on</strong>. Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Wildlife<br />

Diseases 45:388-397.<br />

Wilcox, B.A., and D.J. Gubler. 2005. Disease ecology and <str<strong>on</strong>g>the</str<strong>on</strong>g> global emergence <str<strong>on</strong>g>of</str<strong>on</strong>g> zo<strong>on</strong>otic<br />

pathogens. Envir<strong>on</strong>mental Health and Preventative Medicine 10:263-272.<br />

10


Figures and Tables<br />

Figure 1.1 Distributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> terrestrial variants <str<strong>on</strong>g>of</str<strong>on</strong>g> rabies virus in <str<strong>on</strong>g>the</str<strong>on</strong>g> United States. Blue,<br />

orange, and green divisi<strong>on</strong>s are variants <str<strong>on</strong>g>of</str<strong>on</strong>g> rabies in <str<strong>on</strong>g>skunk</str<strong>on</strong>g>s; red represents racco<strong>on</strong> rabies;<br />

and purple and brown divisi<strong>on</strong>s define fox rabies variants. Adapted from Blant<strong>on</strong> et al.<br />

2007.<br />

11


CHAPTER 2 - <str<strong>on</strong>g>Ecology</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>striped</str<strong>on</strong>g> <str<strong>on</strong>g>skunk</str<strong>on</strong>g> (<str<strong>on</strong>g>Mephitis</str<strong>on</strong>g> <str<strong>on</strong>g>mephitis</str<strong>on</strong>g>) <strong>on</strong><br />

<strong>tall</strong>-<strong>grass</strong> <strong>prairie</strong>: Implicati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> anthropogenic habitat alterati<strong>on</strong>s<br />

<strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> distributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> a disease host.<br />

Sarah E. Bowe and Samantha M. Wisely<br />

Abstract<br />

Anthropogenic land use and land cover change is a global phenomen<strong>on</strong> that alters <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

epidemiological landscape. To understand <str<strong>on</strong>g>the</str<strong>on</strong>g> altered epizootic potential <str<strong>on</strong>g>of</str<strong>on</strong>g> rabies in <str<strong>on</strong>g>the</str<strong>on</strong>g> Flint<br />

Hills <str<strong>on</strong>g>of</str<strong>on</strong>g> Kansas due to human development, we studied <str<strong>on</strong>g>the</str<strong>on</strong>g> ecology <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> host species, <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

<str<strong>on</strong>g>striped</str<strong>on</strong>g> <str<strong>on</strong>g>skunk</str<strong>on</strong>g> (<str<strong>on</strong>g>Mephitis</str<strong>on</strong>g> <str<strong>on</strong>g>mephitis</str<strong>on</strong>g>), using spatial and genetic methods. A total <str<strong>on</strong>g>of</str<strong>on</strong>g> 27 <str<strong>on</strong>g>striped</str<strong>on</strong>g><br />

<str<strong>on</strong>g>skunk</str<strong>on</strong>g>s were radio-marked and tracked in four study areas <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> K<strong>on</strong>za Prairie Biological<br />

Stati<strong>on</strong> (KPBS) and in Manhattan, Kansas. In additi<strong>on</strong>, we collected 107 tissue and blood<br />

samples from <str<strong>on</strong>g>striped</str<strong>on</strong>g> <str<strong>on</strong>g>skunk</str<strong>on</strong>g>s across <str<strong>on</strong>g>the</str<strong>on</strong>g> study areas and <str<strong>on</strong>g>the</str<strong>on</strong>g> broader Flint Hills regi<strong>on</strong>. Radio-<br />

marked <str<strong>on</strong>g>skunk</str<strong>on</strong>g>s varied habitat preference depending <strong>on</strong> behavioral activity. Skunks preferred<br />

forested habitat for daytime denning, but preferred <strong>grass</strong>land for nightly foraging movements.<br />

We found greater clustering <str<strong>on</strong>g>of</str<strong>on</strong>g> individuals within anthropogenically disturbed habitats than in<br />

undisturbed habitats. Striped <str<strong>on</strong>g>skunk</str<strong>on</strong>g>s in disturbed envir<strong>on</strong>ments had significantly greater home<br />

range overlap than those in undisturbed habitats (ANOVA, F=4.03, p=0.05). Den site density<br />

was significantly greater in disturbed habitats than in undisturbed (ANOVA, F=18.29, p


c<strong>on</strong>tact rates are increased in areas <str<strong>on</strong>g>of</str<strong>on</strong>g> human development and disturbed envir<strong>on</strong>ments than in<br />

undisturbed <strong>grass</strong>land habitat. The lack <str<strong>on</strong>g>of</str<strong>on</strong>g> correlati<strong>on</strong> between spatial distributi<strong>on</strong> and genetic<br />

relatedness suggests that <str<strong>on</strong>g>the</str<strong>on</strong>g>se populati<strong>on</strong>s are highly admixed. The affinity for disturbed<br />

habitats, social habits, and dispersal capabilities or this reservoir host c<strong>on</strong>tributes to increased<br />

disease transmissi<strong>on</strong> potential in suburban and exurban areas. By understanding habitat affinities<br />

and landscape features which promote host to host c<strong>on</strong>tact, disease transmissi<strong>on</strong> potential can be<br />

reduced by modifying primary <str<strong>on</strong>g>skunk</str<strong>on</strong>g> habitat and focusing vaccinati<strong>on</strong> efforts <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g>se preferred<br />

areas.<br />

Introducti<strong>on</strong><br />

Anthropogenic habitat disturbances, including urbanizati<strong>on</strong>, land and water use,<br />

polluti<strong>on</strong>, and resulting climatic changes, impact a variety <str<strong>on</strong>g>of</str<strong>on</strong>g> important ecological processes and<br />

dynamics (Grimm et al. 2000, Grimm et al. 2008). Human disturbance has also been implicated<br />

for <str<strong>on</strong>g>the</str<strong>on</strong>g> world-wide increase in <str<strong>on</strong>g>the</str<strong>on</strong>g> emergence and propagati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> zo<strong>on</strong>otic infectious disease<br />

(Daszak et al. 2001). Landscape alterati<strong>on</strong>s and increased human mobility have greatly<br />

increased rates <str<strong>on</strong>g>of</str<strong>on</strong>g> disease spread and <str<strong>on</strong>g>the</str<strong>on</strong>g> spatial distributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> disease outbreaks over recent<br />

decades (Patz et al. 2004, Crowl et al. 2008, Grimm et al. 2008). The direct effects <str<strong>on</strong>g>of</str<strong>on</strong>g> land use<br />

change <strong>on</strong> disease epidemiology are complex and variable, as anthropogenic disturbance<br />

influences <str<strong>on</strong>g>the</str<strong>on</strong>g> ecology and evoluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> host species and host-pathogen dynamics (Patz et al.<br />

2004, Wilcox and Gubler 2005). Examples <str<strong>on</strong>g>of</str<strong>on</strong>g> this phenomen<strong>on</strong> have been documented for a<br />

variety <str<strong>on</strong>g>of</str<strong>on</strong>g> zo<strong>on</strong>otic diseases. In <str<strong>on</strong>g>the</str<strong>on</strong>g> nor<str<strong>on</strong>g>the</str<strong>on</strong>g>rn United States, anthropogenic factors including<br />

forest fragmentati<strong>on</strong>, urbanizati<strong>on</strong>, and <str<strong>on</strong>g>the</str<strong>on</strong>g> subsequent loss <str<strong>on</strong>g>of</str<strong>on</strong>g> species richness may be directly<br />

associated with increased risk <str<strong>on</strong>g>of</str<strong>on</strong>g> Lyme disease (Schmidt and Ostfeld 2001, Patz et al. 2004).<br />

West Nile virus exposure in s<strong>on</strong>gbirds has been linked to urbanizati<strong>on</strong> and related land use<br />

13


alterati<strong>on</strong>s in Atlanta, Georgia (Bradley et al. 2008). Additi<strong>on</strong>al zo<strong>on</strong>otic diseases, including<br />

Nipah virus (Daszak et al. 2001, Field 2009), Leptospirosis (Vijayachari et al. 2008), and several<br />

urban bacterial zo<strong>on</strong>oses (Comer 2001) have all been associated with developing and expanding<br />

urban areas throughout <str<strong>on</strong>g>the</str<strong>on</strong>g> world. To effectively manage and c<strong>on</strong>trol <str<strong>on</strong>g>the</str<strong>on</strong>g>se zo<strong>on</strong>otic diseases, we<br />

must better understand how <str<strong>on</strong>g>the</str<strong>on</strong>g> structure <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> underlying and changing landscape affects <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

ecology <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> host species resp<strong>on</strong>sible for <str<strong>on</strong>g>the</str<strong>on</strong>g> spread <str<strong>on</strong>g>of</str<strong>on</strong>g> disease.<br />

Rabies is a globally distributed zo<strong>on</strong>otic disease with significant impacts to human,<br />

compani<strong>on</strong> animal, and livestock health. World-wide more than 50,000 people die from rabies<br />

infecti<strong>on</strong> each year. In <str<strong>on</strong>g>the</str<strong>on</strong>g> United States, less than two people die each year due to aggressive<br />

c<strong>on</strong>trol, preventi<strong>on</strong> and treatment programs that cost over $300M per annum (Center for Disease<br />

C<strong>on</strong>trol and Preventi<strong>on</strong> 2007). Although domestic dogs have been eliminated as a reservoir for<br />

rabies in <str<strong>on</strong>g>the</str<strong>on</strong>g> U.S. (Belotto et al. 2005, Velasco-Villa et al. 2008), <str<strong>on</strong>g>the</str<strong>on</strong>g> disease c<strong>on</strong>tinues to<br />

circulate am<strong>on</strong>g wildlife reservoirs with spillovers into compani<strong>on</strong> animals, livestock, and<br />

humans. The threat <str<strong>on</strong>g>of</str<strong>on</strong>g> spillover increases as encroachment <str<strong>on</strong>g>of</str<strong>on</strong>g> urban areas <strong>on</strong> natural host<br />

habitats increases <str<strong>on</strong>g>the</str<strong>on</strong>g> density and c<strong>on</strong>tact <str<strong>on</strong>g>of</str<strong>on</strong>g> unvaccinated compani<strong>on</strong> animals with urban<br />

adapted wildlife (Wunner 2005). This developing human-wildlife interface is <str<strong>on</strong>g>of</str<strong>on</strong>g> particular<br />

c<strong>on</strong>cern, as <str<strong>on</strong>g>the</str<strong>on</strong>g> patterns <str<strong>on</strong>g>of</str<strong>on</strong>g> disease spread are not thoroughly understood. Thus epidemiological<br />

modeling and surveillance <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> emerging exurban ecosystem will be valuable for <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

management and c<strong>on</strong>trol <str<strong>on</strong>g>of</str<strong>on</strong>g> rabies (Wunner 2005).<br />

Rabies epidemiology depends <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> spread <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> virus from infected individuals to<br />

susceptible <strong>on</strong>es. Inoculati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>on</strong>e host from ano<str<strong>on</strong>g>the</str<strong>on</strong>g>r occurs via <str<strong>on</strong>g>the</str<strong>on</strong>g> transfer <str<strong>on</strong>g>of</str<strong>on</strong>g> viri<strong>on</strong>s in saliva<br />

and animals with a str<strong>on</strong>g bite reflex, like carnivores, are most liable to act as hosts. Once<br />

infected, hosts typically display <str<strong>on</strong>g>the</str<strong>on</strong>g> furious form <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> disease involving loss <str<strong>on</strong>g>of</str<strong>on</strong>g> fear and<br />

14


heightened aggressi<strong>on</strong>, increasing <str<strong>on</strong>g>the</str<strong>on</strong>g> probability <str<strong>on</strong>g>of</str<strong>on</strong>g> infecting additi<strong>on</strong>al individuals (Kaplan<br />

1985). The most comm<strong>on</strong> host <str<strong>on</strong>g>of</str<strong>on</strong>g> rabies in <str<strong>on</strong>g>the</str<strong>on</strong>g> United States is <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>striped</str<strong>on</strong>g> <str<strong>on</strong>g>skunk</str<strong>on</strong>g> (<str<strong>on</strong>g>Mephitis</str<strong>on</strong>g><br />

<str<strong>on</strong>g>mephitis</str<strong>on</strong>g>, Greenwood et al. 1997, Rosatte and Larivière 2003). Striped <str<strong>on</strong>g>skunk</str<strong>on</strong>g>s range from<br />

sou<str<strong>on</strong>g>the</str<strong>on</strong>g>rn Canada, throughout most <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> United States and into <str<strong>on</strong>g>the</str<strong>on</strong>g> nor<str<strong>on</strong>g>the</str<strong>on</strong>g>rn porti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> Mexico<br />

(Wade-Smith and Verts 1982). They occupy a wide range <str<strong>on</strong>g>of</str<strong>on</strong>g> habitats, but most <str<strong>on</strong>g>of</str<strong>on</strong>g>ten occur in<br />

forest-edge z<strong>on</strong>es (Bixler and Gittleman 2000, Larivière and Messier 2000) and near agricultural<br />

areas (Larivière and Messier 1999). Striped <str<strong>on</strong>g>skunk</str<strong>on</strong>g>s are omnivores with diets c<strong>on</strong>sisting largely<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> insects, which are ga<str<strong>on</strong>g>the</str<strong>on</strong>g>red primarily through digging. The <str<strong>on</strong>g>skunk</str<strong>on</strong>g> is nocturnal, normally<br />

n<strong>on</strong>aggressive, and does not defend territories (Wade-Smith and Verts 1982). However, when<br />

infected with rabies, <str<strong>on</strong>g>skunk</str<strong>on</strong>g>s typically aband<strong>on</strong> this passive behavior, displaying <str<strong>on</strong>g>the</str<strong>on</strong>g> furious form<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> disease (Aranda and López-de Buen 1999). Because <str<strong>on</strong>g>striped</str<strong>on</strong>g> <str<strong>on</strong>g>skunk</str<strong>on</strong>g>s are not territorial, <str<strong>on</strong>g>the</str<strong>on</strong>g>y<br />

may be more pr<strong>on</strong>e to communal denning and o<str<strong>on</strong>g>the</str<strong>on</strong>g>r gregarious behaviors, activities that increase<br />

c<strong>on</strong>tact rates and risk <str<strong>on</strong>g>of</str<strong>on</strong>g> rabies spread. In additi<strong>on</strong>, <str<strong>on</strong>g>skunk</str<strong>on</strong>g>s are predisposed to human disturbed<br />

and exurban habitats (Gehrt 2005, Weissinger et al. 2009) and <str<strong>on</strong>g>the</str<strong>on</strong>g> current increase in <str<strong>on</strong>g>the</str<strong>on</strong>g>se<br />

habitats could increase <str<strong>on</strong>g>skunk</str<strong>on</strong>g> density and proximity to humans, thus amplifying <str<strong>on</strong>g>the</str<strong>on</strong>g> risk <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

human exposure through c<strong>on</strong>tact with domestic cats, dogs, and livestock.<br />

In <str<strong>on</strong>g>the</str<strong>on</strong>g> Great Plains, where <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>striped</str<strong>on</strong>g> <str<strong>on</strong>g>skunk</str<strong>on</strong>g> is <str<strong>on</strong>g>the</str<strong>on</strong>g> dominant rabies host, mesic <strong>grass</strong>lands<br />

have decreased by an estimated 82-99% since <str<strong>on</strong>g>the</str<strong>on</strong>g> initiati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> eastern plains homesteads in 1830<br />

(Sams<strong>on</strong> and Knopf 1994). The Flint Hills <str<strong>on</strong>g>of</str<strong>on</strong>g> Kansas is <str<strong>on</strong>g>the</str<strong>on</strong>g> largest remaining intact tract <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>tall</strong>-<br />

<strong>grass</strong> <strong>prairie</strong>, but it is not without human alterati<strong>on</strong>. Exurbanizati<strong>on</strong> is occurring across <str<strong>on</strong>g>the</str<strong>on</strong>g>se<br />

<strong>grass</strong>lands as urban residents shift to rural envir<strong>on</strong>ments. These ‘exurbanites’ <str<strong>on</strong>g>of</str<strong>on</strong>g>ten have<br />

different land use needs and values than traditi<strong>on</strong>al residents, leading to altered management<br />

practices in <str<strong>on</strong>g>the</str<strong>on</strong>g>se rural envir<strong>on</strong>ments (Egan and Lul<str<strong>on</strong>g>of</str<strong>on</strong>g>f 2000). This rural migrati<strong>on</strong> transforms<br />

15


<str<strong>on</strong>g>the</str<strong>on</strong>g> landscape by c<strong>on</strong>centrating resources for local wildlife, and alters basic ecosystem processes,<br />

such as fire and grazing patterns. In <str<strong>on</strong>g>the</str<strong>on</strong>g> last 60 years, exurbanizati<strong>on</strong> and <str<strong>on</strong>g>the</str<strong>on</strong>g> resulting fire<br />

suppressi<strong>on</strong> have resulted in a 28% increase in shrub habitat and a 58% increase in forested<br />

habitat in <str<strong>on</strong>g>the</str<strong>on</strong>g> Flint Hills <strong>tall</strong> <strong>grass</strong> <strong>prairie</strong> ecosystem (Briggs et al. 2005). These habitat<br />

alterati<strong>on</strong>s have created potential habitat niches for zo<strong>on</strong>otic disease al<strong>on</strong>g with <str<strong>on</strong>g>the</str<strong>on</strong>g> introduced<br />

urban resources.<br />

Because <str<strong>on</strong>g>the</str<strong>on</strong>g> spread <str<strong>on</strong>g>of</str<strong>on</strong>g> rabies is heavily dependent <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> ecology <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> host species<br />

(Kaplan 1985) and because host species ecology is greatly influenced by anthropogenic habitat<br />

alterati<strong>on</strong>s (Bradley and Altizer 2006), it is important to understand how <str<strong>on</strong>g>striped</str<strong>on</strong>g> <str<strong>on</strong>g>skunk</str<strong>on</strong>g><br />

populati<strong>on</strong>s are distributed across <str<strong>on</strong>g>the</str<strong>on</strong>g> current landscape and how animals utilize <str<strong>on</strong>g>the</str<strong>on</strong>g> human-<br />

influenced envir<strong>on</strong>ments. As <str<strong>on</strong>g>the</str<strong>on</strong>g> landscape and habitat <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>striped</str<strong>on</strong>g> <str<strong>on</strong>g>skunk</str<strong>on</strong>g>s change with<br />

anthropogenic expansi<strong>on</strong>, <str<strong>on</strong>g>the</str<strong>on</strong>g> movement and distributi<strong>on</strong> patterns <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> species will change as<br />

well. The predicted increase in forested and disturbed habitat across mesic <strong>grass</strong>lands suggests<br />

that suitable habitat for this reservoir host is increasing. In anthropogenically disturbed<br />

envir<strong>on</strong>ments, wildlife <str<strong>on</strong>g>of</str<strong>on</strong>g>ten live in close proximity to <strong>on</strong>e ano<str<strong>on</strong>g>the</str<strong>on</strong>g>r due to c<strong>on</strong>centrated available<br />

habitat and suitable resources within <str<strong>on</strong>g>the</str<strong>on</strong>g>se areas. This c<strong>on</strong>fined proximity leads to increased host<br />

c<strong>on</strong>tact rates and greater ease <str<strong>on</strong>g>of</str<strong>on</strong>g> disease spread (Bradley and Altizer 2006). By understanding<br />

host habitat affinity and behavior in this altered ecosystem, we can predict hotspots <str<strong>on</strong>g>of</str<strong>on</strong>g> rabies<br />

spread and disease management can be focused in <str<strong>on</strong>g>the</str<strong>on</strong>g>se areas (Slate et al. 2005).<br />

The central objective <str<strong>on</strong>g>of</str<strong>on</strong>g> this study was to understand <str<strong>on</strong>g>the</str<strong>on</strong>g> ecology <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>striped</str<strong>on</strong>g> <str<strong>on</strong>g>skunk</str<strong>on</strong>g> in<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> developing exurban and rural matrix habitat that is increasing throughout <str<strong>on</strong>g>the</str<strong>on</strong>g> central United<br />

States to better explain how zo<strong>on</strong>otic diseases such as rabies will spread from host to host and<br />

ultimately from urban center to urban center. We completed both spatial and genetic analyses <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

16


<str<strong>on</strong>g>skunk</str<strong>on</strong>g>s in human disturbed and undisturbed habitat types in <str<strong>on</strong>g>the</str<strong>on</strong>g> Flint Hills <str<strong>on</strong>g>of</str<strong>on</strong>g> nor<str<strong>on</strong>g>the</str<strong>on</strong>g>astern<br />

Kansas. We c<strong>on</strong>trasted social patterns, habitat affinities, and populati<strong>on</strong> characteristics <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

<str<strong>on</strong>g>striped</str<strong>on</strong>g> <str<strong>on</strong>g>skunk</str<strong>on</strong>g> in <str<strong>on</strong>g>the</str<strong>on</strong>g>se different habitat types to assist us in developing models <str<strong>on</strong>g>of</str<strong>on</strong>g> rabies<br />

epidemiology.<br />

Methods<br />

Study Area<br />

The Flint Hills extend from nor<str<strong>on</strong>g>the</str<strong>on</strong>g>ast Kansas to north-central Oklahoma. The limest<strong>on</strong>e<br />

beds underlying most <str<strong>on</strong>g>of</str<strong>on</strong>g> this regi<strong>on</strong> have prevented extensive cultivati<strong>on</strong>, and thus <str<strong>on</strong>g>the</str<strong>on</strong>g> Flint Hills<br />

are c<strong>on</strong>sidered <str<strong>on</strong>g>the</str<strong>on</strong>g> largest remaining tract <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>tall</strong> <strong>grass</strong> <strong>prairie</strong>. The landscape is dominated by<br />

mesic <strong>grass</strong>land species such as big bluestem (Andropog<strong>on</strong> gerardii), switch<strong>grass</strong> (Panicum<br />

virgatum), and Indian <strong>grass</strong> (Sorghastrum nutans) and experiences annual and seas<strong>on</strong>al variati<strong>on</strong><br />

in climate and precipitati<strong>on</strong> (Küchler 1967, Freeman and Hulbert 1985).<br />

We studied <str<strong>on</strong>g>the</str<strong>on</strong>g> ecology <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>striped</str<strong>on</strong>g> <str<strong>on</strong>g>skunk</str<strong>on</strong>g>s in two habitat types, anthropogenically<br />

disturbed and undisturbed, within <str<strong>on</strong>g>the</str<strong>on</strong>g> nor<str<strong>on</strong>g>the</str<strong>on</strong>g>astern porti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> Kansas Flint Hills (Figure 2.1).<br />

Undisturbed habitat was c<strong>on</strong>sidered to be primarily <strong>tall</strong>-<strong>grass</strong> <strong>prairie</strong> with some cattle and bis<strong>on</strong><br />

grazing bisected by riparian forest. This habitat was encompassed in a single study area, <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

K<strong>on</strong>za Prairie Biological Stati<strong>on</strong> (KPBS). The stati<strong>on</strong> is a 3,487 hectare area <str<strong>on</strong>g>of</str<strong>on</strong>g> native <strong>tall</strong> <strong>grass</strong><br />

<strong>prairie</strong> and riparian forest located approximately 13 km south <str<strong>on</strong>g>of</str<strong>on</strong>g> Manhattan (39°05’N and<br />

96°35’W). To study l<strong>on</strong>g-term ecological patterns, <str<strong>on</strong>g>the</str<strong>on</strong>g> KPBS is separated into 60 watersheds<br />

which undergo a variety <str<strong>on</strong>g>of</str<strong>on</strong>g> treatments that alter fire frequencies and large ungulate grazer<br />

activity. The sou<str<strong>on</strong>g>the</str<strong>on</strong>g>rn porti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> stati<strong>on</strong> is predominately undisturbed native <strong>tall</strong>-<strong>grass</strong><br />

<strong>prairie</strong>.<br />

17


Disturbed habitats were comprised <str<strong>on</strong>g>of</str<strong>on</strong>g> a matrix <str<strong>on</strong>g>of</str<strong>on</strong>g> exurban development, gallery forest,<br />

and agricultural lands and were located in three study areas including <str<strong>on</strong>g>the</str<strong>on</strong>g> towns <str<strong>on</strong>g>of</str<strong>on</strong>g> Ashland,<br />

Ogden, and <str<strong>on</strong>g>the</str<strong>on</strong>g> Manhattan suburbs. Skunks were captured and tagged near <str<strong>on</strong>g>the</str<strong>on</strong>g> small town <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Ashland about 3 km north <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> KPBS (39°07’N and 96°36’W). The majority <str<strong>on</strong>g>of</str<strong>on</strong>g> this habitat<br />

was large agricultural fields and private residence. Fields were separated by strips <str<strong>on</strong>g>of</str<strong>on</strong>g> woody<br />

vegetati<strong>on</strong>. This area is well c<strong>on</strong>nected to <str<strong>on</strong>g>the</str<strong>on</strong>g> nor<str<strong>on</strong>g>the</str<strong>on</strong>g>rn porti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> KPBS which has similar<br />

habitat compositi<strong>on</strong> with buildings surrounded by agriculture and gallery forest. Ashland and<br />

nor<str<strong>on</strong>g>the</str<strong>on</strong>g>rn KPBS were c<strong>on</strong>sidered a single disturbed study area. Skunks were also captured in<br />

Ogden, Kansas about 13 km southwest <str<strong>on</strong>g>of</str<strong>on</strong>g> Manhattan (39°07’N and 96°42’W). These individuals<br />

were trapped in a single barn <strong>on</strong> a small farm bordering suburban neighborhood development.<br />

The final trapping locati<strong>on</strong> was an exurban area about 8 km nor<str<strong>on</strong>g>the</str<strong>on</strong>g>ast <str<strong>on</strong>g>of</str<strong>on</strong>g> Manhattan (39°12’N<br />

and 96°30’W). This study site c<strong>on</strong>sisted <str<strong>on</strong>g>of</str<strong>on</strong>g> large areas <str<strong>on</strong>g>of</str<strong>on</strong>g> housing developments surrounding<br />

agricultural fields.<br />

Spatial Analysis<br />

N<strong>on</strong>-lethal, cage traps were set from August 2007 to January 2009 in each study area.<br />

These traps were baited with <str<strong>on</strong>g>skunk</str<strong>on</strong>g> grub lure (Kishel's Quality Animal Scents & Lures, Inc.,<br />

Sax<strong>on</strong>burg, Pennsylvania, U.S.A.) and dry cat food, wet canned cat food, or a combinati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

both grub lure and canned food. The traps were baited at dusk and checked at dawn. Captured<br />

<str<strong>on</strong>g>skunk</str<strong>on</strong>g>s were immobilized with an initial intramuscular injecti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> 0.3 ml <str<strong>on</strong>g>of</str<strong>on</strong>g> a Ketamine<br />

(8.3mg/kg) and Xylazine (1.7mg/kg) mixture. Additi<strong>on</strong>al doses were administered as needed to<br />

maintain immobilizati<strong>on</strong>. Animals were weighed and blood samples were collected<br />

intravenously from <str<strong>on</strong>g>the</str<strong>on</strong>g> jugular vein or ear tissue samples were taken for DNA analysis. Before<br />

recovery and release, each <str<strong>on</strong>g>skunk</str<strong>on</strong>g> was fitted with a radio transmitter mounted <strong>on</strong> a collar with a<br />

18


moti<strong>on</strong> sensitive mortality switch (Advanced Telemetry Systems, Inc., Isanti, Minnesota, U.S.A.)<br />

and marked with a numbered ear tag. Trapping and animal handling methods followed <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

procedures suggested by <str<strong>on</strong>g>the</str<strong>on</strong>g> American Society <str<strong>on</strong>g>of</str<strong>on</strong>g> Mammalogists (Gann<strong>on</strong> et al. 2007) and<br />

followed Kansas State University IACUC guidelines (Protocol numbers 2291 and 2578).<br />

Radio-tagged <str<strong>on</strong>g>skunk</str<strong>on</strong>g>s were located nightly using triangulati<strong>on</strong> methods. Locati<strong>on</strong>s were<br />

collected randomly throughout <str<strong>on</strong>g>the</str<strong>on</strong>g> night from 1800h to 0600h using handheld, 3-element<br />

directi<strong>on</strong>al Yagi antennae. Locati<strong>on</strong>s were estimated using <str<strong>on</strong>g>the</str<strong>on</strong>g> telemetry program LOAS<br />

Versi<strong>on</strong> 4.0 (Ecological S<str<strong>on</strong>g>of</str<strong>on</strong>g>tware Soluti<strong>on</strong>s LLC, Hegymagas, Hungary). Telemetry error was<br />

calculated using a double-blind beac<strong>on</strong> study (White and Garrott 1990) with unused radio-<br />

collars. Locati<strong>on</strong> data were not used if <str<strong>on</strong>g>the</str<strong>on</strong>g> observer was > 1 km from <str<strong>on</strong>g>the</str<strong>on</strong>g> estimated locati<strong>on</strong> site<br />

due to <str<strong>on</strong>g>the</str<strong>on</strong>g> relatively hilly terrain <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> study areas.<br />

Skunks were also located during <str<strong>on</strong>g>the</str<strong>on</strong>g> day to determine daytime denning or resting sites.<br />

These sites were determined by walking to <str<strong>on</strong>g>the</str<strong>on</strong>g> exact locati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> resting animal. Den sites<br />

located through radio-telemetry were m<strong>on</strong>itored with digital trail cameras. Cameras were placed<br />

around dens <str<strong>on</strong>g>of</str<strong>on</strong>g> interest and images were collected over a 48 hour period. The moti<strong>on</strong>-sensitive<br />

cameras were triggered as animals entered and left <str<strong>on</strong>g>the</str<strong>on</strong>g> den. Skunks were identified based <strong>on</strong><br />

individually unique striping pattern as well as <str<strong>on</strong>g>the</str<strong>on</strong>g> presence <str<strong>on</strong>g>of</str<strong>on</strong>g> ear tags placed <strong>on</strong> radio-marked<br />

individuals. Images indicated frequency <str<strong>on</strong>g>of</str<strong>on</strong>g> communal denning am<strong>on</strong>g <str<strong>on</strong>g>skunk</str<strong>on</strong>g>s. These tracking<br />

methods were c<strong>on</strong>tinuous throughout all seas<strong>on</strong>s.<br />

Based <strong>on</strong> movement locati<strong>on</strong>s and home range distributi<strong>on</strong>s, <str<strong>on</strong>g>striped</str<strong>on</strong>g> <str<strong>on</strong>g>skunk</str<strong>on</strong>g>s were divided<br />

into two habitat categories: disturbed or undisturbed. Disturbed habitat was described as areas<br />

with significant human alterati<strong>on</strong>s including building developments, agricultural lands, and<br />

major roads. Agricultural lands were used as <str<strong>on</strong>g>the</str<strong>on</strong>g> defining feature, encompassing homes, yards,<br />

19


farm buildings, and roads, and 500 m buffers were placed around this habitat to delineate <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

extent <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> disturbed habitat. This buffered area defining <str<strong>on</strong>g>the</str<strong>on</strong>g> disturbed habitat was composed<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> 44% agricultural land, 28% woody vegetati<strong>on</strong>, 18% <strong>grass</strong>land, 6% urban development, and<br />

4% water. Undisturbed habitats were areas outside <str<strong>on</strong>g>of</str<strong>on</strong>g> this anthropogenic disturbance, dominated<br />

by <strong>tall</strong>-<strong>grass</strong> <strong>prairie</strong> vegetati<strong>on</strong>. Porti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> this habitat were grazed by <str<strong>on</strong>g>the</str<strong>on</strong>g> native <strong>prairie</strong> grazer,<br />

bis<strong>on</strong> (Bis<strong>on</strong> bis<strong>on</strong>). Skunks with over 50% <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>ir locati<strong>on</strong>s within ei<str<strong>on</strong>g>the</str<strong>on</strong>g>r <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> habitat<br />

divisi<strong>on</strong>s were c<strong>on</strong>sidered to fall within that category <str<strong>on</strong>g>of</str<strong>on</strong>g> habitat.<br />

We analyzed habitat use through ArcGIS 9.0. Imagery used for <str<strong>on</strong>g>the</str<strong>on</strong>g>se analyses was<br />

generated by <str<strong>on</strong>g>the</str<strong>on</strong>g> Kansas Applied Remote Sensing (KARS) program from multitemporal Landsat<br />

Thematic Mapper (TM) imagery (KARS 2001). The image was created using a two stage hybrid<br />

classificati<strong>on</strong> method <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> TM imagery. This 2001 Kansas GAP land cover database was<br />

composed <str<strong>on</strong>g>of</str<strong>on</strong>g> 30 m raster cells encompassing 43 land cover classes.<br />

Striped <str<strong>on</strong>g>skunk</str<strong>on</strong>g> locati<strong>on</strong>s were categorized by habitat type and seas<strong>on</strong>. Seas<strong>on</strong>al home<br />

ranges were estimated using <str<strong>on</strong>g>the</str<strong>on</strong>g> Hawth’s Tools v.3.27 extensi<strong>on</strong> for ArcGIS (Beyer 2004) with a<br />

95% fixed-kernel density estimator. Home range (HR) overlap was estimated using <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

following index (Mitna 1992):<br />

Mean overlap = HRoverlap*100<br />

HR(A)*HR(B)<br />

Habitat preference was determined using a compositi<strong>on</strong>al habitat use analysis which<br />

compared observed habitat use to habitat availability. Observed habitat use was defined by <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

locati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> radio-marked individuals, while expected, or available, habitat use was based <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

percentages <str<strong>on</strong>g>of</str<strong>on</strong>g> each habitat type within <str<strong>on</strong>g>the</str<strong>on</strong>g> 100% fixed-kernel estimate <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> individual’s home<br />

range. A multivariate analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> log-ratios was used to compare habitat use to availability and<br />

to rank habitat preference am<strong>on</strong>g individuals (Aebischer et al. 1993). As a more detailed<br />

20


analysis <strong>on</strong> habitat preference within <str<strong>on</strong>g>the</str<strong>on</strong>g> larger disturbed habitat matrix, distances between <str<strong>on</strong>g>skunk</str<strong>on</strong>g><br />

locati<strong>on</strong>s and building sites were compared to <str<strong>on</strong>g>skunk</str<strong>on</strong>g> locati<strong>on</strong> distances to random sites<br />

throughout <str<strong>on</strong>g>the</str<strong>on</strong>g> disturbed habitat. General movement patterns and distances am<strong>on</strong>g den sites and<br />

individuals were measured in <str<strong>on</strong>g>the</str<strong>on</strong>g> ArcGIS platform.<br />

Estimates <str<strong>on</strong>g>of</str<strong>on</strong>g> density were calculated for disturbed and undisturbed habitat types. We<br />

estimated area based <strong>on</strong> a 600 m cumulative buffer placed around each trap site. This buffer was<br />

determined based <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> average nightly movement distance found for <str<strong>on</strong>g>skunk</str<strong>on</strong>g>s in this study. The<br />

number <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>skunk</str<strong>on</strong>g>s trapped in each habitat type was divided by <str<strong>on</strong>g>the</str<strong>on</strong>g> total area calculated around <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

trap sites within each habitat to determine density.<br />

Genetic Analysis<br />

Blood and tissue samples were collected from individuals across all study areas.<br />

Approximately 250 μl <str<strong>on</strong>g>of</str<strong>on</strong>g> blood was stored in 1 ml lysis buffer. Alternatively, tissue samples<br />

were collected from <str<strong>on</strong>g>the</str<strong>on</strong>g> tip <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> ear and stored in 1 ml <str<strong>on</strong>g>of</str<strong>on</strong>g> 70% ethanol. All samples were<br />

stored in a cool, dark locati<strong>on</strong> until <str<strong>on</strong>g>the</str<strong>on</strong>g>y could be transferred to storage at 4°C prior to DNA<br />

extracti<strong>on</strong>.<br />

We extracted DNA from <str<strong>on</strong>g>the</str<strong>on</strong>g> blood samples using DNAeasy blood extracti<strong>on</strong> kit (Qiagen,<br />

Inc.) following <str<strong>on</strong>g>the</str<strong>on</strong>g> manufacturer’s protocol. Tissue samples were extracted using a phenol-<br />

chlor<str<strong>on</strong>g>of</str<strong>on</strong>g>orm extracti<strong>on</strong> method. A total <str<strong>on</strong>g>of</str<strong>on</strong>g> 10-30 μl <str<strong>on</strong>g>of</str<strong>on</strong>g> tissue were incubated at 56°C for at least<br />

12 hours in 400 μl lysis buffer, 20 μl proteinase K (20mg/ml), 10 μl DTT (1M), and 2 μl RNAse<br />

A (10 mg/ml). The DNA was <str<strong>on</strong>g>the</str<strong>on</strong>g>n extracted with two phenol extracti<strong>on</strong>s and <strong>on</strong>e chlor<str<strong>on</strong>g>of</str<strong>on</strong>g>orm<br />

wash. The DNA was precipitated with 100% ethanol and washed with 100% isopropyl alcohol.<br />

Extracted DNA was stored at -20°C. DNA c<strong>on</strong>centrati<strong>on</strong>s ranged from 94-3,859 ng/μl. All<br />

samples were diluted to 25 ng/μl for amplificati<strong>on</strong>.<br />

21


We amplified eight microsatellite loci designed for <str<strong>on</strong>g>striped</str<strong>on</strong>g> <str<strong>on</strong>g>skunk</str<strong>on</strong>g>s: Meph42-73, Meph42-<br />

67, Meph22-70, Meph22-19, Meph22-26, Meph42-25, Meph42-15, and Meph22-14 (Dragoo et<br />

al. 2009). The universal sequence M-13 was added to <str<strong>on</strong>g>the</str<strong>on</strong>g> 5’ end <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> forward primer for each<br />

pair and fluorescently labeled M-13 was added to <str<strong>on</strong>g>the</str<strong>on</strong>g> polymerase chain reacti<strong>on</strong> (PCR). The<br />

DNA was amplified using 10 μl reacti<strong>on</strong>s comprised <str<strong>on</strong>g>of</str<strong>on</strong>g> 1 μl <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> DNA sample, 1x Sigma PCR<br />

buffer, 2.7 mM MgCl2, 0.2 mM dNTPs, 0.1 μg/μl BSA, 0.8 M betaine, 0.2 μM forward primer<br />

with an M-13 complement <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> 5’ end, 0.5 μM reverse primer, 0.5 μM M-13 primer labeled<br />

with a florescent dye, and 0.5 units Taq polymerase. Reacti<strong>on</strong>s were amplified using an<br />

Eppendorf Mastercycler (Eppendorf, Inc.) using <str<strong>on</strong>g>the</str<strong>on</strong>g> following protocol: 94°C for 5 min, 30<br />

cycles <str<strong>on</strong>g>of</str<strong>on</strong>g> 94°C for 30 s, 54°C for 45 s, and 72°C for 45 s, 10 cycles <str<strong>on</strong>g>of</str<strong>on</strong>g> 94°C for 30 s, 53°C for 45<br />

s, and 72°C for 45 s, ending with 10 min <str<strong>on</strong>g>of</str<strong>on</strong>g> extensi<strong>on</strong> at 72°C. The annealing temperature was<br />

54°C for all markers. Each run included a negative c<strong>on</strong>trol to verify a lack <str<strong>on</strong>g>of</str<strong>on</strong>g> c<strong>on</strong>taminati<strong>on</strong><br />

am<strong>on</strong>g samples. Genotypes were visualized using a LI-COR Model 4200 IR2 Series DNA<br />

Sequencer (LI-COR Inc., Lincoln, NE). Homozygous samples were reamplified 2-3 times to<br />

assess allelic dropout.<br />

We used GENEPOP v.3.3 (Raym<strong>on</strong>d and Rousset 1995) to test Hardy-Weinberg<br />

equilibrium (HWE) and linkage disequilibrium. To assess relatedness am<strong>on</strong>g individuals, <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

program Relatedness 5.0 (Queller and Goodnight 1989) was used to estimate Grafen’s<br />

relati<strong>on</strong>ship coefficient (r) between 2 individuals. First-order relatives were defined by r-values<br />

> 0.375 and encompassed full siblings and parent to <str<strong>on</strong>g>of</str<strong>on</strong>g>fspring pairs. Sec<strong>on</strong>d-order relatives were<br />

define by r-values ranging from 0.125 to 0.375 and included half sibling pairs. We compared<br />

relatedness am<strong>on</strong>g individuals with potentially close c<strong>on</strong>tact, such as those sharing dens or with<br />

overlapping home ranges, to <str<strong>on</strong>g>the</str<strong>on</strong>g> average relatedness <str<strong>on</strong>g>of</str<strong>on</strong>g> individuals across <str<strong>on</strong>g>the</str<strong>on</strong>g> Flint Hills. Mean<br />

22


elatedness (R) was estimated and compared for communally denning individuals and those not<br />

in shared dens with 95% c<strong>on</strong>fidence intervals calculated around each estimate using a jackknife<br />

procedure in Relatedness 5.0. Program Genelex (Peakall and Smouse 2006) was used to look for<br />

correlati<strong>on</strong>s between home range overlap and genetic relatedness as well as correlati<strong>on</strong>s between<br />

genetic and geographic distance using Mantel permutati<strong>on</strong> tests.<br />

We used Program STRUCTURE v.2.0 (Pritchard et al. 2000, Pritchard and Wen 2002) to<br />

assign each multilocus genotype to a genetic cluster. A populati<strong>on</strong> admixture model was used<br />

due to high expected gene flow. We c<strong>on</strong>ducted a spatial autocorrelati<strong>on</strong> analysis (Smouse and<br />

Peakall 1999) in Genalex by comparing <str<strong>on</strong>g>the</str<strong>on</strong>g> genetic correlati<strong>on</strong> coefficient (r) to geographic<br />

distance within each <str<strong>on</strong>g>of</str<strong>on</strong>g> a series <str<strong>on</strong>g>of</str<strong>on</strong>g> geographic distance classes.<br />

Results<br />

Data Collecti<strong>on</strong><br />

Trapping was c<strong>on</strong>ducted across <str<strong>on</strong>g>the</str<strong>on</strong>g> four study areas from 22 August 2007 to 15 January<br />

2009, with <str<strong>on</strong>g>the</str<strong>on</strong>g> majority <str<strong>on</strong>g>of</str<strong>on</strong>g> trapping during <str<strong>on</strong>g>the</str<strong>on</strong>g> fall and opportunistic trapping during <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

remaining seas<strong>on</strong>s. Eight <str<strong>on</strong>g>striped</str<strong>on</strong>g> <str<strong>on</strong>g>skunk</str<strong>on</strong>g>s were captured and radio-tagged <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> sou<str<strong>on</strong>g>the</str<strong>on</strong>g>rn,<br />

undisturbed porti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> KPBS, <strong>on</strong>e <str<strong>on</strong>g>skunk</str<strong>on</strong>g> was captured and radio-tagged in <str<strong>on</strong>g>the</str<strong>on</strong>g> suburbs <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Manhattan, and 18 were radio-tagged in Ashland and <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> disturbed nor<str<strong>on</strong>g>the</str<strong>on</strong>g>rn porti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

KPBS. Of <str<strong>on</strong>g>the</str<strong>on</strong>g> 27 radio-marked individuals, 17 were male and 10 were female and all were<br />

adults, >1 year old. In comparis<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> habitat use am<strong>on</strong>g disturbed and undisturbed habitats, 19<br />

<str<strong>on</strong>g>skunk</str<strong>on</strong>g>s were located in disturbed habitat and 8 were located in undisturbed habitats based <strong>on</strong><br />

movement and home range patterns. In additi<strong>on</strong> to <str<strong>on</strong>g>the</str<strong>on</strong>g> radio-tagged individuals, we collected<br />

tissue samples from 16 individuals from a den site <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>skunk</str<strong>on</strong>g>s in Ogden, 34 additi<strong>on</strong>al samples<br />

from Ashland and nor<str<strong>on</strong>g>the</str<strong>on</strong>g>rn KPBS, and 57 samples <str<strong>on</strong>g>of</str<strong>on</strong>g> road-killed individuals from across <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

23


Flint Hills. Striped <str<strong>on</strong>g>skunk</str<strong>on</strong>g> weights were collected before and after <str<strong>on</strong>g>the</str<strong>on</strong>g> winter m<strong>on</strong>ths (December<br />

through March). Weights in <str<strong>on</strong>g>skunk</str<strong>on</strong>g>s after winter averaged 1.93 + 0.089 kg (mean + S.E.) and<br />

were significantly less than weight before winter (2.7 + 0.69 kg; paired t-test, t=3.63, p=0.0023).<br />

Telemetry efforts were c<strong>on</strong>ducted from 11 October 2007 through 01 April 2009. We<br />

identified > 900 locati<strong>on</strong>s and 59 den sites. We calculated a standard deviati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> + 6.8° from<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> true telemetry bearing and a mean error polyg<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> 0.0003 + 0.0002 km 2 based <strong>on</strong> telemetry<br />

error testing. We c<strong>on</strong>sidered <str<strong>on</strong>g>the</str<strong>on</strong>g>se error estimates reas<strong>on</strong>able for our study and habitat analyses.<br />

The estimated error polyg<strong>on</strong> was within <str<strong>on</strong>g>the</str<strong>on</strong>g> 30 m pixel size <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> habitat compositi<strong>on</strong> GAP land<br />

cover images used in <str<strong>on</strong>g>the</str<strong>on</strong>g> study.<br />

Spatial Analysis<br />

Average movement between daytime den locati<strong>on</strong>s and nightly foraging locati<strong>on</strong>s was<br />

604 + 81 m. The maximum distance an individual <str<strong>on</strong>g>skunk</str<strong>on</strong>g> moved between daytime den and<br />

nighttime foraging locati<strong>on</strong>s over <str<strong>on</strong>g>the</str<strong>on</strong>g> course <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> study was 3.6 km. These movements were<br />

shorter during <str<strong>on</strong>g>the</str<strong>on</strong>g> winter <str<strong>on</strong>g>of</str<strong>on</strong>g> 2007 (average high temperature: 6.6°C) with an average <str<strong>on</strong>g>of</str<strong>on</strong>g> 197 + 44<br />

m between den and foraging sites. Summer (average high temperature: 23.6°C) movements<br />

were an average <str<strong>on</strong>g>of</str<strong>on</strong>g> 596 + 102 m. During <str<strong>on</strong>g>the</str<strong>on</strong>g> warmer winter <str<strong>on</strong>g>of</str<strong>on</strong>g> 2008 (average high temperature:<br />

7.9°C), movements from dens to foraging sites were at <str<strong>on</strong>g>the</str<strong>on</strong>g>ir highest with an average <str<strong>on</strong>g>of</str<strong>on</strong>g> 948 +<br />

207 m between locati<strong>on</strong>s. The average high and low temperatures were significantly lower when<br />

<str<strong>on</strong>g>skunk</str<strong>on</strong>g>s remained in <str<strong>on</strong>g>the</str<strong>on</strong>g>ir dens (13.3 + 0.13°C, -1.2 + 0.12°C, respectively) compared to nights<br />

when <str<strong>on</strong>g>skunk</str<strong>on</strong>g> chose to leave <str<strong>on</strong>g>the</str<strong>on</strong>g>ir dens and forage (18.5 + 0.03°C, 4.8 + 0.17°C, linear regressi<strong>on</strong>,<br />

F1,825=35.37, p


home range size for all individuals was 5.2 km 2 . Male home ranges were significantly larger<br />

(5.8 + 0.48 km 2 ) than females (3.1 + 0.58 km 2 ; ANOVA, F1,16=8.29, p=0.01). Home range areas<br />

were not significantly different am<strong>on</strong>g seas<strong>on</strong>s (ANOVA, F2,20=0.51, p=0.606). Home ranges in<br />

disturbed habitats were smaller (4.8 + 0.54 km 2 ) than those in undisturbed habitats (6.6 + 0.77<br />

km 2 ), but this difference was also not significant (ANOVA, F1,16=2.60, p=0.1263); however,<br />

<str<strong>on</strong>g>skunk</str<strong>on</strong>g>s with home ranges within disturbed habitat had significantly greater overlap (41.34 + 3%)<br />

than those in undisturbed habitat (29.00 + 5%; ANOVA, F1,51=4.03, p=0.05). Based <strong>on</strong> trapping<br />

results, <str<strong>on</strong>g>the</str<strong>on</strong>g> calculated density <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>striped</str<strong>on</strong>g> <str<strong>on</strong>g>skunk</str<strong>on</strong>g>s in <str<strong>on</strong>g>the</str<strong>on</strong>g> disturbed habitat type (2.8 <str<strong>on</strong>g>skunk</str<strong>on</strong>g>s/ km 2 )<br />

was higher than that calculated for <str<strong>on</strong>g>the</str<strong>on</strong>g> undisturbed habitat (0.6 <str<strong>on</strong>g>skunk</str<strong>on</strong>g>s/ km 2 ).<br />

Den sites varied in structure and habitat type (Figure 2.3). In both disturbed and<br />

undisturbed habitats, 34% were dug into <str<strong>on</strong>g>the</str<strong>on</strong>g> ground, 22% were in rocky outcrops, 15% were<br />

located in holes beneath or within <str<strong>on</strong>g>the</str<strong>on</strong>g> base <str<strong>on</strong>g>of</str<strong>on</strong>g> large trees, and 15% were found in human<br />

structures such as barns and junk piles. There were no significant differences in den type<br />

between disturbed and undisturbed habitats. The average distance am<strong>on</strong>g den sites was 1.8 +<br />

0.005 km 2 . Den sites in disturbed habitats were an average <str<strong>on</strong>g>of</str<strong>on</strong>g> 1.68 + 0.002 km 2 apart from <strong>on</strong>e<br />

ano<str<strong>on</strong>g>the</str<strong>on</strong>g>r and were significantly closer than those in undisturbed habitat with an average distance<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> 2.19 + 0.01 km 2 (ANOVA, F1,841=18.29, p


We found that habitat use was n<strong>on</strong>-random and that woody habitat ranked highest in <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

analysis, slightly preferred over <strong>grass</strong>land and significantly preferred over agricultural lands<br />

(Wilks’ λ=0.495, F2,16=8.15, p=0.0036; Table 2.1a, Figure 2.4). However, variati<strong>on</strong> in habitat<br />

preference occurred between nighttime foraging locati<strong>on</strong>s and den sites. Grassland habitat<br />

ranked <str<strong>on</strong>g>the</str<strong>on</strong>g> highest in comparis<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> foraging locati<strong>on</strong>s to available habitat, although this rank<br />

was not significant (Wilks’ λ=0.898, F2,16=0.90, p=0.4246; Table 2.1b). Woody vegetative<br />

habitat ranked significantly higher than <str<strong>on</strong>g>the</str<strong>on</strong>g> o<str<strong>on</strong>g>the</str<strong>on</strong>g>r habitat types in comparis<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> den site<br />

locati<strong>on</strong>s to available habitat (Wilks’ λ=0.291, F2,15=18.29, p


test, r=0.004 p=0.156). Individuals denning communally were not more closely related (R= -<br />

0.004 + 0.006, C.I. 0.0138) than those not sharing den sites (R= -0.0091 + 0.002, C.I. 0.0051).<br />

No unique populati<strong>on</strong>s were delineated through analysis in program STRUCTURE; all<br />

individuals were classified into a single, geographically-expansive populati<strong>on</strong>. We found no<br />

significant structural differences in populati<strong>on</strong>s delineated based <strong>on</strong> disturbed and undisturbed<br />

habitat types (AMOVA). We found a significant correlati<strong>on</strong> between genetic and geographic<br />

distance in <str<strong>on</strong>g>the</str<strong>on</strong>g> 0-100 m distance class (p=0.006, Figure 2.5). This distance class included<br />

individuals within communal dens.<br />

Discussi<strong>on</strong><br />

Based <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> spatial and genetic results <str<strong>on</strong>g>of</str<strong>on</strong>g> this study, we have distinguished three broad<br />

c<strong>on</strong>clusi<strong>on</strong>s <strong>on</strong> <str<strong>on</strong>g>striped</str<strong>on</strong>g> <str<strong>on</strong>g>skunk</str<strong>on</strong>g> host ecology and subsequent impacts <strong>on</strong> rabies epidemiology in <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

Flint Hills. In our study sites, <str<strong>on</strong>g>the</str<strong>on</strong>g>re was a greater density <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>skunk</str<strong>on</strong>g>s near areas <str<strong>on</strong>g>of</str<strong>on</strong>g> anthropogenic<br />

disturbance. C<strong>on</strong>trary to our expectati<strong>on</strong>s, <str<strong>on</strong>g>skunk</str<strong>on</strong>g>s in <str<strong>on</strong>g>the</str<strong>on</strong>g>se dense populati<strong>on</strong>s were not closely<br />

related based <strong>on</strong> genetic populati<strong>on</strong> analyses. Striped <str<strong>on</strong>g>skunk</str<strong>on</strong>g>s displayed high levels <str<strong>on</strong>g>of</str<strong>on</strong>g> genetic<br />

admixture and mobility. Additi<strong>on</strong>ally, temperature had a significant impact <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> potential for<br />

c<strong>on</strong>tact am<strong>on</strong>g <str<strong>on</strong>g>the</str<strong>on</strong>g>se highly mobile and densely populated disease hosts. These c<strong>on</strong>clusi<strong>on</strong>s are<br />

interrelated and have a str<strong>on</strong>g influence <strong>on</strong> rabies epidemiology in <str<strong>on</strong>g>the</str<strong>on</strong>g> Central Plains. As <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

current <strong>prairie</strong> landscape changes with greater human disturbance and increased woody<br />

expansi<strong>on</strong>, habitat compositi<strong>on</strong> and resources will better support <str<strong>on</strong>g>the</str<strong>on</strong>g>se dense host populati<strong>on</strong>s<br />

and <str<strong>on</strong>g>the</str<strong>on</strong>g> potential for serious rabies epidemics will increase near human and domestic animal<br />

populati<strong>on</strong>s.<br />

27


High <str<strong>on</strong>g>skunk</str<strong>on</strong>g> densities in disturbed landscapes<br />

Striped <str<strong>on</strong>g>skunk</str<strong>on</strong>g>s reached higher densities in <str<strong>on</strong>g>the</str<strong>on</strong>g> disturbed habitat matrix <str<strong>on</strong>g>of</str<strong>on</strong>g> our study areas<br />

than in <str<strong>on</strong>g>the</str<strong>on</strong>g> relatively undisturbed <strong>grass</strong>lands. In areas <str<strong>on</strong>g>of</str<strong>on</strong>g> anthropogenic disturbance, we found<br />

high <str<strong>on</strong>g>skunk</str<strong>on</strong>g> densities <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>skunk</str<strong>on</strong>g>s and <str<strong>on</strong>g>of</str<strong>on</strong>g> den sites, a greater degree <str<strong>on</strong>g>of</str<strong>on</strong>g> home range overlap, and<br />

more instances <str<strong>on</strong>g>of</str<strong>on</strong>g> communal denning. These findings were <str<strong>on</strong>g>the</str<strong>on</strong>g> result <str<strong>on</strong>g>of</str<strong>on</strong>g> comparis<strong>on</strong>s made<br />

between large habitat matrices, c<strong>on</strong>sisting <str<strong>on</strong>g>of</str<strong>on</strong>g> a variety <str<strong>on</strong>g>of</str<strong>on</strong>g> habitat types, including open<br />

agricultural fields and forest. To validate that <str<strong>on</strong>g>the</str<strong>on</strong>g>se high densities were related to direct human<br />

presence, additi<strong>on</strong>al analyses were c<strong>on</strong>ducted within <str<strong>on</strong>g>the</str<strong>on</strong>g> disturbed habitat matrix and revealed<br />

that <str<strong>on</strong>g>skunk</str<strong>on</strong>g>s were significantly more likely to remain near human structures and building sites<br />

than would be expected if individuals displayed no preference for <str<strong>on</strong>g>the</str<strong>on</strong>g>se structures.<br />

This dramatic clustering <str<strong>on</strong>g>of</str<strong>on</strong>g> individuals is likely driven by increased resource availability<br />

in human disturbed landscapes. These resources may include increased foraging opportunities<br />

and denning habitat. In our study sites, nightly foraging movements were located in all habitat<br />

types including <strong>grass</strong>land and agricultural land. However, <str<strong>on</strong>g>skunk</str<strong>on</strong>g>s preferred to den in wooded<br />

habitats over <strong>grass</strong>land or agricultural lands and thus appear to rely <strong>on</strong> a matrix <str<strong>on</strong>g>of</str<strong>on</strong>g> wooded and<br />

open habitats. These results are c<strong>on</strong>sistent with <str<strong>on</strong>g>skunk</str<strong>on</strong>g> habitat use <str<strong>on</strong>g>of</str<strong>on</strong>g> field-tree edges in areas<br />

such as <str<strong>on</strong>g>the</str<strong>on</strong>g> wooded valleys <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> Great Smoky Nati<strong>on</strong>al Park in eastern Tennessee (Bixler and<br />

Gittleman 2000) and <str<strong>on</strong>g>the</str<strong>on</strong>g> cropland and woodland habitat matrix <str<strong>on</strong>g>of</str<strong>on</strong>g> south-central Saskatchewan<br />

(Larivière and Messier 2000). In <str<strong>on</strong>g>the</str<strong>on</strong>g> disturbed habitats <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> Flint Hills, <str<strong>on</strong>g>the</str<strong>on</strong>g> surplus <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

agricultural fields, in additi<strong>on</strong> to existing <strong>grass</strong>land, provides excellent habitat for digging and<br />

foraging and <str<strong>on</strong>g>the</str<strong>on</strong>g>se fields are surrounded by wooded habitat for den settlement. The availability<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> wooded habitat and human structures also provide protecti<strong>on</strong> for individuals as <str<strong>on</strong>g>the</str<strong>on</strong>g>y move to<br />

forage. This c<strong>on</strong>figurati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> habitat types makes it highly suitable for <str<strong>on</strong>g>skunk</str<strong>on</strong>g>s and <str<strong>on</strong>g>the</str<strong>on</strong>g>ir n<strong>on</strong>-<br />

territorial nature allows for high densities within this disturbed matrix.<br />

28


These patterns <str<strong>on</strong>g>of</str<strong>on</strong>g> habitat use and spatial distributi<strong>on</strong> <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> forest/field matrix have<br />

important implicati<strong>on</strong>s for disease emergence and spread. The high densities <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>striped</str<strong>on</strong>g> <str<strong>on</strong>g>skunk</str<strong>on</strong>g>s<br />

and increased incidence <str<strong>on</strong>g>of</str<strong>on</strong>g> communal denning in areas <str<strong>on</strong>g>of</str<strong>on</strong>g> human disturbance increase<br />

intraspecific c<strong>on</strong>tact rates and disease transmissi<strong>on</strong> am<strong>on</strong>g <str<strong>on</strong>g>skunk</str<strong>on</strong>g>s which will likely be amplified<br />

with c<strong>on</strong>tinuing land use and land cover changes. As human populati<strong>on</strong>s c<strong>on</strong>tinue to expand in<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> sou<str<strong>on</strong>g>the</str<strong>on</strong>g>rn Great Plains, woody encroachment will increase as a result <str<strong>on</strong>g>of</str<strong>on</strong>g> fire suppressi<strong>on</strong> and<br />

exurbanizati<strong>on</strong> (Briggs et al. 2002a, Briggs et al. 2005). This land cover change will not <strong>on</strong>ly<br />

involve wooded riparian habitat, but also wooded vegetati<strong>on</strong> al<strong>on</strong>g <str<strong>on</strong>g>the</str<strong>on</strong>g> perimeter <str<strong>on</strong>g>of</str<strong>on</strong>g> agricultural<br />

fields and near human developments (Knopf and Sams<strong>on</strong> 1995, Briggs et al. 2002b). The<br />

creati<strong>on</strong> and expansi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> highly suitable <str<strong>on</strong>g>skunk</str<strong>on</strong>g> habitat is projected to facilitate transmissi<strong>on</strong><br />

corridors for disease spread not <strong>on</strong>ly in and around urban centers but facilitate <str<strong>on</strong>g>the</str<strong>on</strong>g> spread <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

disease am<strong>on</strong>g urban centers as exurbanizati<strong>on</strong> c<strong>on</strong>nects <str<strong>on</strong>g>the</str<strong>on</strong>g>se areas.<br />

Our data suggests that exurbanizati<strong>on</strong> increases resource availability and that those<br />

resources occur in close proximity to human dwellings. This proximity <str<strong>on</strong>g>of</str<strong>on</strong>g> suitable habitat to<br />

human habitati<strong>on</strong> increases <str<strong>on</strong>g>the</str<strong>on</strong>g> risk <str<strong>on</strong>g>of</str<strong>on</strong>g> disease spread to compani<strong>on</strong> and livestock animals and<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g>refore increase <str<strong>on</strong>g>the</str<strong>on</strong>g> risk <str<strong>on</strong>g>of</str<strong>on</strong>g> human exposure. Indeed, in Kansas, domestic cats are <str<strong>on</strong>g>the</str<strong>on</strong>g> species<br />

most frequently exposed to rabid <str<strong>on</strong>g>skunk</str<strong>on</strong>g>s and to c<strong>on</strong>tract rabies (Kansas State University<br />

Veterinary Diagnostic Laboratory). As humans move to rural areas, <str<strong>on</strong>g>the</str<strong>on</strong>g> increase <str<strong>on</strong>g>of</str<strong>on</strong>g> domestic<br />

animals in <str<strong>on</strong>g>the</str<strong>on</strong>g> rural landscape may amplify <str<strong>on</strong>g>the</str<strong>on</strong>g> risk <str<strong>on</strong>g>of</str<strong>on</strong>g> human exposure to zo<strong>on</strong>otic diseases.<br />

The evolving matrix <str<strong>on</strong>g>of</str<strong>on</strong>g> human development and natural host habitat is a newly<br />

developing ecot<strong>on</strong>e, where two adjacent ecological systems meet and ecological processes are<br />

amplified at <str<strong>on</strong>g>the</str<strong>on</strong>g> boundary (Despommier et al. 2007). Ecot<strong>on</strong>es are <str<strong>on</strong>g>of</str<strong>on</strong>g>ten reported as areas for<br />

emerging infectious disease in wildlife, especially as anthropogenic habitat encroaches <strong>on</strong> that <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

29


disease hosts. This dynamic process appears to be occurring in <str<strong>on</strong>g>the</str<strong>on</strong>g> developing exurban ecot<strong>on</strong>e<br />

in <str<strong>on</strong>g>the</str<strong>on</strong>g> Flint Hills <str<strong>on</strong>g>of</str<strong>on</strong>g> Kansas. Disease management efforts may <str<strong>on</strong>g>the</str<strong>on</strong>g>refore benefit from habitat<br />

management efforts and thoughtful z<strong>on</strong>ing ordinances.<br />

Genetic admixture and mobility in <str<strong>on</strong>g>striped</str<strong>on</strong>g> <str<strong>on</strong>g>skunk</str<strong>on</strong>g>s<br />

Striped <str<strong>on</strong>g>skunk</str<strong>on</strong>g>s displayed high levels <str<strong>on</strong>g>of</str<strong>on</strong>g> genetic admixture and mobility within <str<strong>on</strong>g>the</str<strong>on</strong>g> Flint<br />

Hills <str<strong>on</strong>g>of</str<strong>on</strong>g> Kansas. Genetic analyses revealed that individuals with high levels <str<strong>on</strong>g>of</str<strong>on</strong>g> home range<br />

overlap were not more closely related than those outside <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>se groupings and <str<strong>on</strong>g>skunk</str<strong>on</strong>g>s in<br />

communal dens were not more closely related than those outside <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> dens. We found no<br />

correlati<strong>on</strong>s between geographical and genetic distances across <str<strong>on</strong>g>the</str<strong>on</strong>g> study area and very low<br />

relatedness am<strong>on</strong>g animals in our study areas. Closely related (first or sec<strong>on</strong>d order) animals<br />

were distant from <strong>on</strong>e ano<str<strong>on</strong>g>the</str<strong>on</strong>g>r. Highly related pairs were > 20 km from <strong>on</strong>e ano<str<strong>on</strong>g>the</str<strong>on</strong>g>r, suggesting<br />

large dispersal distances and no philopatry ei<str<strong>on</strong>g>the</str<strong>on</strong>g>r am<strong>on</strong>g males or females.<br />

This lack <str<strong>on</strong>g>of</str<strong>on</strong>g> populati<strong>on</strong> structure <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> landscape may be attributed to two biological<br />

characteristics <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>striped</str<strong>on</strong>g> <str<strong>on</strong>g>skunk</str<strong>on</strong>g>. First, <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>skunk</str<strong>on</strong>g> is not a territorial animal. The home ranges<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> several unrelated individuals can overlap significantly (Wade-Smith and Verts 1982). Sec<strong>on</strong>d,<br />

<str<strong>on</strong>g>skunk</str<strong>on</strong>g> populati<strong>on</strong>s typically display high dispersal rates in young males (Wade-Smith and Verts<br />

1982). These dispersal rates lead to high admixture am<strong>on</strong>g populati<strong>on</strong>s and in areas <str<strong>on</strong>g>of</str<strong>on</strong>g> high<br />

quality resources large numbers <str<strong>on</strong>g>of</str<strong>on</strong>g> individuals will c<strong>on</strong>gregate. Increase populati<strong>on</strong> admixture<br />

and tolerance <str<strong>on</strong>g>of</str<strong>on</strong>g> high densities and close proximities fur<str<strong>on</strong>g>the</str<strong>on</strong>g>r amplifies <str<strong>on</strong>g>the</str<strong>on</strong>g> risk <str<strong>on</strong>g>of</str<strong>on</strong>g> disease<br />

transmissi<strong>on</strong>. O<str<strong>on</strong>g>the</str<strong>on</strong>g>r studies in carnivore and meso-carnivore species have found similar<br />

increases in social behavior and c<strong>on</strong>tact with increased resource availability (Prange et al. 2004,<br />

Riley 2006, Davis<strong>on</strong> et al. 2008). This social behavior is amplified by <str<strong>on</strong>g>the</str<strong>on</strong>g> existing<br />

30


characteristic <str<strong>on</strong>g>of</str<strong>on</strong>g> n<strong>on</strong>-territoriality in <str<strong>on</strong>g>skunk</str<strong>on</strong>g>s. Dispersing males will be attracted to <str<strong>on</strong>g>the</str<strong>on</strong>g>se habitats<br />

and meet no resistance in foraging and mating by resident, n<strong>on</strong>-territorial individuals.<br />

These host characteristics add to <str<strong>on</strong>g>the</str<strong>on</strong>g> disease risks created by high density in and habitat<br />

preference for areas with high levels <str<strong>on</strong>g>of</str<strong>on</strong>g> human disturbance. The unrelated clusters <str<strong>on</strong>g>of</str<strong>on</strong>g> individuals<br />

indicate greater levels <str<strong>on</strong>g>of</str<strong>on</strong>g> c<strong>on</strong>tact am<strong>on</strong>g <str<strong>on</strong>g>skunk</str<strong>on</strong>g>s bey<strong>on</strong>d that expected solely by familial groups<br />

and mating events. An increase in c<strong>on</strong>tact rates am<strong>on</strong>g <str<strong>on</strong>g>the</str<strong>on</strong>g> rabies host species provides greater<br />

potential for disease spread in human developed habitats. The high mobility in <str<strong>on</strong>g>striped</str<strong>on</strong>g> <str<strong>on</strong>g>skunk</str<strong>on</strong>g>s<br />

also allows for rabies to rapidly amplify am<strong>on</strong>g host populati<strong>on</strong>s. For example, <str<strong>on</strong>g>the</str<strong>on</strong>g> rabies virus<br />

could lie dormant in an individual for several m<strong>on</strong>ths to a year, allowing a young male infected<br />

with rabies to travel from his natal den to a new, densely populated area before symptoms <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

rabies affect his behavior.<br />

Implicati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> climate change <strong>on</strong> host c<strong>on</strong>tact rates<br />

Seas<strong>on</strong>ality and temperature elicited dramatic changes in <str<strong>on</strong>g>striped</str<strong>on</strong>g> <str<strong>on</strong>g>skunk</str<strong>on</strong>g> behavior and<br />

physiology. Skunks remained in <str<strong>on</strong>g>the</str<strong>on</strong>g>ir dens during <str<strong>on</strong>g>the</str<strong>on</strong>g> coldest part <str<strong>on</strong>g>of</str<strong>on</strong>g> winter and ventured outside<br />

<strong>on</strong>ly after <str<strong>on</strong>g>the</str<strong>on</strong>g> temperature rose. Likewise, communal denning am<strong>on</strong>g individuals occurred <strong>on</strong>ly<br />

during <str<strong>on</strong>g>the</str<strong>on</strong>g> colder temperatures <str<strong>on</strong>g>of</str<strong>on</strong>g> winter m<strong>on</strong>ths in our study. Skunks suffered significant<br />

weight loss through <str<strong>on</strong>g>the</str<strong>on</strong>g> winter. Future climate change may alter seas<strong>on</strong>al patterns <str<strong>on</strong>g>of</str<strong>on</strong>g> behavior<br />

which might both enhance and mediate <str<strong>on</strong>g>the</str<strong>on</strong>g> degree <str<strong>on</strong>g>of</str<strong>on</strong>g> rabies in <str<strong>on</strong>g>striped</str<strong>on</strong>g> <str<strong>on</strong>g>skunk</str<strong>on</strong>g> populati<strong>on</strong>s.<br />

In eastern Kansas, models <str<strong>on</strong>g>of</str<strong>on</strong>g> future climate scenarios predict warmer winters with higher<br />

nightly temperatures over <str<strong>on</strong>g>the</str<strong>on</strong>g> next decades (Brunsell et al. 2008). We envisi<strong>on</strong> two possible<br />

scenarios: 1) when <str<strong>on</strong>g>skunk</str<strong>on</strong>g>s are out <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> dens and foraging, <str<strong>on</strong>g>the</str<strong>on</strong>g> chance for c<strong>on</strong>tact with o<str<strong>on</strong>g>the</str<strong>on</strong>g>r<br />

individuals is greatest, especially in areas <str<strong>on</strong>g>of</str<strong>on</strong>g> high <str<strong>on</strong>g>skunk</str<strong>on</strong>g> densities. Thus, <str<strong>on</strong>g>the</str<strong>on</strong>g> risk <str<strong>on</strong>g>of</str<strong>on</strong>g> rabies<br />

transmissi<strong>on</strong> may be amplified by warmer night-time temperatures, particularly in winter when<br />

31


<str<strong>on</strong>g>striped</str<strong>on</strong>g> <str<strong>on</strong>g>skunk</str<strong>on</strong>g>s may be more likely to move during night hours instead <str<strong>on</strong>g>of</str<strong>on</strong>g> remaining in dens. The<br />

increased movement could lead not <strong>on</strong>ly to higher intra-specific c<strong>on</strong>tact rates, but also increased<br />

rates <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>skunk</str<strong>on</strong>g>-compani<strong>on</strong> animal c<strong>on</strong>tact in disturbed habitats. 2) On <str<strong>on</strong>g>the</str<strong>on</strong>g> o<str<strong>on</strong>g>the</str<strong>on</strong>g>r hand,<br />

transmissi<strong>on</strong> rates may be lessened if warmer winters result in a decline in communal denning<br />

rates and decrease direct c<strong>on</strong>tact am<strong>on</strong>g multiple individuals. Additi<strong>on</strong>ally, transmissi<strong>on</strong> may be<br />

reduced if <str<strong>on</strong>g>skunk</str<strong>on</strong>g>s remain healthier over a warmer winter. Cold winter m<strong>on</strong>ths <str<strong>on</strong>g>of</str<strong>on</strong>g>ten lead to<br />

decreased nutriti<strong>on</strong> and weight loss in wildlife compromising immune system health (Altizer et<br />

al. 2006). Warmer winters could reduce <str<strong>on</strong>g>the</str<strong>on</strong>g> prevalence <str<strong>on</strong>g>of</str<strong>on</strong>g> a weakened immune state, thus<br />

reducing disease transmissi<strong>on</strong> risk.<br />

C<strong>on</strong>clusi<strong>on</strong>s<br />

The use <str<strong>on</strong>g>of</str<strong>on</strong>g> both spatial and genetic analyses can greatly improve <str<strong>on</strong>g>the</str<strong>on</strong>g> accuracy <str<strong>on</strong>g>of</str<strong>on</strong>g> studies<br />

<strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> spatial distributi<strong>on</strong>s and behavior <str<strong>on</strong>g>of</str<strong>on</strong>g> wildlife species. The combinati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> both analyses<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g>ten leads to different c<strong>on</strong>clusi<strong>on</strong>s than would be established if <strong>on</strong>ly <strong>on</strong>e technique was used<br />

(Aubry et al. 2004, Fedy et al. 2008). Telemetry studies provide informati<strong>on</strong> <strong>on</strong> home range size<br />

and compositi<strong>on</strong>, daily movement patterns, and individual c<strong>on</strong>tact rates, while genetic analyses<br />

compliment <str<strong>on</strong>g>the</str<strong>on</strong>g>se traditi<strong>on</strong>al studies with insight into dispersal patterns and fine-scale populati<strong>on</strong><br />

structure. We implemented both techniques to c<strong>on</strong>sider <str<strong>on</strong>g>the</str<strong>on</strong>g> impact <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>striped</str<strong>on</strong>g> <str<strong>on</strong>g>skunk</str<strong>on</strong>g> ecology <strong>on</strong><br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> epidemiology <str<strong>on</strong>g>of</str<strong>on</strong>g> rabies at <str<strong>on</strong>g>the</str<strong>on</strong>g> evolving urban/rural interface. The c<strong>on</strong>clusi<strong>on</strong>s from <str<strong>on</strong>g>the</str<strong>on</strong>g>se<br />

analyses have implicati<strong>on</strong>s for rabies management and c<strong>on</strong>trol.<br />

The habitat preferences and denning behaviors <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>striped</str<strong>on</strong>g> <str<strong>on</strong>g>skunk</str<strong>on</strong>g> in this study provide a<br />

scenario for rabies spread in <str<strong>on</strong>g>the</str<strong>on</strong>g> regi<strong>on</strong> that must be carefully c<strong>on</strong>sidered in management and<br />

c<strong>on</strong>trol <str<strong>on</strong>g>of</str<strong>on</strong>g> rabies spread. We see <str<strong>on</strong>g>the</str<strong>on</strong>g> potential for increased c<strong>on</strong>tact rates and high levels <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

populati<strong>on</strong> mixing in areas close to human development due to <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>skunk</str<strong>on</strong>g>’s affinity for <str<strong>on</strong>g>the</str<strong>on</strong>g>se<br />

32


habitats, its high dispersal capacity, and gregarious behavior. As human development and fire<br />

suppressi<strong>on</strong> increase in <str<strong>on</strong>g>the</str<strong>on</strong>g> Flint Hills, woody encroachment will increase and more compani<strong>on</strong><br />

animals will inhabit <str<strong>on</strong>g>the</str<strong>on</strong>g> exurban ecot<strong>on</strong>e (Briggs et al. 2005). Thus, we envisi<strong>on</strong> increased<br />

disease transmissi<strong>on</strong> with <str<strong>on</strong>g>the</str<strong>on</strong>g> predicted land use and land cover changes for <str<strong>on</strong>g>the</str<strong>on</strong>g> Flint Hills <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Kansas.<br />

A greater understanding <str<strong>on</strong>g>of</str<strong>on</strong>g> host habitat use patterns can also be advantageous for disease<br />

c<strong>on</strong>trol efforts. Given <str<strong>on</strong>g>the</str<strong>on</strong>g> affinity <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>striped</str<strong>on</strong>g> <str<strong>on</strong>g>skunk</str<strong>on</strong>g>s for encroaching woodlands, landowner<br />

incentives to increase prescribed fire regimes within <str<strong>on</strong>g>the</str<strong>on</strong>g> Flint Hills should be implemented to<br />

reduce <str<strong>on</strong>g>the</str<strong>on</strong>g> current expansi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> wooded vegetati<strong>on</strong> into <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>prairie</strong> ecosystems. Land cover<br />

management changes now could reduce future rabies epidemics ignited by <str<strong>on</strong>g>the</str<strong>on</strong>g> expanding<br />

forested habitat. In additi<strong>on</strong>, vaccinati<strong>on</strong> and culling efforts can be directed at forest and field<br />

habitat boundaries for more efficient c<strong>on</strong>trol <str<strong>on</strong>g>of</str<strong>on</strong>g> disease spread. Currently, oral rabies vaccinati<strong>on</strong><br />

(ORV) programs are used in North America through <str<strong>on</strong>g>the</str<strong>on</strong>g> use <str<strong>on</strong>g>of</str<strong>on</strong>g> bait, targeting specific host<br />

species (Slate et al. 2005). Striped <str<strong>on</strong>g>skunk</str<strong>on</strong>g> ORV is being improved for higher c<strong>on</strong>sumpti<strong>on</strong> by <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

animal and <str<strong>on</strong>g>the</str<strong>on</strong>g> trap-vaccinate-release method <str<strong>on</strong>g>of</str<strong>on</strong>g>fers ano<str<strong>on</strong>g>the</str<strong>on</strong>g>r, more direct effort for vaccinati<strong>on</strong><br />

(Rosatte et al. 1992). Whatever method is proven most effective for <str<strong>on</strong>g>striped</str<strong>on</strong>g> <str<strong>on</strong>g>skunk</str<strong>on</strong>g> rabies<br />

eradicati<strong>on</strong>, vaccinati<strong>on</strong> efforts should be c<strong>on</strong>centrated <strong>on</strong> hot spots <str<strong>on</strong>g>of</str<strong>on</strong>g> disease spread, such as <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

forest/field matrix.<br />

33


References<br />

Aebischer, N.J., P.A. Roberts<strong>on</strong>, and R.E. Kenward. 1993. Compositi<strong>on</strong>al analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> habitat use<br />

from animal radio-tracking data. <str<strong>on</strong>g>Ecology</str<strong>on</strong>g> 74:1313-1325.<br />

Altizer, S., A. Dobs<strong>on</strong>, P. Hosseini, P. Huds<strong>on</strong>, M. Pascual, and P. Rohani. 2006. Seas<strong>on</strong>ality<br />

and <str<strong>on</strong>g>the</str<strong>on</strong>g> dynamics <str<strong>on</strong>g>of</str<strong>on</strong>g> infectious disease. <str<strong>on</strong>g>Ecology</str<strong>on</strong>g> Letters 9:467-484.<br />

Aranda, M., and L. López-de Buen. 1999. Rabies in <str<strong>on</strong>g>skunk</str<strong>on</strong>g>s from Mexico. Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Wildlife<br />

Diseases 35:574-77.<br />

Aubry, K., S. Wisely, C. Raley, and S. Buskirk. 2004. Zoogeography, spacing patterns, and<br />

dispersal in fishers: insights gained from combining field and genetic data. Pages 201-<br />

220 in D.J. Harris<strong>on</strong>, A.K. Fuller, and G. Proulx, eds. Martens and Fishers (Martes) in<br />

human-altered envir<strong>on</strong>ments: an internati<strong>on</strong>al perspective. Springer Science+Business<br />

Media, New York, NY.<br />

Belotto, A., L.F. Leanes, M.C. Schneider, H. Tamayo, E. Correa. 2005. Overview <str<strong>on</strong>g>of</str<strong>on</strong>g> rabies in <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

Americas. Virus Research 111:5-12.<br />

Beyer, H. L. 2007. Hawth’s analysis tools for ArcGIS, http://www.spatialecology.com/htools.<br />

Accessed 06 April 2009.<br />

Bixler, A., and J. Gittleman. 2000. Variati<strong>on</strong> in home range and use <str<strong>on</strong>g>of</str<strong>on</strong>g> habitat in <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>striped</str<strong>on</strong>g><br />

<str<strong>on</strong>g>skunk</str<strong>on</strong>g> (<str<strong>on</strong>g>Mephitis</str<strong>on</strong>g> <str<strong>on</strong>g>mephitis</str<strong>on</strong>g>). Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Zoology (L<strong>on</strong>d<strong>on</strong>) 251:525-33.<br />

Bradley, C.A., and S. Altizer. 2006. Urbanizati<strong>on</strong> and <str<strong>on</strong>g>the</str<strong>on</strong>g> ecology <str<strong>on</strong>g>of</str<strong>on</strong>g> wildlife diseases. Trends in<br />

<str<strong>on</strong>g>Ecology</str<strong>on</strong>g> and Evoluti<strong>on</strong> 22:95-102.<br />

Bradley, C.A., S.E.J. Gibbs, and S. Altizer. 2008. Urban land use predicts West Nile exposure in<br />

s<strong>on</strong>gbirds. Ecological Applicati<strong>on</strong>s 18:1083-1092.<br />

Briggs, J.M., A.K. Knapp, B.L. Brock. 2002a. Expansi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> woody plants in <strong>tall</strong>-<strong>grass</strong> <strong>prairie</strong>: A<br />

15-year study <str<strong>on</strong>g>of</str<strong>on</strong>g> fire and fire-grazing interacti<strong>on</strong>s. American Midland Naturalist 147:287<br />

-294.<br />

Briggs, J.M., G.A. Hoch, and L.C. Johns<strong>on</strong>. 2002b. Assessing <str<strong>on</strong>g>the</str<strong>on</strong>g> rate, mechanisms, and<br />

c<strong>on</strong>sequences <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>versi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>tall</strong>-<strong>grass</strong> <strong>prairie</strong> to Juniperus virginiana forest.<br />

Ecosystems 5:578-586.<br />

Briggs, J. M., A. K. Knapp, J. M. Blair, J. L. Heisler, G. A. Hoch, M. S. Lett, and J. K.<br />

McCarr<strong>on</strong>. 2005. An ecosystem in transiti<strong>on</strong>: Causes and c<strong>on</strong>sequences <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>versi<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> mesic <strong>grass</strong>land to shrubland. Bioscience 55:243-254.<br />

Brunsell, N.A., A.R. J<strong>on</strong>es, T.L. Jacks<strong>on</strong> and J.J. Feddema. 2008. Seas<strong>on</strong>al trends in air<br />

34


temperature and precipitati<strong>on</strong> in IPCC AR4 GCM output for Kansas, USA: evaluati<strong>on</strong><br />

and implicati<strong>on</strong>s. Internati<strong>on</strong>al Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Climatology, in review.<br />

Center for Disease C<strong>on</strong>trol and Preventi<strong>on</strong>. 2007. Rabies. http://www.cdc.gov/rabies. Accessed<br />

07 September 2009.<br />

Comer, J.A., C.D. Paddock, and J.E. Childs. 2001. Urban zo<strong>on</strong>oses caused by Bart<strong>on</strong>ella,<br />

Coxiella, Ehrlichia, and Rickettsia species. Vector Borne and Zo<strong>on</strong>otic Diseases 1:91-<br />

117.<br />

Crowl, T.A., T.O. Crist, R.R. Paramenter, G. Belovsky, and A.E. Lugo. 2008. The spread <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

invasive species and infectious disease as drivers <str<strong>on</strong>g>of</str<strong>on</strong>g> ecosystem change. Fr<strong>on</strong>tiers in<br />

<str<strong>on</strong>g>Ecology</str<strong>on</strong>g> and <str<strong>on</strong>g>the</str<strong>on</strong>g> Envir<strong>on</strong>ment 6:238-246.<br />

Daszak P., A.A. Cunningham, and A.D. Hyatt. 2001. Anthropogenic envir<strong>on</strong>mental change and<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> emergence <str<strong>on</strong>g>of</str<strong>on</strong>g> infectious diseases in wildlife. Acta Tropica 78:103-116.<br />

Davis<strong>on</strong>, J., M. Huck, R.J. Delahay, and T.J. Roper. 2008. Urban badger setts: characteristics,<br />

patterns <str<strong>on</strong>g>of</str<strong>on</strong>g> use and management implicati<strong>on</strong>s. Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Zoology 275:190-200.<br />

Despommier D., B.R. Ellis, and B.A. Wilcox. 2007. The role <str<strong>on</strong>g>of</str<strong>on</strong>g> ecot<strong>on</strong>es in emerging infectious<br />

diseases. EcoHealth 3:281-289.<br />

Dragoo, J., Coan, K., Moore, K., Henke, S., Fleischer, R., Wisely, S.M. 2009. Polymorphic<br />

microsatellite markers for <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>striped</str<strong>on</strong>g> <str<strong>on</strong>g>skunk</str<strong>on</strong>g>, <str<strong>on</strong>g>Mephitis</str<strong>on</strong>g> <str<strong>on</strong>g>mephitis</str<strong>on</strong>g>, and o<str<strong>on</strong>g>the</str<strong>on</strong>g>r mephitids.<br />

Molecular <str<strong>on</strong>g>Ecology</str<strong>on</strong>g> Resources 9:383-385.<br />

Egan, A.F., and A.E. Lul<str<strong>on</strong>g>of</str<strong>on</strong>g>f. 2000. The exurbanizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> America’s forests. Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Forestry<br />

98:26-30.<br />

Evanno, G., S. Regnaut, and J. Goudet. 2005. Detecting <str<strong>on</strong>g>the</str<strong>on</strong>g> number <str<strong>on</strong>g>of</str<strong>on</strong>g> clusters <str<strong>on</strong>g>of</str<strong>on</strong>g> individuals<br />

using <str<strong>on</strong>g>the</str<strong>on</strong>g> s<str<strong>on</strong>g>of</str<strong>on</strong>g>tware STRUCTURE: a simulati<strong>on</strong> study. Molecular <str<strong>on</strong>g>Ecology</str<strong>on</strong>g> 14:2611-2620.<br />

Fedy, B.C., K. Martin, C. Ritland, and J. Young. 2008. Genetic and ecological data provide<br />

inc<strong>on</strong>gruent interpretati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> populati<strong>on</strong> structure and dispersal in naturally subdivided<br />

populati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> white-tailed ptarmigan (Lagopus leucura). Molecular <str<strong>on</strong>g>Ecology</str<strong>on</strong>g> 17:1905-<br />

1917.<br />

Field, H.E. 2009. Bats and emerging zo<strong>on</strong>oses: Henipaviruses and SARS. Zo<strong>on</strong>oses and Public<br />

Health 56:278-284.<br />

Freeman, C. C., and L. C. Hulbert. 1985. An annotated list <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> vascular flora <str<strong>on</strong>g>of</str<strong>on</strong>g> K<strong>on</strong>za Prairie<br />

Research Natural Area, Kansas. Transacti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> Kansas Academy <str<strong>on</strong>g>of</str<strong>on</strong>g> Sciences 88:84–<br />

115.<br />

Gann<strong>on</strong>, W.L., R.S. Sikes, and <str<strong>on</strong>g>the</str<strong>on</strong>g> Animal Care and Use Committee <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> American Society <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

35


Mammalogists. 2007. Guidelines <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> American Society <str<strong>on</strong>g>of</str<strong>on</strong>g> Mammalogists for <str<strong>on</strong>g>the</str<strong>on</strong>g> use<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> wild mammals in research. Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Mammalogy 88:809-823.<br />

Gehrt, S.D. 2005. Seas<strong>on</strong>al survival and cause-specific mortality <str<strong>on</strong>g>of</str<strong>on</strong>g> urban and rural <str<strong>on</strong>g>striped</str<strong>on</strong>g><br />

<str<strong>on</strong>g>skunk</str<strong>on</strong>g>s in <str<strong>on</strong>g>the</str<strong>on</strong>g> absence <str<strong>on</strong>g>of</str<strong>on</strong>g> rabies. Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Mammalogy 86:1164-1170.<br />

Greenwood, R.J., W.E. Newt<strong>on</strong>, G. Pears<strong>on</strong>, and G.J. Schamber. 1997. Populati<strong>on</strong> and<br />

movement characteristics <str<strong>on</strong>g>of</str<strong>on</strong>g> radio collared <str<strong>on</strong>g>striped</str<strong>on</strong>g> <str<strong>on</strong>g>skunk</str<strong>on</strong>g>s in North Dakota during an<br />

epizootic <str<strong>on</strong>g>of</str<strong>on</strong>g> rabies. Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Wildlife Diseases 33:226-41.<br />

Grimm, N.B., J.M. Grove, S.T.A. Pickett, and C.L. Redman. 2000. Integrated approaches to<br />

l<strong>on</strong>g-term studies <str<strong>on</strong>g>of</str<strong>on</strong>g> urban ecological systems. BioScience 50:571-584.<br />

Grimm N.B., D. Foster, P. Gr<str<strong>on</strong>g>of</str<strong>on</strong>g>fman, J.M. Grove, C.S. Hopkins, K.J. Nadelh<str<strong>on</strong>g>of</str<strong>on</strong>g>fer, D.E. Pataki,<br />

and D.P.C. Peters. 2008. The changing landscape: ecosystem resp<strong>on</strong>ses to urbanizati<strong>on</strong><br />

and polluti<strong>on</strong> across climatic and societal gradients. Fr<strong>on</strong>tiers in <str<strong>on</strong>g>Ecology</str<strong>on</strong>g> and <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

Envir<strong>on</strong>ment 6:264-272.<br />

Guerra, M. A., A. T. Curns, C. E. Rupprecht, C. A. Hanl<strong>on</strong>, J. W. Krebs, and J. E. Childs. 2003.<br />

Skunk and racco<strong>on</strong> rabies in <str<strong>on</strong>g>the</str<strong>on</strong>g> eastern United States: Temporal and spatial analysis.<br />

Emerging Infectious Diseases 9:1143-1150.<br />

Houseknecht, C.R., and J. Tester. 1978. Denning habits <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>striped</str<strong>on</strong>g> <str<strong>on</strong>g>skunk</str<strong>on</strong>g> (<str<strong>on</strong>g>Mephitis</str<strong>on</strong>g> <str<strong>on</strong>g>mephitis</str<strong>on</strong>g>).<br />

American Midland Naturalist 100:424-30.<br />

Kansas Applied Remote Sensing Program. Kansas Geospatial Community Comm<strong>on</strong>s.<br />

http://www.kansasgis.org.<br />

Kansas State University Veterinary Diagnostic Laboratory. Kansas Listing <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Rabies Positives by Counties. http://www.vet.ksu.edu/depts/dmp/service/rabies/<br />

kansas.htm.<br />

Kaplan, C. 1985. Rabies: a worldwide disease. Pages 1-21 in P.J. Bac<strong>on</strong>, editor. Populati<strong>on</strong><br />

dynamics <str<strong>on</strong>g>of</str<strong>on</strong>g> rabies in wildlife. Academic Press, New York, New York.<br />

Knopf F.L., and F.B. Sams<strong>on</strong>. 1995. C<strong>on</strong>serving <str<strong>on</strong>g>the</str<strong>on</strong>g> biotic integrity <str<strong>on</strong>g>of</str<strong>on</strong>g> Great Plains. Pages 121-<br />

133 in S.R. Johns<strong>on</strong> and A. Bouzaher, eds. C<strong>on</strong>servati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Great Plains Ecosystems:<br />

Current Science, Future Opti<strong>on</strong>s. Dordrecht, Kluwer Academic Press.<br />

Küchler, A. W. 1967. Some geographic features <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> Kansas <strong>prairie</strong>. Transacti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

Kansas Academy <str<strong>on</strong>g>of</str<strong>on</strong>g> Sciences 70:388–401<br />

Larivière, S., L.R. Walt<strong>on</strong> and F. Messier. 1999. Selecti<strong>on</strong> by <str<strong>on</strong>g>striped</str<strong>on</strong>g> <str<strong>on</strong>g>skunk</str<strong>on</strong>g>s (<str<strong>on</strong>g>Mephitis</str<strong>on</strong>g> <str<strong>on</strong>g>mephitis</str<strong>on</strong>g>)<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> farmsteads and buildings as denning sites. American Midland Naturalist 142:96-101.<br />

Larivière, S., and F. Messier. 2000. Habitat selecti<strong>on</strong> and use <str<strong>on</strong>g>of</str<strong>on</strong>g> edges by <str<strong>on</strong>g>striped</str<strong>on</strong>g> <str<strong>on</strong>g>skunk</str<strong>on</strong>g>s in<br />

36


Canadian <strong>prairie</strong>s. Canadian Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Zoology 78:366-372.<br />

Mitna, S.C. 1992. Tests <str<strong>on</strong>g>of</str<strong>on</strong>g> spatial and temporal interacti<strong>on</strong> am<strong>on</strong>g animals. Ecological<br />

Applicati<strong>on</strong>s 2:178-188.<br />

Patz J.A., P. Daszak, G.M. Tabor, A.A. Aguirre, M. Pearl, J. Epstein, N. D. Wolfe, A.M.<br />

Kilpatrick, J. Foufopoulos, D. Molyneux, D.J. Bradley, and Members <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> Working<br />

Group <strong>on</strong> Land Use Change and Disease Emergence. 2004. Unhealthy landscapes: policy<br />

recommendati<strong>on</strong>s <strong>on</strong> land use change and infectious disease emergence. Envir<strong>on</strong>mental<br />

Health Perspectives 112:1092-1098.<br />

Peakall, R., P.E. Smouse. 2006. GENALEX 6: genetic analysis in Excel. Populati<strong>on</strong> genetic<br />

s<str<strong>on</strong>g>of</str<strong>on</strong>g>tware for teaching and research. Molecular <str<strong>on</strong>g>Ecology</str<strong>on</strong>g> Notes 6:288-295.<br />

Prange, S., S.D. Gehrt, E.P. Wiggers. 2004. Influences <str<strong>on</strong>g>of</str<strong>on</strong>g> anthropogenic resources <strong>on</strong> racco<strong>on</strong><br />

(Procy<strong>on</strong> lotor) movements and spatial distributi<strong>on</strong>. Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Mammalogy 85:483-490.<br />

Pritchard, J.K., M. Stephens, and P. D<strong>on</strong>nelly. 2000. Inference <str<strong>on</strong>g>of</str<strong>on</strong>g> populati<strong>on</strong> structure using<br />

multilocus genotype data. Genetics 155:945-959.<br />

Pritchard, J.K. and W. Wen. 2002. Documentati<strong>on</strong> for Structure S<str<strong>on</strong>g>of</str<strong>on</strong>g>tware Versi<strong>on</strong> 2.<br />

http://pritch.bsd.uchicago.edu.<br />

Queller, D.C., and K.F. Goodnight. 1989. Estimating relatedness using genetic markers.<br />

Evoluti<strong>on</strong> 43:258-275.<br />

Raym<strong>on</strong>d, M., and F. Rousset. 1995. GENEPOP v.1.2: populati<strong>on</strong> genetics s<str<strong>on</strong>g>of</str<strong>on</strong>g>tware for exact<br />

tests and ecumenicism. Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Heredity 86:248-249.<br />

Riley, S.P.D. 2006. Spatial ecology <str<strong>on</strong>g>of</str<strong>on</strong>g> bobcats and gray foxes in urban and rural z<strong>on</strong>es <str<strong>on</strong>g>of</str<strong>on</strong>g> a<br />

nati<strong>on</strong>al park. The Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Wildlife Management 70:1425-1435.<br />

Roemer, G.W., M. E. Gompper, and B. Van Valkenburgh. 2009. The ecological role <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

mammalian mesocarnivore. BioScience 59:165-173.<br />

Rosatte, R.C., M.J. Power, C.D. MacInnes, and J.B. Campbell. 1992. Trap-vaccinate-release and<br />

oral vaccinati<strong>on</strong> for rabies c<strong>on</strong>trol in urban <str<strong>on</strong>g>skunk</str<strong>on</strong>g>s, racco<strong>on</strong>s, and foxes. The Journal <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Wildlife Diseases 28:562-571.<br />

Rosatte, R., and S. Larivière. 2003. Skunks. Pages 692-707 in G.A. Feldhamer, B.C. Thomps<strong>on</strong>,<br />

and J.A. Chapman, eds. Wild Mammals <str<strong>on</strong>g>of</str<strong>on</strong>g> North America: Biology, Management, and<br />

C<strong>on</strong>servati<strong>on</strong>, 2 nd ed. John Hopkins University Press, Baltimore, MD.<br />

Samps<strong>on</strong>, F., and F. Knopf. 1994. Prairie c<strong>on</strong>servati<strong>on</strong> in North America. BioScience 44:418-<br />

421.<br />

37


Schmidt, K.A. and R.S. Ostfeld. 2001. Biodiversity and <str<strong>on</strong>g>the</str<strong>on</strong>g> diluti<strong>on</strong> effect in disease ecology.<br />

<str<strong>on</strong>g>Ecology</str<strong>on</strong>g> 82:609-619.<br />

Slate, D., C.E. Rupprecht, J.A. Ro<strong>on</strong>ey, D. D<strong>on</strong>ovan, D.H. Lein, R.B. Chipman. 2005. Status <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

oral rabies vaccinati<strong>on</strong> in wild carnivores in <str<strong>on</strong>g>the</str<strong>on</strong>g> United States. Virus Research 111:68-76.<br />

Smouse, P.E., and R. Peakall. 1999. Spatial autocorrelati<strong>on</strong> analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> individual multiallele and<br />

multilocus genetic structure. Heredity 82:561-573.<br />

Storm, G.L. 1972. Daytime retreats and movements <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>skunk</str<strong>on</strong>g>s <strong>on</strong> farmlands in Illinois. The<br />

Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Wildlife Management 36:31-45.<br />

Velasco-Villa A., S.A. Reeder, L.A. Orciari, P.A. Yager, R. Franka, J.D. Blant<strong>on</strong>, L. Zuckero, P.<br />

Hunt, E.H. Oertli, L.E. Robins<strong>on</strong>, and C.E. Rupprecht. 2008. Enzootic rabies eliminati<strong>on</strong><br />

from dogs and reemergence in wild terrestrial carnivores, United States. Emerging<br />

Infectious Diseases 14:1849-1854.<br />

Verts, B. J. 1967. The biology <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>striped</str<strong>on</strong>g> <str<strong>on</strong>g>skunk</str<strong>on</strong>g>. University <str<strong>on</strong>g>of</str<strong>on</strong>g> Illinois Press, Urbana. 218pp.<br />

Vijayachari, P., A.P. Sugunan, A.G. Shriram. 2008. Leptospirosis: an emerging global health<br />

problem. Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Biosciences 33:557-569.<br />

Wade-Smith, J., and B.J. Verts. 1982. <str<strong>on</strong>g>Mephitis</str<strong>on</strong>g> <str<strong>on</strong>g>mephitis</str<strong>on</strong>g>. Mammalian Species 173:1-7.<br />

Weissinger, M.D., T.C. Theimer, D.L. Bergman, and T.J. Deliberto. 2009. Nightly and seas<strong>on</strong>al<br />

movements, seas<strong>on</strong>al home range, and focal locati<strong>on</strong> photo-m<strong>on</strong>itoring <str<strong>on</strong>g>of</str<strong>on</strong>g> urban <str<strong>on</strong>g>striped</str<strong>on</strong>g><br />

<str<strong>on</strong>g>skunk</str<strong>on</strong>g>s (<str<strong>on</strong>g>Mephitis</str<strong>on</strong>g> <str<strong>on</strong>g>mephitis</str<strong>on</strong>g>): implicati<strong>on</strong>s for rabies transmissi<strong>on</strong>. Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Wildlife<br />

Diseases 45:388-397.<br />

Wilcox, B.A., and D.J. Gubler. 2005. Disease ecology and <str<strong>on</strong>g>the</str<strong>on</strong>g> global emergence <str<strong>on</strong>g>of</str<strong>on</strong>g> zo<strong>on</strong>otic<br />

pathogens. Envir<strong>on</strong>mental Health and Preventative Medicine 10:263-272.<br />

Wunner, W.H. 2005. Preface: Rabies in <str<strong>on</strong>g>the</str<strong>on</strong>g> Americas. Virus Research 111:1-4.<br />

38


Figures and Tables<br />

Figure 2.1 Map <str<strong>on</strong>g>of</str<strong>on</strong>g> four study areas near Manhattan, Kansas. Study areas are labeled as<br />

follows: 1) K<strong>on</strong>za Prairie Biological Stati<strong>on</strong> (KPBS) sou<str<strong>on</strong>g>the</str<strong>on</strong>g>rn <strong>tall</strong>-<strong>grass</strong> <strong>prairie</strong><br />

(undisturbed), 2) town <str<strong>on</strong>g>of</str<strong>on</strong>g> Ashland and nor<str<strong>on</strong>g>the</str<strong>on</strong>g>rn KPBS (disturbed), 3) suburbs <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Manhattan (disturbed), and 4) town <str<strong>on</strong>g>of</str<strong>on</strong>g> Ogden (disturbed).<br />

39


Figure 2.2 High and low temperatures for <str<strong>on</strong>g>the</str<strong>on</strong>g> extent <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> study period with percentages<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>skunk</str<strong>on</strong>g>s in and out <str<strong>on</strong>g>of</str<strong>on</strong>g> den sites. High, or daytime temperatures, are shown in red (solid),<br />

while low, or nighttime temperatures, are displayed in blue (dotted). Black vertical bars <strong>on</strong><br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> upper porti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> figure represent percentages <str<strong>on</strong>g>of</str<strong>on</strong>g> located <str<strong>on</strong>g>skunk</str<strong>on</strong>g>s moving at night,<br />

while vertical bars <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> lower porti<strong>on</strong> represent percentages <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>skunk</str<strong>on</strong>g>s in den sites at<br />

night. Average daytime temperatures were significantly lower for den locati<strong>on</strong>s than<br />

movement locati<strong>on</strong>s (ANOVA, F=35.37, p


Figure 2.3 Den site descripti<strong>on</strong>s for 59 located dens for radio-tagged <str<strong>on</strong>g>striped</str<strong>on</strong>g> <str<strong>on</strong>g>skunk</str<strong>on</strong>g>s. The<br />

categories in <str<strong>on</strong>g>the</str<strong>on</strong>g> legend describe <str<strong>on</strong>g>the</str<strong>on</strong>g> actual opening <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> den site. The ‘hole’ label refers<br />

to an entrance dug into <str<strong>on</strong>g>the</str<strong>on</strong>g> soil, ‘rock’ describes a den within a rock outcrop, ‘tree’<br />

describes an entrance burrowed into <str<strong>on</strong>g>the</str<strong>on</strong>g> base <str<strong>on</strong>g>of</str<strong>on</strong>g> a living tree or within a dead tree, and<br />

‘unknown’ indicates that <str<strong>on</strong>g>the</str<strong>on</strong>g> exact entrance was not located due to increased cover.<br />

41


Figure 2.4 Observed versus expected percentages <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>striped</str<strong>on</strong>g> <str<strong>on</strong>g>skunk</str<strong>on</strong>g> locati<strong>on</strong>s in three<br />

habitats.<br />

% <str<strong>on</strong>g>of</str<strong>on</strong>g> Locati<strong>on</strong>s<br />

70<br />

60<br />

50<br />

40<br />

30<br />

20<br />

10<br />

0<br />

Tree Grassland Agriculture<br />

Habitat Type<br />

42<br />

Observed<br />

Expected


Figure 2.5 Correlogram plot <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> genetic correlati<strong>on</strong> coefficient (r) as a functi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

distance for <str<strong>on</strong>g>striped</str<strong>on</strong>g> <str<strong>on</strong>g>skunk</str<strong>on</strong>g> samples with known locati<strong>on</strong>s (n=85). The 95% c<strong>on</strong>fidence<br />

intervals are shown as dashed lines and <str<strong>on</strong>g>the</str<strong>on</strong>g> bootstrapped 95% c<strong>on</strong>fidence error bars are<br />

shown with <str<strong>on</strong>g>the</str<strong>on</strong>g> r values. All individuals within <str<strong>on</strong>g>the</str<strong>on</strong>g> ‘0’ distance class are members <str<strong>on</strong>g>of</str<strong>on</strong>g> a<br />

communal den.<br />

43


Table 2.1 Ranking matrices for <str<strong>on</strong>g>striped</str<strong>on</strong>g> <str<strong>on</strong>g>skunk</str<strong>on</strong>g> habitat preference comparing locati<strong>on</strong> data<br />

to home range habitat compositi<strong>on</strong> based <strong>on</strong> a) all locati<strong>on</strong> data, b) movement locati<strong>on</strong>s<br />

<strong>on</strong>ly, c) den site locati<strong>on</strong>s <strong>on</strong>ly. The sign <str<strong>on</strong>g>of</str<strong>on</strong>g> each t-value is indicated by + or -. A triple sign<br />

indicates a significant deviati<strong>on</strong> from random at p < 0.05.<br />

a)<br />

Habitat Type<br />

Habitat Type Woody cover Grassland Agriculture Rank<br />

Woody cover + +++ 2<br />

Grassland - +++ 1<br />

Agriculture --- --- 0<br />

b)<br />

Habitat Type<br />

Habitat Type Woody cover Grassland Agriculture Rank<br />

Woody cover - + 1<br />

Grassland + + 2<br />

Agriculture - - 0<br />

c)<br />

Habitat Type<br />

Habitat Type Woody cover Grassland Agriculture Rank<br />

Woody cover +++ +++ 2<br />

Grassland --- + 1<br />

Agriculture --- - 0<br />

44


Table 2.2 Summary statistics <str<strong>on</strong>g>of</str<strong>on</strong>g> eight microsatellite markers for <str<strong>on</strong>g>striped</str<strong>on</strong>g> <str<strong>on</strong>g>skunk</str<strong>on</strong>g>s and Hardy-<br />

Weinberg equilibrium values.<br />

Locus n Alleles Ta( o C) He Ho Fis HW (p-value) HW (SE)<br />

Meph42-73 107 15 54 0.898 0.916 -0.021 0.230 0.026<br />

Meph42-67 107 18 54 0.908 0.953 -0.050 0.157 0.024<br />

Meph22-70 106 13 54 0.899 0.943 -0.049 0.295 0.021<br />

Meph22-19 101 11 54 0.889 0.871 0.020 0.160 0.014<br />

Meph22-26 105 16 54 0.913 0.876 0.041 0.185 0.022<br />

Meph42-25 104 14 54 0.891 0.808 0.094 0.580 0.026<br />

Meph42-15 103 18 54 0.898 0.816 0.092 0.001* 0.001<br />

Meph22-14 105 17 54 0.912 0.914 -0.002 0.571 0.030<br />

45


CHAPTER 3 - Modeling disease spread <strong>on</strong> spatially-explicit c<strong>on</strong>tact<br />

networks: The influence <str<strong>on</strong>g>of</str<strong>on</strong>g> woody encroachment <strong>on</strong> rabies<br />

epidemiology in <str<strong>on</strong>g>the</str<strong>on</strong>g> Flint Hills<br />

Sarah E. Bowe, Samantha M. Wisely, Ali Sydney, Phillip Schumm, and Caterina Scoglio<br />

Abstract<br />

The emergence and propagati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> infectious zo<strong>on</strong>otic disease is significantly influenced<br />

by anthropogenic alterati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> land use and land cover. Ma<str<strong>on</strong>g>the</str<strong>on</strong>g>matical models are important tools<br />

to predict and c<strong>on</strong>trol future epidemics, but to realistically simulate disease spread, models<br />

should be spatially explicit and c<strong>on</strong>sider both host and pathogen ecology. The development <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

complex systems networking provides an excellent platform for exploring epidemiological<br />

modeling <strong>on</strong> heterogeneous landscapes. In <str<strong>on</strong>g>the</str<strong>on</strong>g> central United States, natural <strong>prairie</strong>s ecosystems<br />

are currently experiencing a rapid expansi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> natural and introduced woody vegetati<strong>on</strong> as a<br />

result <str<strong>on</strong>g>of</str<strong>on</strong>g> shifts in anthropogenic disturbance, intensive grazing practices, and altered fire<br />

frequencies. Rabies is a disease <str<strong>on</strong>g>of</str<strong>on</strong>g> c<strong>on</strong>cern in <str<strong>on</strong>g>the</str<strong>on</strong>g> regi<strong>on</strong> as it remains enzootic in wildlife<br />

populati<strong>on</strong>s and presents a persistent threat to human health that may be influenced by <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

changing landscape. We modeled <str<strong>on</strong>g>the</str<strong>on</strong>g> spread <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> rabies virus across <str<strong>on</strong>g>the</str<strong>on</strong>g> Upper Kansas River<br />

Watershed in eastern Kansas using spatially explicit c<strong>on</strong>tact networks based <strong>on</strong> habitat-specific<br />

distributi<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> disease host species in this regi<strong>on</strong>, <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>striped</str<strong>on</strong>g> <str<strong>on</strong>g>skunk</str<strong>on</strong>g> (<str<strong>on</strong>g>Mephitis</str<strong>on</strong>g> <str<strong>on</strong>g>mephitis</str<strong>on</strong>g>). To<br />

model future land cover change, forested habitat was increased across <str<strong>on</strong>g>the</str<strong>on</strong>g> watershed at<br />

forecasted levels <str<strong>on</strong>g>of</str<strong>on</strong>g> expansi<strong>on</strong> 27, 54, and 85 years from now. This simulated woody expansi<strong>on</strong><br />

resulted in networks with higher c<strong>on</strong>nectivity than those representing <str<strong>on</strong>g>the</str<strong>on</strong>g> current habitat<br />

c<strong>on</strong>figurati<strong>on</strong>. Higher average node degree and site betweenness allowed <str<strong>on</strong>g>the</str<strong>on</strong>g> disease to spread<br />

46


oader distances and to sustain itself for significantly l<strong>on</strong>ger periods <str<strong>on</strong>g>of</str<strong>on</strong>g> time across <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

landscape. In scenarios <str<strong>on</strong>g>of</str<strong>on</strong>g> increased woody encroachment, habitats that acted as barriers to<br />

spread <strong>on</strong> current habitat c<strong>on</strong>figurati<strong>on</strong>s became ineffective at c<strong>on</strong>taining <str<strong>on</strong>g>the</str<strong>on</strong>g> disease. With <strong>on</strong>ly<br />

a 25% increase in woody vegetati<strong>on</strong>, rabies spread dramatically increased. Disease management<br />

strategies should focus <strong>on</strong> reducti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> existing woody vegetati<strong>on</strong> and c<strong>on</strong>trol <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>on</strong>going woody<br />

encroachment to avoid future epidemics. C<strong>on</strong>trolling woody expansi<strong>on</strong> now may be more cost-<br />

effective and efficient than after <str<strong>on</strong>g>the</str<strong>on</strong>g> threshold <str<strong>on</strong>g>of</str<strong>on</strong>g> woody cover is reached and <str<strong>on</strong>g>the</str<strong>on</strong>g> landscape is<br />

substantially more c<strong>on</strong>nected.<br />

Introducti<strong>on</strong><br />

As anthropogenic development rapidly increases and c<strong>on</strong>tinues to alter land use and land<br />

cover patterns in <str<strong>on</strong>g>the</str<strong>on</strong>g> United States, it becomes increasingly important to understand how <str<strong>on</strong>g>the</str<strong>on</strong>g>se<br />

landscape changes will influence ecological systems and processes (Grimm et al. 2000, Crowl et<br />

al. 2008, Grimm et al. 2008). The emergence <str<strong>on</strong>g>of</str<strong>on</strong>g> infectious zo<strong>on</strong>otic disease and its<br />

epidemiological processes are <str<strong>on</strong>g>of</str<strong>on</strong>g>ten linked to human habitat alterati<strong>on</strong> (Patz et al. 2004, Crowl et<br />

al. 2008), yet understanding <str<strong>on</strong>g>the</str<strong>on</strong>g> influence <str<strong>on</strong>g>of</str<strong>on</strong>g> habitat alterati<strong>on</strong> <strong>on</strong> disease spread is complex.<br />

Habitat alterati<strong>on</strong> can affect <str<strong>on</strong>g>the</str<strong>on</strong>g> ecology and evoluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> host and pathogen as well as host-<br />

pathogen dynamics (Wilcox and Gubler 2005). Land use change has been implicated as a driver<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> zo<strong>on</strong>otic disease emergence around <str<strong>on</strong>g>the</str<strong>on</strong>g> world, including Nipah virus in China (Daszak et al.<br />

2001, Field 2009), Lyme disease in <str<strong>on</strong>g>the</str<strong>on</strong>g> nor<str<strong>on</strong>g>the</str<strong>on</strong>g>rn United States (Schmidt and Ostfeld 2001, Patz<br />

et al. 2004), Leptospirosis in India (Vijayachari et al. 2008), and West Nile virus in Atlanta,<br />

Georgia (Bradley et al. 2008). As established diseases expand to new envir<strong>on</strong>ments and newly<br />

emerging diseases begin to affect human populati<strong>on</strong>s as a result <str<strong>on</strong>g>of</str<strong>on</strong>g> anthropogenic disturbance, it<br />

47


is crucial to model and understand how <str<strong>on</strong>g>the</str<strong>on</strong>g>se ecosystem changes affect epidemiological<br />

processes and to predict both current and future hotspots and distributi<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> disease spread.<br />

Ma<str<strong>on</strong>g>the</str<strong>on</strong>g>matical models <str<strong>on</strong>g>of</str<strong>on</strong>g> disease spread are important tools in understanding <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

epidemiology <str<strong>on</strong>g>of</str<strong>on</strong>g> emerging and re-emerging infectious disease (Hethco<str<strong>on</strong>g>the</str<strong>on</strong>g> 2000). For directly<br />

transmitted diseases, three comp<strong>on</strong>ents <str<strong>on</strong>g>of</str<strong>on</strong>g> epidemiology must be c<strong>on</strong>sidered to begin to<br />

understand disease dynamics. First, properties <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> disease pathogen should be studied and<br />

integrated into models <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> disease spread (Fowler 2000, Huang and Li 2009). These<br />

properties include parameters such as <str<strong>on</strong>g>the</str<strong>on</strong>g> infective capability <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> pathogen and disease<br />

latency. Variability in <str<strong>on</strong>g>the</str<strong>on</strong>g>se parameters can significantly influence <str<strong>on</strong>g>the</str<strong>on</strong>g> emergence and<br />

sustainability <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> disease in <str<strong>on</strong>g>the</str<strong>on</strong>g> envir<strong>on</strong>ment (Fowler 2000, Wisely et al. in review). Sec<strong>on</strong>d,<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> ecology <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> host species resp<strong>on</strong>sible for <str<strong>on</strong>g>the</str<strong>on</strong>g> spread <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> disease can shape and alter<br />

patterns <str<strong>on</strong>g>of</str<strong>on</strong>g> disease expansi<strong>on</strong> and maintenance across <str<strong>on</strong>g>the</str<strong>on</strong>g> landscape (MacD<strong>on</strong>ald and Voight<br />

1985). Host ecology includes habitat preferences, populati<strong>on</strong> densities, and probabilistic c<strong>on</strong>tact<br />

rates am<strong>on</strong>g individuals. Closely linked to <str<strong>on</strong>g>the</str<strong>on</strong>g> ecology <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> host is <str<strong>on</strong>g>the</str<strong>on</strong>g> third comp<strong>on</strong>ent <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

disease epidemiology, <str<strong>on</strong>g>the</str<strong>on</strong>g> underlying landscape (Parham and Fergus<strong>on</strong> 2006). The habitat <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

host c<strong>on</strong>tinually changes, especially with rapid human development. As <str<strong>on</strong>g>the</str<strong>on</strong>g> underlying<br />

landscape and habitat c<strong>on</strong>figurati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> host populati<strong>on</strong>s changes with anthropogenic expansi<strong>on</strong>,<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> movement and distributi<strong>on</strong> patterns <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> species change as well. Thus, spatial<br />

heterogeneity <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> landscape which influences <str<strong>on</strong>g>the</str<strong>on</strong>g> movement and organizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> individuals is<br />

pivotal to understanding how this habitat alterati<strong>on</strong> influences pathogen-host processes (Deal et<br />

al. 2000, Real and Biek 2007). Currently few epizootilogical models incorporate all<br />

epidemiological comp<strong>on</strong>ents including realistic ecological properties <str<strong>on</strong>g>of</str<strong>on</strong>g> host dynamics, variati<strong>on</strong><br />

in pathogenesis, and c<strong>on</strong>siderati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> changing habitat matrix. The emerging <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> field <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

48


complex systems modeling provides an excellent format in which to c<strong>on</strong>sider all comp<strong>on</strong>ents <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

disease epidemiology.<br />

Complex networks encompass a broad range <str<strong>on</strong>g>of</str<strong>on</strong>g> systems including areas as diverse as<br />

human social interacti<strong>on</strong>s, ec<strong>on</strong>omic markets, and ecosystem food webs (Lewis et al. 2008,<br />

Bascompte 2009, Schweitzer et al. 2009). With increased data storage and processing<br />

capabilities, we are able to study increasingly complex interacti<strong>on</strong>s through <str<strong>on</strong>g>the</str<strong>on</strong>g> use <str<strong>on</strong>g>of</str<strong>on</strong>g> network<br />

representati<strong>on</strong>s (Barrat et al. 2008, Barabasi 2009). The network approach to <str<strong>on</strong>g>the</str<strong>on</strong>g> study <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

complex systems attempts to describe and model real-world systems without many <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

restraints and assumpti<strong>on</strong>s imposed <strong>on</strong> analytical models (Barrat et al. 2008). For modeling<br />

disease spread, host and disease parameters can be directly incorporated into <str<strong>on</strong>g>the</str<strong>on</strong>g> network al<strong>on</strong>g<br />

with <str<strong>on</strong>g>the</str<strong>on</strong>g> underlying, heterogeneous landscape <strong>on</strong> which <str<strong>on</strong>g>the</str<strong>on</strong>g> disease propagates. The<br />

compartmentalized approach to epidemiology (e.g. SEIR or susceptible-exposed-infected-<br />

removed) is a comm<strong>on</strong> method for exploring how host disease states and <str<strong>on</strong>g>the</str<strong>on</strong>g> transiti<strong>on</strong> from <strong>on</strong>e<br />

stage to <str<strong>on</strong>g>the</str<strong>on</strong>g> next affect disease emergence (Lavine et al. 2008). Incorporating this disease model<br />

to a network <str<strong>on</strong>g>of</str<strong>on</strong>g> individual-based nodes placed across a realistic landscape allows for a spatially<br />

explicit examinati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> interacti<strong>on</strong> am<strong>on</strong>g pathogen, host, and envir<strong>on</strong>ment.<br />

We applied this complex network approach in c<strong>on</strong>sidering <str<strong>on</strong>g>the</str<strong>on</strong>g> rabies virus in <str<strong>on</strong>g>the</str<strong>on</strong>g> central<br />

United States. This directly transmitted zo<strong>on</strong>otic disease c<strong>on</strong>tinues to threaten livestock,<br />

domestic animals, and human populati<strong>on</strong>s in <str<strong>on</strong>g>the</str<strong>on</strong>g> United States despite >$300 milli<strong>on</strong> spent each<br />

year <strong>on</strong> rabies preventi<strong>on</strong> and c<strong>on</strong>trol (Center for Disease C<strong>on</strong>trol and Preventi<strong>on</strong> 2007). In <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

Central Plains, <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>striped</str<strong>on</strong>g> <str<strong>on</strong>g>skunk</str<strong>on</strong>g> (<str<strong>on</strong>g>Mephitis</str<strong>on</strong>g> <str<strong>on</strong>g>mephitis</str<strong>on</strong>g>) is <str<strong>on</strong>g>the</str<strong>on</strong>g> reservoir host for <str<strong>on</strong>g>the</str<strong>on</strong>g> rabies virus. A<br />

recent study <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>skunk</str<strong>on</strong>g> habitat affinity and distributi<strong>on</strong> in <strong>tall</strong> <strong>grass</strong> <strong>prairie</strong> (Chapter 2, Bowe 2009)<br />

revealed a preference am<strong>on</strong>g individuals for woodland forest; within this habitat, home ranges<br />

49


overlapped to a greater extent and den densities were higher than in <str<strong>on</strong>g>the</str<strong>on</strong>g> surrounding <strong>grass</strong>land<br />

habitat. In <str<strong>on</strong>g>the</str<strong>on</strong>g> last 60 years, this <strong>tall</strong>-<strong>grass</strong> <strong>prairie</strong> regi<strong>on</strong> has experienced a 28% increase in<br />

shrub habitat and a 58% increase in forested habitat (Knight et al. 1994, Briggs et al. 2005). This<br />

increase, due to fire suppressi<strong>on</strong> near areas <str<strong>on</strong>g>of</str<strong>on</strong>g> exurbanizati<strong>on</strong> in <str<strong>on</strong>g>the</str<strong>on</strong>g> regi<strong>on</strong>, creates potential<br />

habitat niches and transmissi<strong>on</strong> corridors for zo<strong>on</strong>otic diseases by c<strong>on</strong>necting rural envir<strong>on</strong>ments<br />

to urban centers as well as linking urban centers, which increases <str<strong>on</strong>g>the</str<strong>on</strong>g> risk <str<strong>on</strong>g>of</str<strong>on</strong>g> human exposure.<br />

Therefore to understand <str<strong>on</strong>g>the</str<strong>on</strong>g> effect <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> land cover change <strong>on</strong> epidemiological processes,<br />

predictive modeling <str<strong>on</strong>g>of</str<strong>on</strong>g> rabies spread in <str<strong>on</strong>g>the</str<strong>on</strong>g> regi<strong>on</strong> must be spatially explicit to c<strong>on</strong>sider <str<strong>on</strong>g>the</str<strong>on</strong>g> future<br />

expansi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> woody vegetati<strong>on</strong> in <str<strong>on</strong>g>the</str<strong>on</strong>g> Flint Hills.<br />

This study aimed to model and predict rabies spread across <str<strong>on</strong>g>the</str<strong>on</strong>g> Upper Kansas River<br />

Watershed <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> Central Plains based <strong>on</strong> three future scenarios <str<strong>on</strong>g>of</str<strong>on</strong>g> forested habitat distributi<strong>on</strong>.<br />

Rabies virus was propagated across spatially-explicit c<strong>on</strong>tact networks through <str<strong>on</strong>g>the</str<strong>on</strong>g> use <str<strong>on</strong>g>of</str<strong>on</strong>g> a<br />

compartmentalized epidemiological model. Characteristics <str<strong>on</strong>g>of</str<strong>on</strong>g> viral spread were compared<br />

am<strong>on</strong>g models to determine <str<strong>on</strong>g>the</str<strong>on</strong>g> influence <str<strong>on</strong>g>of</str<strong>on</strong>g> woody encroachment <strong>on</strong> disease emergence and<br />

maintenance. Management strategies and applicati<strong>on</strong>s in future studies <str<strong>on</strong>g>of</str<strong>on</strong>g> emerging infectious<br />

diseases are discussed.<br />

Methods<br />

Network C<strong>on</strong>structi<strong>on</strong><br />

Spatially explicit c<strong>on</strong>tact networks were created across <str<strong>on</strong>g>the</str<strong>on</strong>g> Upper Kansas River<br />

Watershed. This watershed is located in north central Kansas at <str<strong>on</strong>g>the</str<strong>on</strong>g> nor<str<strong>on</strong>g>the</str<strong>on</strong>g>rn end <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> Flint<br />

Hills. The Kansas River passes through <str<strong>on</strong>g>the</str<strong>on</strong>g> center <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> watershed, separating <str<strong>on</strong>g>the</str<strong>on</strong>g> watershed<br />

horiz<strong>on</strong><strong>tall</strong>y with distinct habitat divisi<strong>on</strong>s north and south <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> river. To <str<strong>on</strong>g>the</str<strong>on</strong>g> north <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

Kansas River, forested habitat dominates <str<strong>on</strong>g>the</str<strong>on</strong>g> landscape with substantial urban development near<br />

50


<str<strong>on</strong>g>the</str<strong>on</strong>g> river. The nor<str<strong>on</strong>g>the</str<strong>on</strong>g>rn tip <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> watershed and south <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> Kansas River is dominated by<br />

agricultural and <strong>grass</strong>land habitats with c<strong>on</strong>siderably less forest. These differences in forest<br />

distributi<strong>on</strong> are likely due to fire suppressi<strong>on</strong> near nor<str<strong>on</strong>g>the</str<strong>on</strong>g>rn urban areas, and due to annual<br />

prescribed burning <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>grass</strong>lands and maintenance <str<strong>on</strong>g>of</str<strong>on</strong>g> agricultural fields in <str<strong>on</strong>g>the</str<strong>on</strong>g> sou<str<strong>on</strong>g>the</str<strong>on</strong>g>rn rural<br />

areas. These patterns <str<strong>on</strong>g>of</str<strong>on</strong>g> habitat c<strong>on</strong>figurati<strong>on</strong> shaped <str<strong>on</strong>g>the</str<strong>on</strong>g> distributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>skunk</str<strong>on</strong>g> populati<strong>on</strong>s<br />

within <str<strong>on</strong>g>the</str<strong>on</strong>g> disease networks.<br />

Four spatially heterogeneous c<strong>on</strong>tact networks were created based <strong>on</strong> habitat-specific<br />

density estimates <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>striped</str<strong>on</strong>g> <str<strong>on</strong>g>skunk</str<strong>on</strong>g>s from <str<strong>on</strong>g>the</str<strong>on</strong>g> Flint Hills (Chapter 2, Bowe 2009) and published<br />

studies in similar habitats. Nodes representing <str<strong>on</strong>g>striped</str<strong>on</strong>g> <str<strong>on</strong>g>skunk</str<strong>on</strong>g> dens were placed randomly across<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> Upper Kansas River Watershed based <strong>on</strong> springtime habitat-specific density estimates. We<br />

used a density <str<strong>on</strong>g>of</str<strong>on</strong>g> 2.5 <str<strong>on</strong>g>skunk</str<strong>on</strong>g> dens per km 2 for <str<strong>on</strong>g>the</str<strong>on</strong>g> forested habitat type based <strong>on</strong> spring telemetry<br />

data in <str<strong>on</strong>g>the</str<strong>on</strong>g> regi<strong>on</strong>. Skunks were less comm<strong>on</strong> in open habitat; we used a density <str<strong>on</strong>g>of</str<strong>on</strong>g> 0.06 <str<strong>on</strong>g>skunk</str<strong>on</strong>g><br />

dens per km 2 for both <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>grass</strong>land and agricultural habitats. These estimates were similar to <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

wide range <str<strong>on</strong>g>of</str<strong>on</strong>g> published <str<strong>on</strong>g>striped</str<strong>on</strong>g> <str<strong>on</strong>g>skunk</str<strong>on</strong>g> density estimates in similar habitats (0.7 to 18.5 km 2 ,<br />

Wade-Smith and Verts 1982). Based <strong>on</strong> data from Gehrt (2004) and our own field work, <str<strong>on</strong>g>skunk</str<strong>on</strong>g><br />

densities from urban areas were estimated to be 2.1 <str<strong>on</strong>g>skunk</str<strong>on</strong>g> dens per km 2 . These estimates were<br />

applied to habitat specific node densities for all networks.<br />

Variati<strong>on</strong> am<strong>on</strong>g networks was based <strong>on</strong> underlying habitat compositi<strong>on</strong>. To simulate<br />

predicted woody encroachment across <str<strong>on</strong>g>the</str<strong>on</strong>g> landscape over <str<strong>on</strong>g>the</str<strong>on</strong>g> next 27, 54, and 85 years, wooded<br />

habitat was increased by 25%, 50%, and 78%, respectively, in <str<strong>on</strong>g>the</str<strong>on</strong>g> Upper Kansas River<br />

watershed. These simulated habitat increases were based <strong>on</strong> average forest successi<strong>on</strong> over <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

past 60 years (Knight et al. 1994, Briggs et al. 2005). These increases were produced by creating<br />

buffers around existing forested habitat using ArcGIS 9.0. We c<strong>on</strong>strained <str<strong>on</strong>g>the</str<strong>on</strong>g> expansi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

51


forest habitat <strong>on</strong>ly into <strong>grass</strong>land habitat; agricultural, urban, and water cover types were not<br />

affected by <str<strong>on</strong>g>the</str<strong>on</strong>g> increase in forest. Imagery used for <str<strong>on</strong>g>the</str<strong>on</strong>g>se analyses was generated by <str<strong>on</strong>g>the</str<strong>on</strong>g> Kansas<br />

Applied Remote Sensing (KARS) program from multitemporal Landsat Thematic Mapper (TM)<br />

imagery (KARS 2001). The image was created using a two stage hybrid classificati<strong>on</strong> method <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> TM imagery. This 2001 Kansas GAP land cover database was composed <str<strong>on</strong>g>of</str<strong>on</strong>g> 30 m raster cells<br />

encompassing 43 land cover classes. These land cover classes were generalized into five habitat<br />

types for analysis: forest, <strong>grass</strong>land, agriculture, urban, and water. The total area <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> Upper<br />

Kansas River Watershed was about 1,385 km 2 . Forest habitat comprised approximately 300 km 2<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> current landscape (Network 1), <strong>grass</strong>land habitat was ~704 km 2 , agricultural lands were<br />

~335 km 2 , urban areas were ~38 km 2 , and water comprised ~9 km 2 <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> total area. Based <strong>on</strong><br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> estimated densities, a total <str<strong>on</strong>g>of</str<strong>on</strong>g> 892 <str<strong>on</strong>g>skunk</str<strong>on</strong>g> den locati<strong>on</strong>s were randomly placed across <str<strong>on</strong>g>the</str<strong>on</strong>g> study<br />

area with 751 locati<strong>on</strong>s in forest, 42 in <strong>grass</strong>land, 20 in agricultural areas, and 79 in urban<br />

habitat. A 25% increase in forest habitat (Network 2) resulted in 376 km 2 <str<strong>on</strong>g>of</str<strong>on</strong>g> forest and 628 km 2<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>grass</strong>land, a 50% increase (Network 3) resulted in 450 km 2 <str<strong>on</strong>g>of</str<strong>on</strong>g> forest and 554 km 2 <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>grass</strong>land,<br />

and a 78% increase (Network 4) resulted in 534 km 2 <str<strong>on</strong>g>of</str<strong>on</strong>g> forest and 470 km 2 <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>grass</strong>land (Figure<br />

3.1). Striped <str<strong>on</strong>g>skunk</str<strong>on</strong>g> den densities remained c<strong>on</strong>stant in all networks, but <str<strong>on</strong>g>the</str<strong>on</strong>g> number <str<strong>on</strong>g>of</str<strong>on</strong>g> dens<br />

increased with increasing forested habitat.<br />

To determine pairwise c<strong>on</strong>tact rates based <strong>on</strong> proximity am<strong>on</strong>g individuals <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

network, probability <str<strong>on</strong>g>of</str<strong>on</strong>g> c<strong>on</strong>tact was estimated using 100,000 M<strong>on</strong>te Carlo simulati<strong>on</strong>s.<br />

Probability <str<strong>on</strong>g>of</str<strong>on</strong>g> c<strong>on</strong>tact was determined by average fixed kernel estimates <str<strong>on</strong>g>of</str<strong>on</strong>g> spring home ranges.<br />

For simulati<strong>on</strong>s, home ranges were defined as circles surrounding a centroid den site, in which<br />

each c<strong>on</strong>centric isopleth represented a probability <str<strong>on</strong>g>of</str<strong>on</strong>g> occupancy. An individual had a 25%<br />

probability <str<strong>on</strong>g>of</str<strong>on</strong>g> being found within a 384 m radius <str<strong>on</strong>g>of</str<strong>on</strong>g> its den, a 50% probability <str<strong>on</strong>g>of</str<strong>on</strong>g> being found<br />

52


within 591 m <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> den, a 70% probability <str<strong>on</strong>g>of</str<strong>on</strong>g> being within 770 m <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> den, a 95% probability<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> being within 1,188 m <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> den and a 100% probability <str<strong>on</strong>g>of</str<strong>on</strong>g> being within 1,656 m <str<strong>on</strong>g>of</str<strong>on</strong>g> its den<br />

site. Using <str<strong>on</strong>g>the</str<strong>on</strong>g>se occupancy probabilities and M<strong>on</strong>te Carlo simulati<strong>on</strong>s, we created a distributi<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> pairwise probabilistic c<strong>on</strong>tact rates based <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> distance between each two centroid den site<br />

locati<strong>on</strong>s. C<strong>on</strong>tact was c<strong>on</strong>sidered to occur if <str<strong>on</strong>g>striped</str<strong>on</strong>g> <str<strong>on</strong>g>skunk</str<strong>on</strong>g>s were within 50 m <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>on</strong>e ano<str<strong>on</strong>g>the</str<strong>on</strong>g>r<br />

due to <str<strong>on</strong>g>the</str<strong>on</strong>g> social nature <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>se meso-carnivores (Verts 1967, Chapter 2, Bowe 2009).<br />

Simulati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> disease spread<br />

We simulated spread <str<strong>on</strong>g>of</str<strong>on</strong>g> rabies through <str<strong>on</strong>g>the</str<strong>on</strong>g> network using a susceptible-exposed-<br />

infected/mobile-infected/stati<strong>on</strong>ary-removed (SEIIR) model. At <str<strong>on</strong>g>the</str<strong>on</strong>g> initiati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> each simulati<strong>on</strong><br />

a single node was infected while all o<str<strong>on</strong>g>the</str<strong>on</strong>g>r nodes were categorized as susceptible. If a susceptible<br />

animal, j, came into c<strong>on</strong>tact with an infected animal, i, based <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> probabilistic c<strong>on</strong>tact rates,<br />

wij, this individual c<strong>on</strong>verted to <str<strong>on</strong>g>the</str<strong>on</strong>g> exposed category at time t, with probability, pi,t, based <strong>on</strong> a<br />

c<strong>on</strong>stant infecti<strong>on</strong> capability, βf, <str<strong>on</strong>g>of</str<strong>on</strong>g> 0.85, as calculated in <str<strong>on</strong>g>the</str<strong>on</strong>g> following formula:<br />

1− ( 1−<br />

pi,<br />

t−1<br />

) ∏ ( 1−<br />

ω ijβ<br />

f p j,<br />

t−1<br />

j<br />

p =<br />

)<br />

i,<br />

t<br />

The amount <str<strong>on</strong>g>of</str<strong>on</strong>g> time <str<strong>on</strong>g>the</str<strong>on</strong>g> disease was latent in each node in <str<strong>on</strong>g>the</str<strong>on</strong>g> exposed category was<br />

based <strong>on</strong> a uniform distributi<strong>on</strong> with a minimum <str<strong>on</strong>g>of</str<strong>on</strong>g> 14 days and a maximum <str<strong>on</strong>g>of</str<strong>on</strong>g> 172 days. These<br />

estimates represented <str<strong>on</strong>g>the</str<strong>on</strong>g> range <str<strong>on</strong>g>of</str<strong>on</strong>g> incubati<strong>on</strong> times <str<strong>on</strong>g>of</str<strong>on</strong>g> ex situ transmissi<strong>on</strong> studies <str<strong>on</strong>g>of</str<strong>on</strong>g> wild type<br />

rabies in <str<strong>on</strong>g>skunk</str<strong>on</strong>g>s (Parker and Wilsnack 1966). When in <str<strong>on</strong>g>the</str<strong>on</strong>g> exposed category, infected<br />

individuals incubated but were not capable <str<strong>on</strong>g>of</str<strong>on</strong>g> transmitting <str<strong>on</strong>g>the</str<strong>on</strong>g> disease. From <str<strong>on</strong>g>the</str<strong>on</strong>g> exposed<br />

category, all individuals moved into <str<strong>on</strong>g>the</str<strong>on</strong>g> infected category and actively transmitted <str<strong>on</strong>g>the</str<strong>on</strong>g> disease to<br />

o<str<strong>on</strong>g>the</str<strong>on</strong>g>r susceptible animals with which <str<strong>on</strong>g>the</str<strong>on</strong>g>y came into c<strong>on</strong>tact for 7 days. Of this infecti<strong>on</strong> period,<br />

5 days were spent in an active state, in which <str<strong>on</strong>g>the</str<strong>on</strong>g> infected <str<strong>on</strong>g>skunk</str<strong>on</strong>g> moved normally around its<br />

53


home range, and 2 days were spent in a stati<strong>on</strong>ary state, in which <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>skunk</str<strong>on</strong>g> did not move from<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> den site. Following <str<strong>on</strong>g>the</str<strong>on</strong>g> 7 days <str<strong>on</strong>g>of</str<strong>on</strong>g> infectivity, infected <str<strong>on</strong>g>skunk</str<strong>on</strong>g>s were removed from <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

populati<strong>on</strong>. These period lengths were based <strong>on</strong> ex situ and in situ studies <str<strong>on</strong>g>of</str<strong>on</strong>g> rabid <str<strong>on</strong>g>striped</str<strong>on</strong>g><br />

<str<strong>on</strong>g>skunk</str<strong>on</strong>g>s (Parker and Wilsnack 1966, Greenwood et al. 1997).<br />

Each simulati<strong>on</strong> began in <strong>on</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g> 5 locati<strong>on</strong>s in <str<strong>on</strong>g>the</str<strong>on</strong>g> Upper Kansas River Watershed: 4<br />

locati<strong>on</strong>s were in <str<strong>on</strong>g>the</str<strong>on</strong>g> nor<str<strong>on</strong>g>the</str<strong>on</strong>g>rn urban/forest matrix <str<strong>on</strong>g>of</str<strong>on</strong>g> Juncti<strong>on</strong> City, Kansas, Manhattan, Kansas,<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> Fort Riley Army Post, or <str<strong>on</strong>g>the</str<strong>on</strong>g> small town <str<strong>on</strong>g>of</str<strong>on</strong>g> Riley, KS. The town <str<strong>on</strong>g>of</str<strong>on</strong>g> Riley bordered <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

agricultural nor<str<strong>on</strong>g>the</str<strong>on</strong>g>rn tip <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> watershed. The final entry locati<strong>on</strong> was in <str<strong>on</strong>g>the</str<strong>on</strong>g> sou<str<strong>on</strong>g>the</str<strong>on</strong>g>rn part <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

watershed in a matrix <str<strong>on</strong>g>of</str<strong>on</strong>g> row crop agriculture and <strong>grass</strong>land. We had four spatially explicit<br />

c<strong>on</strong>tact networks representing <str<strong>on</strong>g>the</str<strong>on</strong>g> successi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> increasing forest habitat and five epidemic<br />

initiati<strong>on</strong> locati<strong>on</strong>s. Disease spread was simulated through each <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> 20 models a total <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

10,000 times. These simulati<strong>on</strong>s were c<strong>on</strong>ducted in C++ programming s<str<strong>on</strong>g>of</str<strong>on</strong>g>tware and visualized<br />

using KiNG versi<strong>on</strong> 1.22 imaging s<str<strong>on</strong>g>of</str<strong>on</strong>g>tware (http://kinemage.biochem.duke.edu).<br />

Network Analyses<br />

Basic network parameters were estimated including average node degree (k), network<br />

diameter, and betweenness centrality. The degree (k) <str<strong>on</strong>g>of</str<strong>on</strong>g> a node is defined by <str<strong>on</strong>g>the</str<strong>on</strong>g> number <str<strong>on</strong>g>of</str<strong>on</strong>g> links<br />

that are c<strong>on</strong>nected to that node (Barrat et al. 2008). This measure provides a descripti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

network c<strong>on</strong>nectivity based <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> individual comp<strong>on</strong>ents. The diameter <str<strong>on</strong>g>of</str<strong>on</strong>g> a network is <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

maximum shortest path length am<strong>on</strong>g nodes, with <str<strong>on</strong>g>the</str<strong>on</strong>g> shortest path length calculated as <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

number <str<strong>on</strong>g>of</str<strong>on</strong>g> links forming <str<strong>on</strong>g>the</str<strong>on</strong>g> shortest path between nodes. These measures describe <str<strong>on</strong>g>the</str<strong>on</strong>g> size and<br />

c<strong>on</strong>nectivity <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> network. Betweenness centrality is <str<strong>on</strong>g>the</str<strong>on</strong>g> number <str<strong>on</strong>g>of</str<strong>on</strong>g> shortest paths between two<br />

nodes that pass through a node <str<strong>on</strong>g>of</str<strong>on</strong>g> interest (Freeman 1977, Newman 2001). Therefore, nodes<br />

with high site betweenness act as bridges, c<strong>on</strong>necting <strong>on</strong>e part <str<strong>on</strong>g>of</str<strong>on</strong>g> a network to ano<str<strong>on</strong>g>the</str<strong>on</strong>g>r (Barrat et<br />

54


al. 2008, Lewis et al. 2008). We also measured <str<strong>on</strong>g>the</str<strong>on</strong>g> density <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> network, which described<br />

network sparseness. We calculated this measure as follows:<br />

D = E / [N(N-1) / 2]<br />

where E is <str<strong>on</strong>g>the</str<strong>on</strong>g> number <str<strong>on</strong>g>of</str<strong>on</strong>g> edges or links and N is <str<strong>on</strong>g>the</str<strong>on</strong>g> number <str<strong>on</strong>g>of</str<strong>on</strong>g> nodes in <str<strong>on</strong>g>the</str<strong>on</strong>g> network. If D


across <str<strong>on</strong>g>the</str<strong>on</strong>g> landscape in each simulati<strong>on</strong>. In additi<strong>on</strong> to habitat compositi<strong>on</strong>al analyses, we<br />

employed several landscape metrics that measure habitat c<strong>on</strong>figurati<strong>on</strong> and fragmentati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

viral habitat use using <str<strong>on</strong>g>the</str<strong>on</strong>g> program FRAGSTATS (McGarigal and Marks 1995). We described<br />

various elements <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> landscape using <str<strong>on</strong>g>the</str<strong>on</strong>g> parameters <str<strong>on</strong>g>of</str<strong>on</strong>g> patch and edge density, c<strong>on</strong>tagi<strong>on</strong>, and<br />

Shann<strong>on</strong>’s diversity and evenness indices. All metrics were calculated based <strong>on</strong> habitat raster<br />

images with 90 m pixels. Patch density is defined as <str<strong>on</strong>g>the</str<strong>on</strong>g> total number <str<strong>on</strong>g>of</str<strong>on</strong>g> habitat patches <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

landscape divided by <str<strong>on</strong>g>the</str<strong>on</strong>g> total area <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> landscape. Edge density is defined as <str<strong>on</strong>g>the</str<strong>on</strong>g> total length<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> all habitat pixel edges between land cover types <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> landscape divided by <str<strong>on</strong>g>the</str<strong>on</strong>g> landscape<br />

area. The c<strong>on</strong>tagi<strong>on</strong> metric describes whe<str<strong>on</strong>g>the</str<strong>on</strong>g>r a landscape is clumped or fragmented and is<br />

calculated using <str<strong>on</strong>g>the</str<strong>on</strong>g> following formula:<br />

where Pij is <str<strong>on</strong>g>the</str<strong>on</strong>g> probability that two randomly chosen adjacent pixels bel<strong>on</strong>g to cover type<br />

classificati<strong>on</strong>s i or j, respectively, and s is <str<strong>on</strong>g>the</str<strong>on</strong>g> number <str<strong>on</strong>g>of</str<strong>on</strong>g> cover types <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> landscape. This<br />

index ranges from zero to <strong>on</strong>e, with zero describing a completely fragmented landscape and <strong>on</strong>e<br />

describing a landscape with cover types completely clumped and separate from all o<str<strong>on</strong>g>the</str<strong>on</strong>g>r habitat<br />

cover types.<br />

Shann<strong>on</strong>’s diversity and evenness indices provide measures <str<strong>on</strong>g>of</str<strong>on</strong>g> landscape heterogeneity.<br />

The diversity index (H’) is based <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> proporti<strong>on</strong>al abundance <str<strong>on</strong>g>of</str<strong>on</strong>g> each habitat cover type <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

landscape and is calculated using <str<strong>on</strong>g>the</str<strong>on</strong>g> following formula:<br />

56


where Pi is <str<strong>on</strong>g>the</str<strong>on</strong>g> proporti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> cover type i <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> landscape, and s is <str<strong>on</strong>g>the</str<strong>on</strong>g> total number <str<strong>on</strong>g>of</str<strong>on</strong>g> cover<br />

types. Shann<strong>on</strong>’s evenness is a related measure based <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> comparis<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> diversity index<br />

and <str<strong>on</strong>g>the</str<strong>on</strong>g> maximum heterogeneity <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> landscape, ln(s). The evenness index is calculated as<br />

follows:<br />

These metrics were compared am<strong>on</strong>g networks for <str<strong>on</strong>g>the</str<strong>on</strong>g> habitat underlying both <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

calculated transmissi<strong>on</strong> clusters and <str<strong>on</strong>g>the</str<strong>on</strong>g> simulated maximum extent <str<strong>on</strong>g>of</str<strong>on</strong>g> rabies spread.<br />

Results<br />

Network statistics<br />

In <str<strong>on</strong>g>the</str<strong>on</strong>g> original habitat c<strong>on</strong>figurati<strong>on</strong>, representing c<strong>on</strong>temporary land cover, <str<strong>on</strong>g>the</str<strong>on</strong>g> nor<str<strong>on</strong>g>the</str<strong>on</strong>g>rn<br />

tip and <str<strong>on</strong>g>the</str<strong>on</strong>g> sou<str<strong>on</strong>g>the</str<strong>on</strong>g>rn half <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> watershed were dominated by agriculture and <strong>grass</strong>land habitats.<br />

In c<strong>on</strong>trast, habitat north <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> Kansas River was predominantly forest with substantial<br />

urbanizati<strong>on</strong> near <str<strong>on</strong>g>the</str<strong>on</strong>g> river. This nor<str<strong>on</strong>g>the</str<strong>on</strong>g>rn forested area expanded with woody encroachment,<br />

with forested habitat increasing by ~7% in habitat proporti<strong>on</strong> <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> landscape with each 25%<br />

increase in <str<strong>on</strong>g>the</str<strong>on</strong>g> area <str<strong>on</strong>g>of</str<strong>on</strong>g> forested habitat. However, <str<strong>on</strong>g>the</str<strong>on</strong>g> sou<str<strong>on</strong>g>the</str<strong>on</strong>g>rn agriculture and <strong>grass</strong>land matrix<br />

remained fairly c<strong>on</strong>stant, due to <str<strong>on</strong>g>the</str<strong>on</strong>g> lack <str<strong>on</strong>g>of</str<strong>on</strong>g> existing forested habitat in <str<strong>on</strong>g>the</str<strong>on</strong>g> regi<strong>on</strong>. Here forested<br />

habitat increased by <strong>on</strong>ly ~4% in habitat proporti<strong>on</strong> with each 25% forest habitat increase<br />

(Figure 3.2). Areas <str<strong>on</strong>g>of</str<strong>on</strong>g> disease spread and c<strong>on</strong>nected clusters were related to <str<strong>on</strong>g>the</str<strong>on</strong>g>se patterns <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

habitat c<strong>on</strong>figurati<strong>on</strong>.<br />

The number <str<strong>on</strong>g>of</str<strong>on</strong>g> nodes and edges within each network increased with increasing forested<br />

habitat area (Table 3.1). Network 1, derived from current land cover, c<strong>on</strong>tained 2 isolated nodes,<br />

but <str<strong>on</strong>g>the</str<strong>on</strong>g> remaining networks had no singlet<strong>on</strong> nodes that did not share at least <strong>on</strong>e link. Density<br />

57


emained fairly c<strong>on</strong>stant but showed slight declines; Network 1 maintained <str<strong>on</strong>g>the</str<strong>on</strong>g> highest density<br />

and density decreased in <str<strong>on</strong>g>the</str<strong>on</strong>g> subsequent network with increasing forest habitat (Table 3.1).<br />

These density measures indicated that as forest habitat increased <str<strong>on</strong>g>the</str<strong>on</strong>g> networks became slightly<br />

sparser, with less links between nodes compared to <str<strong>on</strong>g>the</str<strong>on</strong>g> number <str<strong>on</strong>g>of</str<strong>on</strong>g> nodes within <str<strong>on</strong>g>the</str<strong>on</strong>g> network.<br />

However, this difference in density was slight.<br />

The average node degree was significantly different am<strong>on</strong>g all networks with an increase<br />

in node degree with increasing forested habitat (ANOVA, F=86.01, p


forested habitat, indicating that network breadth had increased. The cluster analysis with a<br />

cluster coefficient <str<strong>on</strong>g>of</str<strong>on</strong>g> > 7.4 x 10 -4 revealed high variati<strong>on</strong> in cluster number and size with<br />

increasing forest (Table 3.2). Surprisingly, <str<strong>on</strong>g>the</str<strong>on</strong>g> increase in forest habitat did not result in greater<br />

clustering. We found no expansi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> large cluster initiated in <str<strong>on</strong>g>the</str<strong>on</strong>g> first network. In fact, <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

largest cluster declined in size with increasing forest. In additi<strong>on</strong>, <str<strong>on</strong>g>the</str<strong>on</strong>g> clusters delineated in<br />

networks with increase forest did not predict <str<strong>on</strong>g>the</str<strong>on</strong>g> patterns <str<strong>on</strong>g>of</str<strong>on</strong>g> disease spread displayed in <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

epidemic simulati<strong>on</strong>s.<br />

Simulati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> disease spread<br />

The rabies virus did not spread completely through <str<strong>on</strong>g>the</str<strong>on</strong>g> networks in any <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> model<br />

runs. Because <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> distributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>skunk</str<strong>on</strong>g> dens across <str<strong>on</strong>g>the</str<strong>on</strong>g> landscape and <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>tact probability<br />

am<strong>on</strong>g nodes, <strong>on</strong>ly Network 4 was fully c<strong>on</strong>nected. However, all c<strong>on</strong>nected comp<strong>on</strong>ents within<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> networks, including Network 4, c<strong>on</strong>tained several links with very low probabilities <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

c<strong>on</strong>tact, limiting <str<strong>on</strong>g>the</str<strong>on</strong>g> spread <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> disease.<br />

Patterns <str<strong>on</strong>g>of</str<strong>on</strong>g> disease spread differed greatly between Network 1 and <str<strong>on</strong>g>the</str<strong>on</strong>g> remaining<br />

networks. Rabies spread was limited in Network 1, reaching a maximum area <str<strong>on</strong>g>of</str<strong>on</strong>g> spread <str<strong>on</strong>g>of</str<strong>on</strong>g> about<br />

350 km 2 , while <str<strong>on</strong>g>the</str<strong>on</strong>g> virus spread to 1,000 to 1,200 km 2 in <str<strong>on</strong>g>the</str<strong>on</strong>g> remaining networks (Figure 3.4). In<br />

Network 1, <str<strong>on</strong>g>the</str<strong>on</strong>g> disease reached significantly different spatial areas <str<strong>on</strong>g>of</str<strong>on</strong>g> spread depending <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

initiati<strong>on</strong> locati<strong>on</strong>. In <str<strong>on</strong>g>the</str<strong>on</strong>g> remaining networks, <str<strong>on</strong>g>the</str<strong>on</strong>g> disease c<strong>on</strong>sistently reached a similar area <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

spread for every initiati<strong>on</strong> point, except initiati<strong>on</strong> in <str<strong>on</strong>g>the</str<strong>on</strong>g> sou<str<strong>on</strong>g>the</str<strong>on</strong>g>rn porti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> watershed. In <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

sou<str<strong>on</strong>g>the</str<strong>on</strong>g>rn porti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> watershed, where <str<strong>on</strong>g>the</str<strong>on</strong>g>re was little forested habitat, <str<strong>on</strong>g>the</str<strong>on</strong>g> disease did not<br />

spread more than 14 km 2 in any <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> networks. In Network 2, <str<strong>on</strong>g>the</str<strong>on</strong>g> disease did not spread<br />

fur<str<strong>on</strong>g>the</str<strong>on</strong>g>r than <str<strong>on</strong>g>the</str<strong>on</strong>g> initially infected <str<strong>on</strong>g>skunk</str<strong>on</strong>g>.<br />

59


Habitat analyses<br />

The habitat compositi<strong>on</strong> underlying transmissi<strong>on</strong> clusters varied am<strong>on</strong>g networks (Figure<br />

3.5). Forest dominated <str<strong>on</strong>g>the</str<strong>on</strong>g> areas inside <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> clusters in all networks, but <str<strong>on</strong>g>the</str<strong>on</strong>g> matrix <str<strong>on</strong>g>of</str<strong>on</strong>g> o<str<strong>on</strong>g>the</str<strong>on</strong>g>r<br />

habitat types surrounding forest varied am<strong>on</strong>g <str<strong>on</strong>g>the</str<strong>on</strong>g> networks. Landscape metrics also varied in<br />

areas <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> clusters in ways that did not correlate with increased forest. These finding are due to<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> inc<strong>on</strong>sistencies in <str<strong>on</strong>g>the</str<strong>on</strong>g> clusters <str<strong>on</strong>g>the</str<strong>on</strong>g>mselves as <str<strong>on</strong>g>the</str<strong>on</strong>g> size and numbers <str<strong>on</strong>g>of</str<strong>on</strong>g> clusters were not<br />

influenced by <str<strong>on</strong>g>the</str<strong>on</strong>g> increasing forested habitat.<br />

The habitat compositi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> minimum c<strong>on</strong>vex polyg<strong>on</strong>s that encompassed simulated<br />

viral spread varied throughout <str<strong>on</strong>g>the</str<strong>on</strong>g> networks (Figure 3.6). The percent forest cover through<br />

which <str<strong>on</strong>g>the</str<strong>on</strong>g> virus moved decreased initially with Network 2 and <str<strong>on</strong>g>the</str<strong>on</strong>g>n increased through <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

remaining networks. The reverse pattern was evident for <strong>grass</strong>land, with an increase <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>grass</strong>land<br />

habitat from Network 1 to Network 2 and <str<strong>on</strong>g>the</str<strong>on</strong>g>n a decrease in <str<strong>on</strong>g>the</str<strong>on</strong>g> remaining networks. The<br />

percent <str<strong>on</strong>g>of</str<strong>on</strong>g> agricultural lands covered by <str<strong>on</strong>g>the</str<strong>on</strong>g> virus increased with increasing forested habitat.<br />

Landscape metrics varied am<strong>on</strong>g simulated models (Table 3.3). Both patch and edge<br />

densities decreased with increasing forested habitat, signifying that <str<strong>on</strong>g>the</str<strong>on</strong>g> virus spread in areas <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

lower habitat heterogeneity and that habitat heterogeneity decreased with forest successi<strong>on</strong>.<br />

C<strong>on</strong>tagi<strong>on</strong> increased with increasing forest, indicating greater c<strong>on</strong>nectivity <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> landscape<br />

through time which facilitated viral spread. Landscape diversity and evenness decreased as forest<br />

increased, indicating a greater dominance <str<strong>on</strong>g>of</str<strong>on</strong>g> a single habitat type in <str<strong>on</strong>g>the</str<strong>on</strong>g> area through which <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

disease spread. This pattern was altered when rabies infecti<strong>on</strong> was initiated in <str<strong>on</strong>g>the</str<strong>on</strong>g> town <str<strong>on</strong>g>of</str<strong>on</strong>g> Riley,<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>tagi<strong>on</strong> was much higher underlying <str<strong>on</strong>g>the</str<strong>on</strong>g> area <str<strong>on</strong>g>of</str<strong>on</strong>g> viral spread in Network 1 and diversity<br />

and evenness was much lower than <str<strong>on</strong>g>the</str<strong>on</strong>g> o<str<strong>on</strong>g>the</str<strong>on</strong>g>r initiati<strong>on</strong> locati<strong>on</strong>s. This pattern is due to <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

differences in habitat surrounding <str<strong>on</strong>g>the</str<strong>on</strong>g> small rural town <str<strong>on</strong>g>of</str<strong>on</strong>g> Riley. As forest increased around <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

town, <str<strong>on</strong>g>the</str<strong>on</strong>g> virus was able to use <str<strong>on</strong>g>the</str<strong>on</strong>g> matrix <str<strong>on</strong>g>of</str<strong>on</strong>g> forest and agriculture more effectively.<br />

60


Discussi<strong>on</strong><br />

We simulated <str<strong>on</strong>g>the</str<strong>on</strong>g> spread <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> rabies virus through spatially explicit networks <str<strong>on</strong>g>of</str<strong>on</strong>g> c<strong>on</strong>tact<br />

am<strong>on</strong>g individual <str<strong>on</strong>g>striped</str<strong>on</strong>g> <str<strong>on</strong>g>skunk</str<strong>on</strong>g>s and found that as forest habitat increased, c<strong>on</strong>nectivity am<strong>on</strong>g<br />

<str<strong>on</strong>g>skunk</str<strong>on</strong>g>s, and <str<strong>on</strong>g>the</str<strong>on</strong>g>refore potential disease transmissi<strong>on</strong>, increased. The heightened c<strong>on</strong>nectivity in<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> simulated <str<strong>on</strong>g>skunk</str<strong>on</strong>g> populati<strong>on</strong>s was dem<strong>on</strong>strated by an increase in <str<strong>on</strong>g>the</str<strong>on</strong>g> number <str<strong>on</strong>g>of</str<strong>on</strong>g> c<strong>on</strong>necti<strong>on</strong>s<br />

am<strong>on</strong>g individuals, an increase in average number <str<strong>on</strong>g>of</str<strong>on</strong>g> individuals to which a <str<strong>on</strong>g>skunk</str<strong>on</strong>g> was<br />

c<strong>on</strong>nected (average node degree), and an increase in <str<strong>on</strong>g>the</str<strong>on</strong>g> number <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>skunk</str<strong>on</strong>g>s acting as bridges,<br />

c<strong>on</strong>necting groups <str<strong>on</strong>g>of</str<strong>on</strong>g> individuals (betweenness centrality). This increased c<strong>on</strong>nectivity<br />

influenced patterns <str<strong>on</strong>g>of</str<strong>on</strong>g> rabies spread in three ways. First, <str<strong>on</strong>g>the</str<strong>on</strong>g> area <str<strong>on</strong>g>the</str<strong>on</strong>g> rabies virus covered<br />

dramatically increased with increasing forest habitat. In additi<strong>on</strong> to this increased area <str<strong>on</strong>g>of</str<strong>on</strong>g> disease<br />

spread, we found that <str<strong>on</strong>g>the</str<strong>on</strong>g> locati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> disease initiati<strong>on</strong> in large urban centers with areas <str<strong>on</strong>g>of</str<strong>on</strong>g> forest<br />

surrounding <str<strong>on</strong>g>the</str<strong>on</strong>g>m did not influence <str<strong>on</strong>g>the</str<strong>on</strong>g> spatial spread <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> virus with increased forest<br />

successi<strong>on</strong>. Sec<strong>on</strong>d, agricultural habitats no l<strong>on</strong>ger acted as buffers to rabies spread with <strong>on</strong>ly a<br />

25% increase in forested habitat. In <str<strong>on</strong>g>the</str<strong>on</strong>g> initial network based <strong>on</strong> current land cover, agriculture<br />

and <strong>grass</strong>land habitats limited rabies spread across <str<strong>on</strong>g>the</str<strong>on</strong>g> watershed. With high levels <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

c<strong>on</strong>nectivity, existing habitat barriers <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> landscape were unimportant in shaping patterns <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

disease spread. Finally, <str<strong>on</strong>g>the</str<strong>on</strong>g> cluster analyses were not accurate predictors <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> extent <str<strong>on</strong>g>of</str<strong>on</strong>g> disease<br />

spread as <str<strong>on</strong>g>skunk</str<strong>on</strong>g> density increased. This finding could have significant implicati<strong>on</strong>s for<br />

interpreting cluster analyses in future disease studies.<br />

Increased network c<strong>on</strong>nectivity<br />

As would be expected with an increase in <str<strong>on</strong>g>the</str<strong>on</strong>g> populati<strong>on</strong> size <str<strong>on</strong>g>of</str<strong>on</strong>g> a reservoir host across a<br />

landscape, <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>tact network c<strong>on</strong>nectivity increased with <str<strong>on</strong>g>the</str<strong>on</strong>g> expansi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> densely populated<br />

forested habitat across <str<strong>on</strong>g>the</str<strong>on</strong>g> watershed. This increased c<strong>on</strong>nectivity was evident by <str<strong>on</strong>g>the</str<strong>on</strong>g> greater<br />

61


number <str<strong>on</strong>g>of</str<strong>on</strong>g> c<strong>on</strong>necti<strong>on</strong>s am<strong>on</strong>g individual <str<strong>on</strong>g>skunk</str<strong>on</strong>g>s and <str<strong>on</strong>g>the</str<strong>on</strong>g> decreased number <str<strong>on</strong>g>of</str<strong>on</strong>g> c<strong>on</strong>nected<br />

comp<strong>on</strong>ents as <str<strong>on</strong>g>the</str<strong>on</strong>g> individuals became more c<strong>on</strong>nected. Network 4, with a 78% increase in<br />

forested habitat, was fully c<strong>on</strong>nected such that every <str<strong>on</strong>g>striped</str<strong>on</strong>g> <str<strong>on</strong>g>skunk</str<strong>on</strong>g> was linked by some<br />

combinati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> c<strong>on</strong>necti<strong>on</strong>s. The average node degree also increased with increased expansi<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> forest. Because <str<strong>on</strong>g>the</str<strong>on</strong>g> degree <str<strong>on</strong>g>of</str<strong>on</strong>g> a given node provides a direct quantificati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>nectivity<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> that individual to o<str<strong>on</strong>g>the</str<strong>on</strong>g>rs in <str<strong>on</strong>g>the</str<strong>on</strong>g> network (Barrat et al. 2008), <str<strong>on</strong>g>the</str<strong>on</strong>g> high average node degree we<br />

observed signifies substantial c<strong>on</strong>nectivity within <str<strong>on</strong>g>the</str<strong>on</strong>g> network. In additi<strong>on</strong>, average site<br />

betweenness increased with increasing forested habitat, with a dramatic increase in Network 4.<br />

These results indicate increasing c<strong>on</strong>nectivity, increased c<strong>on</strong>tact rates and ultimately increased<br />

transmissi<strong>on</strong> rates am<strong>on</strong>g disease hosts in areas with woody encroachment.<br />

Increased proximity and c<strong>on</strong>tact are <str<strong>on</strong>g>of</str<strong>on</strong>g>ten found in areas <str<strong>on</strong>g>of</str<strong>on</strong>g> preferred habitat for a disease<br />

host species (Bradley and Altizer 2006). Besides increasing disease risk due to higher c<strong>on</strong>tact<br />

rates, wildlife may also be more susceptible to infecti<strong>on</strong> in <str<strong>on</strong>g>the</str<strong>on</strong>g>se envir<strong>on</strong>ments due to decreased<br />

physical c<strong>on</strong>diti<strong>on</strong> and infecti<strong>on</strong>-fighting defenses (Bradley and Altizer 2006). Perhaps more<br />

critical to rabies management efforts is <str<strong>on</strong>g>the</str<strong>on</strong>g> increase in average site betweenness with increased<br />

woody encroachment. These highly c<strong>on</strong>nected and bridging nodes are <str<strong>on</strong>g>of</str<strong>on</strong>g>ten targeted in disease<br />

c<strong>on</strong>trol and management efforts (Ueno and Masuda 2008, Youm et al. 2009). Yet an increase in<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> number <str<strong>on</strong>g>of</str<strong>on</strong>g> nodes with high site betweenness decreases <str<strong>on</strong>g>the</str<strong>on</strong>g> ability to target hot spots for<br />

disease spread. Therefore <str<strong>on</strong>g>the</str<strong>on</strong>g>re are a greater number <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>skunk</str<strong>on</strong>g>s acting as ‘bridges’ c<strong>on</strong>necting<br />

segments <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> network that must be targeted to break up <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>nectivity <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> network<br />

(Figure 3.7). Under present habitat c<strong>on</strong>diti<strong>on</strong>s (Network 1), <str<strong>on</strong>g>the</str<strong>on</strong>g> number <str<strong>on</strong>g>of</str<strong>on</strong>g> nodes with high<br />

betweenness, i.e. <str<strong>on</strong>g>the</str<strong>on</strong>g> number <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>skunk</str<strong>on</strong>g>s with high c<strong>on</strong>nectivity, was low enough to target for<br />

disease c<strong>on</strong>trol. With <str<strong>on</strong>g>the</str<strong>on</strong>g> increasing forested habitat, however, <str<strong>on</strong>g>the</str<strong>on</strong>g> number <str<strong>on</strong>g>of</str<strong>on</strong>g> highly c<strong>on</strong>nected<br />

62


<str<strong>on</strong>g>skunk</str<strong>on</strong>g>s became very high. Thus <strong>on</strong>ce betweenness becomes high, it may be a more productive<br />

c<strong>on</strong>trol measure to reduce <str<strong>on</strong>g>the</str<strong>on</strong>g> amount <str<strong>on</strong>g>of</str<strong>on</strong>g> forest, ra<str<strong>on</strong>g>the</str<strong>on</strong>g>r than to target individual disease hosts for<br />

disease c<strong>on</strong>trol. The increased site betweenness also dem<strong>on</strong>strates <str<strong>on</strong>g>the</str<strong>on</strong>g> risk woody vegetati<strong>on</strong><br />

poses as corridors for rabies spread. As woody encroachment c<strong>on</strong>tinues not <strong>on</strong>ly in isolated<br />

riparian habitats but also al<strong>on</strong>g <str<strong>on</strong>g>the</str<strong>on</strong>g> perimeters <str<strong>on</strong>g>of</str<strong>on</strong>g> agricultural field and urban areas (Knopf and<br />

Sams<strong>on</strong> 1995, Briggs et al. 2002b), <str<strong>on</strong>g>skunk</str<strong>on</strong>g> populati<strong>on</strong>s may be able to bridge viral spread from<br />

rural habitats to more densely populated urban centers in <str<strong>on</strong>g>the</str<strong>on</strong>g>se highly c<strong>on</strong>nected corridors.<br />

Increased forest propagates disease emergence<br />

As we simulated woody encroachment across <str<strong>on</strong>g>the</str<strong>on</strong>g> watershed, <str<strong>on</strong>g>the</str<strong>on</strong>g> extent <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> area over<br />

which rabies spread increased. In Network 1, based <strong>on</strong> current land cover, <str<strong>on</strong>g>the</str<strong>on</strong>g> rabies virus<br />

reached a maximum area <str<strong>on</strong>g>of</str<strong>on</strong>g> 311 km 2 . However, with an increase <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>on</strong>ly 25% forest, this area<br />

increased by 345% (1,072 km 2 ). In <str<strong>on</strong>g>the</str<strong>on</strong>g> remaining networks, <str<strong>on</strong>g>the</str<strong>on</strong>g>re were not any significant,<br />

additi<strong>on</strong>al increases, with <strong>on</strong>ly a 40% additi<strong>on</strong>al increase (~1,200 km 2 ) <str<strong>on</strong>g>of</str<strong>on</strong>g> rabies spread for 50%<br />

and 78% increases in forested habitat. Once <str<strong>on</strong>g>the</str<strong>on</strong>g> amount <str<strong>on</strong>g>of</str<strong>on</strong>g> forest increased, <str<strong>on</strong>g>the</str<strong>on</strong>g> urban area from<br />

where it originated did not influence how <str<strong>on</strong>g>the</str<strong>on</strong>g> disease spread. In Network 1, <str<strong>on</strong>g>the</str<strong>on</strong>g> four nor<str<strong>on</strong>g>the</str<strong>on</strong>g>rn<br />

locati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> disease emergence had <str<strong>on</strong>g>the</str<strong>on</strong>g> broadest variance in area <str<strong>on</strong>g>of</str<strong>on</strong>g> viral spread from 57 km 2 to<br />

311 km 2 . In Network 2, <str<strong>on</strong>g>the</str<strong>on</strong>g>se areas affected by <str<strong>on</strong>g>the</str<strong>on</strong>g> virus <strong>on</strong>ly ranged from 915 km 2 to 1,072<br />

km 2 . The variance in area <str<strong>on</strong>g>of</str<strong>on</strong>g> disease propagati<strong>on</strong> decreased fur<str<strong>on</strong>g>the</str<strong>on</strong>g>r, with <strong>on</strong>ly a 16 km 2<br />

difference in area between nor<str<strong>on</strong>g>the</str<strong>on</strong>g>rn initiati<strong>on</strong> locati<strong>on</strong>s in <str<strong>on</strong>g>the</str<strong>on</strong>g> final networks. Thus although area<br />

affected by <str<strong>on</strong>g>the</str<strong>on</strong>g> virus increased, variance in disease spread am<strong>on</strong>g initiati<strong>on</strong> points decreased as<br />

forested habitat increased. The expansi<strong>on</strong> in <str<strong>on</strong>g>the</str<strong>on</strong>g> area <str<strong>on</strong>g>of</str<strong>on</strong>g> viral spread as forest increased was<br />

evident <strong>on</strong>ly in <str<strong>on</strong>g>the</str<strong>on</strong>g> nor<str<strong>on</strong>g>the</str<strong>on</strong>g>rn porti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> watershed where urban centers were located and did<br />

not increase in <str<strong>on</strong>g>the</str<strong>on</strong>g> sou<str<strong>on</strong>g>the</str<strong>on</strong>g>rn porti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> watershed. At <str<strong>on</strong>g>the</str<strong>on</strong>g> sou<str<strong>on</strong>g>the</str<strong>on</strong>g>rn initiati<strong>on</strong> points for<br />

63


Networks 1 and 3, <str<strong>on</strong>g>the</str<strong>on</strong>g> disease spread <strong>on</strong>ly 10 km 2 , <str<strong>on</strong>g>the</str<strong>on</strong>g>re was no spread in Network 2, and a<br />

maximum spread <str<strong>on</strong>g>of</str<strong>on</strong>g> 14 km 2 in Network 4. This suppressi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> disease emergence was due to <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

lack <str<strong>on</strong>g>of</str<strong>on</strong>g> forested habitat and dominati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> agricultural habitat in <str<strong>on</strong>g>the</str<strong>on</strong>g> sou<str<strong>on</strong>g>the</str<strong>on</strong>g>rn watershed.<br />

These findings reveal two important c<strong>on</strong>clusi<strong>on</strong>s <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> effects <str<strong>on</strong>g>of</str<strong>on</strong>g> woody expansi<strong>on</strong> <strong>on</strong><br />

rabies spread. First, <str<strong>on</strong>g>the</str<strong>on</strong>g>re appears to be a threshold effect in <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>nectivity <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> disease.<br />

With <strong>on</strong>ly a 25% increase in forested habitat (76 km 2 added to a 1,385 km 2 watershed), <str<strong>on</strong>g>the</str<strong>on</strong>g> area<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> rabies spread increased by 71%. With additi<strong>on</strong>al increases at 25% increments, <str<strong>on</strong>g>the</str<strong>on</strong>g> area <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

spread <strong>on</strong>ly increased by 3-8%. Thresholds have important implicati<strong>on</strong>s for habitat management<br />

strategies (Field 2009). If woody encroachment is not slowed or reduced before passing this<br />

threshold, it may become much more difficult to c<strong>on</strong>trol epizootic outbreaks. Because<br />

anthropogenic change is characterized by rapid expansi<strong>on</strong>, <str<strong>on</strong>g>the</str<strong>on</strong>g>se ecological thresholds are<br />

increasingly crossed and are <str<strong>on</strong>g>of</str<strong>on</strong>g>ten attributed to <str<strong>on</strong>g>the</str<strong>on</strong>g> current emergence <str<strong>on</strong>g>of</str<strong>on</strong>g> several zo<strong>on</strong>otic<br />

diseases.<br />

The sec<strong>on</strong>d c<strong>on</strong>clusi<strong>on</strong> derived from <str<strong>on</strong>g>the</str<strong>on</strong>g>se analyses c<strong>on</strong>siders <str<strong>on</strong>g>the</str<strong>on</strong>g> fact that <str<strong>on</strong>g>the</str<strong>on</strong>g> locati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

disease initiati<strong>on</strong> did not influence rabies spread with increased forested habitat in <str<strong>on</strong>g>the</str<strong>on</strong>g> nor<str<strong>on</strong>g>the</str<strong>on</strong>g>rn<br />

forested porti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> watershed. In Network 1, disease spread was fairly limited when initiated<br />

in <str<strong>on</strong>g>the</str<strong>on</strong>g> towns <str<strong>on</strong>g>of</str<strong>on</strong>g> Riley and Juncti<strong>on</strong> City which were both surrounded by agriculture or <strong>grass</strong>land,<br />

compared to extensive spread when initiated in <str<strong>on</strong>g>the</str<strong>on</strong>g> more forested urban areas <str<strong>on</strong>g>of</str<strong>on</strong>g> Fort Riley and<br />

Manhattan. However, with <strong>on</strong>ly a 25% increase in forest, initiati<strong>on</strong> in any <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> nor<str<strong>on</strong>g>the</str<strong>on</strong>g>rn<br />

locati<strong>on</strong>s resulted in large areas <str<strong>on</strong>g>of</str<strong>on</strong>g> spread due to <str<strong>on</strong>g>the</str<strong>on</strong>g> increased c<strong>on</strong>nectivity <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> network.<br />

Because initiati<strong>on</strong> locati<strong>on</strong> became irrelevant to patterns <str<strong>on</strong>g>of</str<strong>on</strong>g> disease spread with increased<br />

forested habitat, rabies emergence and propagati<strong>on</strong> may be more difficult to c<strong>on</strong>trol <strong>on</strong>ce woody<br />

encroachment passes <str<strong>on</strong>g>the</str<strong>on</strong>g> threshold. On a more c<strong>on</strong>nected landscape, hotspots for disease<br />

64


emergence become increasingly difficult to pinpoint, making direct vaccinati<strong>on</strong> or c<strong>on</strong>trol<br />

programs ineffectual.<br />

These patterns <str<strong>on</strong>g>of</str<strong>on</strong>g> disease spread found in <str<strong>on</strong>g>the</str<strong>on</strong>g> nor<str<strong>on</strong>g>the</str<strong>on</strong>g>rn porti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> watershed were not<br />

seen in initiati<strong>on</strong> in <str<strong>on</strong>g>the</str<strong>on</strong>g> sou<str<strong>on</strong>g>the</str<strong>on</strong>g>rn porti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> watershed which was limited in all models. This<br />

is due to differences in <str<strong>on</strong>g>the</str<strong>on</strong>g> habitat compositi<strong>on</strong> in <str<strong>on</strong>g>the</str<strong>on</strong>g> south, where <str<strong>on</strong>g>the</str<strong>on</strong>g> forested habitat did not<br />

reach <str<strong>on</strong>g>the</str<strong>on</strong>g> extent <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> o<str<strong>on</strong>g>the</str<strong>on</strong>g>r areas. Network c<strong>on</strong>nectivity did not increase enough in <str<strong>on</strong>g>the</str<strong>on</strong>g> sou<str<strong>on</strong>g>the</str<strong>on</strong>g>rn<br />

porti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> watershed to sustain greater disease spread. With <str<strong>on</strong>g>the</str<strong>on</strong>g> lack <str<strong>on</strong>g>of</str<strong>on</strong>g> substantial forested<br />

habitat and <str<strong>on</strong>g>the</str<strong>on</strong>g> subsequent dampened landscape c<strong>on</strong>nectivity, viral expansi<strong>on</strong> was significantly<br />

slowed.<br />

Decreased effectiveness <str<strong>on</strong>g>of</str<strong>on</strong>g> habitat barriers<br />

As forested habitat increased in our networks, <str<strong>on</strong>g>the</str<strong>on</strong>g> barrier effects <str<strong>on</strong>g>of</str<strong>on</strong>g> agricultural and<br />

<strong>grass</strong>lands became ineffectual against rabies spread. When comparing <str<strong>on</strong>g>the</str<strong>on</strong>g> areas <str<strong>on</strong>g>of</str<strong>on</strong>g> disease<br />

spread to <str<strong>on</strong>g>the</str<strong>on</strong>g> underlying habitat, we found that in <str<strong>on</strong>g>the</str<strong>on</strong>g> original network, <str<strong>on</strong>g>the</str<strong>on</strong>g> largest area <str<strong>on</strong>g>of</str<strong>on</strong>g> spread<br />

closely outlined <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>figurati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> forest habitat. The disease did not cross large areas <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

agricultural or <strong>grass</strong>land habitats. As forested habitat increased in <str<strong>on</strong>g>the</str<strong>on</strong>g> networks, rabies<br />

expansi<strong>on</strong> no l<strong>on</strong>ger followed <str<strong>on</strong>g>the</str<strong>on</strong>g> forested habitat area. In Network 1, based <strong>on</strong> current habitat<br />

c<strong>on</strong>figurati<strong>on</strong>s, <str<strong>on</strong>g>the</str<strong>on</strong>g> percentage <str<strong>on</strong>g>of</str<strong>on</strong>g> agricultural habitat within <str<strong>on</strong>g>the</str<strong>on</strong>g> area <str<strong>on</strong>g>of</str<strong>on</strong>g> rabies spread was low.<br />

The amount <str<strong>on</strong>g>of</str<strong>on</strong>g> agricultural habitat within <str<strong>on</strong>g>the</str<strong>on</strong>g> rabies spread area was greater in <str<strong>on</strong>g>the</str<strong>on</strong>g> remaining<br />

networks as <str<strong>on</strong>g>the</str<strong>on</strong>g> virus increasingly crossed <str<strong>on</strong>g>the</str<strong>on</strong>g>se barriers. Once forest expanded bey<strong>on</strong>d <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

epidemic threshold, <str<strong>on</strong>g>the</str<strong>on</strong>g> effects <str<strong>on</strong>g>of</str<strong>on</strong>g> barriers to c<strong>on</strong>nectivity, such agricultural areas and <strong>grass</strong>lands,<br />

were overshadowed by <str<strong>on</strong>g>the</str<strong>on</strong>g> str<strong>on</strong>g c<strong>on</strong>nectivity am<strong>on</strong>g forested habitat patches. This increase in<br />

disease transmissi<strong>on</strong> was driven by <str<strong>on</strong>g>the</str<strong>on</strong>g> increased c<strong>on</strong>nectivity <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> landscape and decreased<br />

65


habitat diversity. As forest encroaches <strong>on</strong> <strong>grass</strong>land habitat, <str<strong>on</strong>g>skunk</str<strong>on</strong>g>s will have increased c<strong>on</strong>tact<br />

am<strong>on</strong>g forest patches separated by <strong>grass</strong>land and agricultural habitats.<br />

Woody expansi<strong>on</strong> is occurring rapidly in <str<strong>on</strong>g>the</str<strong>on</strong>g> Flint Hills <str<strong>on</strong>g>of</str<strong>on</strong>g> Kansas as prescribed burning<br />

decreases in exurban and suburban envir<strong>on</strong>ments (Knopf and Sams<strong>on</strong> 1995, Briggs et al. 2002b,<br />

and Briggs et al. 2005). Higher c<strong>on</strong>tact am<strong>on</strong>g host individuals is predicted to occur with <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

expansi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> this preferred habitat and is amplified by <str<strong>on</strong>g>the</str<strong>on</strong>g> reducti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>grass</strong>land and agricultural<br />

barriers. This loss <str<strong>on</strong>g>of</str<strong>on</strong>g> existing transmissi<strong>on</strong> barriers occurs as a threshold effect and exemplifies<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>cept <str<strong>on</strong>g>of</str<strong>on</strong>g> ecological and epidemiological thresholds. Similar occurrences have been noted<br />

in <str<strong>on</strong>g>the</str<strong>on</strong>g> nor<str<strong>on</strong>g>the</str<strong>on</strong>g>astern United States where reforestati<strong>on</strong> in <str<strong>on</strong>g>the</str<strong>on</strong>g> regi<strong>on</strong> has led to increased<br />

prevalence <str<strong>on</strong>g>of</str<strong>on</strong>g> Lyme disease (Barbour 1998, Wilcox and Gubler 2005). In <str<strong>on</strong>g>the</str<strong>on</strong>g> Flint Hills,<br />

prescribed burning regimes could be implemented to keep wooded habitat below <str<strong>on</strong>g>the</str<strong>on</strong>g> threshold.<br />

Managing for disease outbreaks by managing habitat ra<str<strong>on</strong>g>the</str<strong>on</strong>g>r than c<strong>on</strong>trolling host populati<strong>on</strong>s will<br />

likely be more effective both in cost and in its ability to suppress epizootic outbreaks.<br />

Unpredictable cluster formati<strong>on</strong><br />

In <str<strong>on</strong>g>the</str<strong>on</strong>g> original network, viral spread closely followed <str<strong>on</strong>g>the</str<strong>on</strong>g> clusters produced by <str<strong>on</strong>g>the</str<strong>on</strong>g> cluster<br />

analysis. This provided a reliable method <str<strong>on</strong>g>of</str<strong>on</strong>g> predicting rabies spread. However, in <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

subsequent networks, transmissi<strong>on</strong> clusters were variable in size and number and were not<br />

dependent <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> increasing forested habitat, nor were <str<strong>on</strong>g>the</str<strong>on</strong>g> clusters related to <str<strong>on</strong>g>the</str<strong>on</strong>g> patterns <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

rabies spread. The clusters no l<strong>on</strong>ger accurately predicted <str<strong>on</strong>g>the</str<strong>on</strong>g> viral spread across <str<strong>on</strong>g>the</str<strong>on</strong>g> altered<br />

landscapes.<br />

The decrease in <str<strong>on</strong>g>the</str<strong>on</strong>g> predictive ability <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> cluster analysis <str<strong>on</strong>g>of</str<strong>on</strong>g>fers a warning that network<br />

analyses must be carefully c<strong>on</strong>sidered in terms <str<strong>on</strong>g>of</str<strong>on</strong>g> biological importance. The unreliability <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

cluster analysis may be attributed to alterati<strong>on</strong>s in <str<strong>on</strong>g>the</str<strong>on</strong>g> cluster coefficient delineati<strong>on</strong>. Increases in<br />

66


node density may influence accurate measures <str<strong>on</strong>g>of</str<strong>on</strong>g> this coefficient. Definiti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> a cluster may<br />

change with changing landscape habitat c<strong>on</strong>figurati<strong>on</strong> (Radicchi 2004). Accurate delineati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<str<strong>on</strong>g>the</str<strong>on</strong>g>se communities should be c<strong>on</strong>sidered in future analyses.<br />

C<strong>on</strong>clusi<strong>on</strong>s<br />

Ecological systems are composed <str<strong>on</strong>g>of</str<strong>on</strong>g> intricate interacti<strong>on</strong>s at small scales and from <str<strong>on</strong>g>the</str<strong>on</strong>g>se<br />

microscopic interacti<strong>on</strong>, large-scale, macroscopic patterns emerge. C<strong>on</strong>siderati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>se<br />

interacti<strong>on</strong>s is critical to realistic modeling <str<strong>on</strong>g>of</str<strong>on</strong>g> ecosystem functi<strong>on</strong>. Over <str<strong>on</strong>g>the</str<strong>on</strong>g> last several years,<br />

data availability and storage capability have increased allowing for <str<strong>on</strong>g>the</str<strong>on</strong>g> study <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>se large<br />

complex networks (Barrat et al. 2008). In modeling <str<strong>on</strong>g>the</str<strong>on</strong>g> rabies disease system, we used an<br />

individual-based complex network approach to attempt to realistically simulate disease spread<br />

across spatial-explicit backgrounds. By placing nodes based <strong>on</strong> habitat-specific densities across<br />

a landscape and by simulating disease spread based <strong>on</strong> empirically derived transmissi<strong>on</strong> values,<br />

we have attempted to accurately predict patterns <str<strong>on</strong>g>of</str<strong>on</strong>g> rabies spread across future landscapes given<br />

predicted land cover changes.<br />

From this method <str<strong>on</strong>g>of</str<strong>on</strong>g> modeling, we found that with <strong>on</strong>ly a 25% increase in woody<br />

vegetati<strong>on</strong> resulted in a greatly increased extent <str<strong>on</strong>g>of</str<strong>on</strong>g> rabies spread. This resulting area <str<strong>on</strong>g>of</str<strong>on</strong>g> rabies<br />

spread was not limited by agricultural barriers or habitat fragmentati<strong>on</strong>, and displayed high<br />

c<strong>on</strong>nectivity am<strong>on</strong>g clustered nodes. These results indicate that <str<strong>on</strong>g>the</str<strong>on</strong>g>re is a threshold level <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

forest expansi<strong>on</strong>, bey<strong>on</strong>d which rabies spread may impact substantially larger areas. Methods <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

wildlife c<strong>on</strong>trol and vaccinati<strong>on</strong> may be effective at <str<strong>on</strong>g>the</str<strong>on</strong>g> current level <str<strong>on</strong>g>of</str<strong>on</strong>g> forest encroachment, but<br />

c<strong>on</strong>tinued fire suppressi<strong>on</strong> will make this method c<strong>on</strong>trol difficult and ineffectual. Preemptive<br />

rabies management, to avoid future epidemics, would involve annual prescribed burning and<br />

vegetati<strong>on</strong> removal to reduce <str<strong>on</strong>g>the</str<strong>on</strong>g> amount <str<strong>on</strong>g>of</str<strong>on</strong>g> woody vegetati<strong>on</strong> <strong>on</strong> open <strong>grass</strong>land.<br />

67


As land use and land cover c<strong>on</strong>tinues to change with rapidly expanding areas <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

exurbanizati<strong>on</strong>, it is crucial to public health to be able to predict future areas <str<strong>on</strong>g>of</str<strong>on</strong>g> disease spread.<br />

The complex modeling system presented in this study provides a simple method <str<strong>on</strong>g>of</str<strong>on</strong>g> delineating<br />

future areas <str<strong>on</strong>g>of</str<strong>on</strong>g> disease spread <strong>on</strong> realistic landscapes. By overlaying network models <str<strong>on</strong>g>of</str<strong>on</strong>g> disease<br />

spread <strong>on</strong> projected landscape scenarios, <strong>on</strong>e can estimate future hot spots <str<strong>on</strong>g>of</str<strong>on</strong>g> disease<br />

transmissi<strong>on</strong> and resp<strong>on</strong>d with appropriate management acti<strong>on</strong>s. Novel infectious diseases <str<strong>on</strong>g>of</str<strong>on</strong>g>ten<br />

emerge in z<strong>on</strong>es <str<strong>on</strong>g>of</str<strong>on</strong>g> habitat alterati<strong>on</strong>, and <str<strong>on</strong>g>the</str<strong>on</strong>g> development <str<strong>on</strong>g>of</str<strong>on</strong>g> complex system and network<br />

modeling approaches are useful methods to model and predict disease spread across potential<br />

land cover distributi<strong>on</strong>s.<br />

68


References<br />

Barabasi, A.L. 2009. Scale-free networks: a decade and bey<strong>on</strong>d. Science 325:412-413.<br />

Barbour, A.G. 1998. The rise and fall <str<strong>on</strong>g>of</str<strong>on</strong>g> Lyme disease and o<str<strong>on</strong>g>the</str<strong>on</strong>g>r Ixodes tick-borne infecti<strong>on</strong>s in<br />

North America and Europe. British Medical Bulletin 54:647-658.<br />

Barrat A., M. Barthélemy, and A. Vespignani. 2008. Dynamical Processes <strong>on</strong> Complex<br />

Networks. Cambridge University Press: New York, NY.<br />

Bascompte, J. 2009. Disentangling <str<strong>on</strong>g>the</str<strong>on</strong>g> web <str<strong>on</strong>g>of</str<strong>on</strong>g> life. Science 325:416-419.<br />

Bowe, S.E., and S.M. Wisely. 2009. <str<strong>on</strong>g>Ecology</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>striped</str<strong>on</strong>g> <str<strong>on</strong>g>skunk</str<strong>on</strong>g> (<str<strong>on</strong>g>mephitis</str<strong>on</strong>g> <str<strong>on</strong>g>mephitis</str<strong>on</strong>g>) <strong>on</strong> <strong>tall</strong>-<br />

<strong>grass</strong> <strong>prairie</strong>: implicati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> anthropogenic habitat alterati<strong>on</strong>s <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> spatial distributi<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> a disease host. Master’s Thesis, Chapter 2, Kansas State University.<br />

Briggs, J.M., G.A. Hoch, and L.C. Johns<strong>on</strong>. 2002b. Assessing <str<strong>on</strong>g>the</str<strong>on</strong>g> rate, mechanisms, and<br />

c<strong>on</strong>sequences <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>versi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>tall</strong>-<strong>grass</strong> <strong>prairie</strong> to Juniperus virginiana forest.<br />

Ecosystems 5:578-586.<br />

Briggs, J. M., A. K. Knapp, J. M. Blair, J. L. Heisler, G. A. Hoch, M. S. Lett, and J. K.<br />

McCarr<strong>on</strong>. 2005. An ecosystem in transiti<strong>on</strong>: Causes and c<strong>on</strong>sequences <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>versi<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> mesic <strong>grass</strong>land to shrubland. Bioscience 55:243-254.<br />

Bradley, C.A., S.E.J. Gibbs, and S. Altizer. 2008. Urban land use predicts West Nile<br />

exposure in s<strong>on</strong>gbirds. Ecological Applicati<strong>on</strong>s 18:1083-1092.<br />

Center for Disease C<strong>on</strong>trol and Preventi<strong>on</strong>. 2007. Rabies. http://www.cdc.gov/rabies. Accessed<br />

07 September 2009.<br />

Crowl, T.A., T.O. Crist, R.R. Paramenter, G. Belovsky, and A.E. Lugo. 2008. The spread <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

invasive species and infectious disease as drivers <str<strong>on</strong>g>of</str<strong>on</strong>g> ecosystem change. Fr<strong>on</strong>tiers in<br />

<str<strong>on</strong>g>Ecology</str<strong>on</strong>g> and <str<strong>on</strong>g>the</str<strong>on</strong>g> Envir<strong>on</strong>ment 6:238-246.<br />

Daszak P., A.A. Cunningham, and A.D. Hyatt. 2001. Anthropogenic envir<strong>on</strong>mental change and<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> emergence <str<strong>on</strong>g>of</str<strong>on</strong>g> infectious diseases in wildlife. Acta Tropica 78:103-116.<br />

Deal, B., C. Farello, M. Lancaster, T. Kompare, and B. Hann<strong>on</strong>. 2000. A dynamic model <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

spatial spread <str<strong>on</strong>g>of</str<strong>on</strong>g> an infectious disease: <str<strong>on</strong>g>the</str<strong>on</strong>g> case <str<strong>on</strong>g>of</str<strong>on</strong>g> fox rabies in Illinois. Envir<strong>on</strong>mental<br />

Modeling and Assessment 5:47-62.<br />

Field, H.E. 2009. Bats and emerging zo<strong>on</strong>oses: Henipaviruses and SARS. Zo<strong>on</strong>oses and Public<br />

Health 56:278-284.<br />

Fowler, A.C. 2000. The effect <str<strong>on</strong>g>of</str<strong>on</strong>g> incubati<strong>on</strong> time distributi<strong>on</strong> <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> extincti<strong>on</strong> characteristics <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

a rabies epizootic. Bulletin <str<strong>on</strong>g>of</str<strong>on</strong>g> Ma<str<strong>on</strong>g>the</str<strong>on</strong>g>matical Biology 62:633-660.<br />

69


Freeman, L.C. 1977. A set <str<strong>on</strong>g>of</str<strong>on</strong>g> measures <str<strong>on</strong>g>of</str<strong>on</strong>g> centrality based <strong>on</strong> betweenness. Sociometry<br />

40:35-41.<br />

Greenwood, R.J., W.E. Newt<strong>on</strong>, G. Pears<strong>on</strong>, and G.J. Schamber. 1997. Populati<strong>on</strong> and<br />

movement characteristics <str<strong>on</strong>g>of</str<strong>on</strong>g> radio collared <str<strong>on</strong>g>striped</str<strong>on</strong>g> <str<strong>on</strong>g>skunk</str<strong>on</strong>g>s in North Dakota during an<br />

epizootic <str<strong>on</strong>g>of</str<strong>on</strong>g> rabies. Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Wildlife Diseases 33:226-41.<br />

Grimm, N.B., J.M. Grove, S.T.A. Pickett, and C.L. Redman. 2000. Integrated approaches to<br />

l<strong>on</strong>g-term studies <str<strong>on</strong>g>of</str<strong>on</strong>g> urban ecological systems. BioScience 50:571-584.<br />

Grimm N.B., D. Foster, P. Gr<str<strong>on</strong>g>of</str<strong>on</strong>g>fman, J.M. Grove, C.S. Hopkins, K.J. Nadelh<str<strong>on</strong>g>of</str<strong>on</strong>g>fer, D.E. Pataki,<br />

and D.P.C. Peters. 2008. The changing landscape: ecosystem resp<strong>on</strong>ses to urbanizati<strong>on</strong><br />

and polluti<strong>on</strong> across climatic and societal gradients. Fr<strong>on</strong>tiers in <str<strong>on</strong>g>Ecology</str<strong>on</strong>g> and <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

Envir<strong>on</strong>ment 6:264-272.<br />

Hethco<str<strong>on</strong>g>the</str<strong>on</strong>g>, H.W. 2000. The ma<str<strong>on</strong>g>the</str<strong>on</strong>g>matics <str<strong>on</strong>g>of</str<strong>on</strong>g> infectious diseases. SIAM Review 42:599-653.<br />

Huang, G., and L. Li. 2009. A ma<str<strong>on</strong>g>the</str<strong>on</strong>g>matical model <str<strong>on</strong>g>of</str<strong>on</strong>g> infectious diseases. Annals <str<strong>on</strong>g>of</str<strong>on</strong>g> Operati<strong>on</strong>s<br />

Research 168:41-80.<br />

Kansas Applied Remote Sensing Program. Kansas Geospatial Community Comm<strong>on</strong>s.<br />

http://www.kansasgis.org.<br />

Knight, C.L., J.M. Briggs, and M.D. Nellis. 1994. Expansi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> gallery forest <strong>on</strong> K<strong>on</strong>za Prairie<br />

Natural Research Area, Kansas, USA. Landscape <str<strong>on</strong>g>Ecology</str<strong>on</strong>g> 9:117-125.<br />

Knopf F.L., and F.B. Sams<strong>on</strong>. 1995. C<strong>on</strong>serving <str<strong>on</strong>g>the</str<strong>on</strong>g> biotic integrity <str<strong>on</strong>g>of</str<strong>on</strong>g> Great Plains. Pages 121-<br />

133 in S.R. Johns<strong>on</strong> and A. Bouzaher, eds. C<strong>on</strong>servati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Great Plains Ecosystems:<br />

Current Science, Future Opti<strong>on</strong>s. Dordrecht, Kluwer Academic Press.<br />

Lavine J., M. Poss, B. Grenfell. 2008. Directly transmitted viral diseases: modeling <str<strong>on</strong>g>the</str<strong>on</strong>g> dynamics<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> transmissi<strong>on</strong>. Trends in Microbiology 16:165-173.<br />

Lewis, K., J. Kaufman, M. G<strong>on</strong>zalez, A. Wimmer, and N. Christakis. 2008. Tastes, ties, and<br />

time: A new social network dataset using Facebook.com. Social Networks 30:330-342.<br />

Macd<strong>on</strong>ald, D.W., and D.R. Voight. 1985. The biological basis <str<strong>on</strong>g>of</str<strong>on</strong>g> rabies models. Pages 71-108<br />

in P.J. Bac<strong>on</strong>, editor. Populati<strong>on</strong> dynamics <str<strong>on</strong>g>of</str<strong>on</strong>g> rabies in wildlife. Academic Press, New<br />

York, New York.<br />

McGarigal, K., and B.J. Marks. 1995. FRAGSTATS: spatial pattern analysis program for<br />

quantifying landscape structure. Gen. Tech. Report PNW-GTR-351, USDA Forest<br />

Service, Pacific Northwest Research Stati<strong>on</strong>, Portland, OR.<br />

Newman, M.E.J. 2001. Scientific collaborati<strong>on</strong> networks. I. Network c<strong>on</strong>structi<strong>on</strong> and<br />

70


fundamental results. Physical Review E 64:016131.<br />

Parham, P.E., and N.M. Fergus<strong>on</strong>. 2006. Space and c<strong>on</strong>tact networks: capturing <str<strong>on</strong>g>the</str<strong>on</strong>g> locality <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

disease transmissi<strong>on</strong>. Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> Royal Society Interface 3:483-493.<br />

Parker, R. L., and R. E. Wilsnack. 1966. Pathogenesis <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>skunk</str<strong>on</strong>g> rabies virus: quantizati<strong>on</strong> in<br />

<str<strong>on</strong>g>skunk</str<strong>on</strong>g>s and foxes. Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Veterinary Research 27:33-38.<br />

Patz, J.A., P. Daszak, G.M. Tabor, A.A. Aguirre, M. Pearl, J. Epstein, N. D. Wolfe, A.M.<br />

Kilpatrick, J. Foufopoulos, D. Molyneux, D.J. Bradley, and Members <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> Working<br />

Group <strong>on</strong> Land Use Change and Disease Emergence. 2004. Unhealthy landscapes: policy<br />

recommendati<strong>on</strong>s <strong>on</strong> land use change and infectious disease emergence. Envir<strong>on</strong>mental<br />

Health Perspectives 112:1092-1098.<br />

Radicchi, F., C. Castellano, F. Cecc<strong>on</strong>i, V. Loreto, and D. Parisi. 2004. Defining and identifying<br />

communities in networks. Proceedings <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> Nati<strong>on</strong>al Academy <str<strong>on</strong>g>of</str<strong>on</strong>g> Sciences 101:2658-<br />

2663.<br />

Real, L.A., and R. Biek. 2007. Spatial dynamics and genetics <str<strong>on</strong>g>of</str<strong>on</strong>g> infectious diseases <strong>on</strong><br />

heterogeneous landscapes. Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> Royal Society Interface 4:935-948.<br />

Schmidt, K.A. and R.S. Ostfeld. 2001. Biodiversity and <str<strong>on</strong>g>the</str<strong>on</strong>g> diluti<strong>on</strong> effect in disease ecology.<br />

<str<strong>on</strong>g>Ecology</str<strong>on</strong>g> 82:609-619.<br />

Schweitzer, F., G. Fagiolo, D. Sornette, F. Vega-Red<strong>on</strong>do, A. Vespignani, and D.R. White. 2009.<br />

Ec<strong>on</strong>omic networks: <str<strong>on</strong>g>the</str<strong>on</strong>g> new challenges. Science 325:422-425.<br />

Ueno, T., and N. Masuda. 2008. C<strong>on</strong>trolling nosocomial infecti<strong>on</strong> based <strong>on</strong> structure <str<strong>on</strong>g>of</str<strong>on</strong>g> hospital<br />

social networks. Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Theoretical Biology 254:655-666.<br />

Verts, B. J. 1967. The biology <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>striped</str<strong>on</strong>g> <str<strong>on</strong>g>skunk</str<strong>on</strong>g>. University <str<strong>on</strong>g>of</str<strong>on</strong>g> Illinois Press, Urbana. 218pp.<br />

Vijayachari, P., A.P. Sugunan, A.G. Shriram. 2008. Leptospirosis: an emerging global health<br />

problem. Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Biosciences 33:557-569.<br />

Wilcox, B.A., and D.J. Gubler. 2005. Disease ecology and <str<strong>on</strong>g>the</str<strong>on</strong>g> global emergence <str<strong>on</strong>g>of</str<strong>on</strong>g> zo<strong>on</strong>otic<br />

pathogens. Envir<strong>on</strong>mental Health and Preventative Medicine 10:263-272.<br />

Wisely, S.M., S.E. Bowe, A. Sydney, P. Schumm, and C. Scoglio. 2009. Epidemiology <str<strong>on</strong>g>of</str<strong>on</strong>g> rabies<br />

in <str<strong>on</strong>g>the</str<strong>on</strong>g> Great Plains: stochastic c<strong>on</strong>tact networks predict <str<strong>on</strong>g>the</str<strong>on</strong>g> influence <str<strong>on</strong>g>of</str<strong>on</strong>g> landscape, host<br />

ecology, and viral etiology <strong>on</strong> temporal and spatial dynamics <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> disease. Ecohealth, in<br />

review.<br />

Youm, Y., M.E. Mackesy-Ameti, C.T. Williams, and L.J. Ouellet. 2009. Identifying hidden<br />

sexual bridging communities in Chicago. Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Urban Health – Bulletin <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> New<br />

York Academy <str<strong>on</strong>g>of</str<strong>on</strong>g> Medicine 86:S107-S120.<br />

71


Figures and Tables<br />

Figure 3.1 Four network node distributi<strong>on</strong>s based <strong>on</strong> increases in forest habitat across <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

Upper Kansas River Watershed. The original network (a) is <str<strong>on</strong>g>the</str<strong>on</strong>g> current habitat<br />

compositi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> watershed, while Network 2 (b) represents a 25% increase in forest,<br />

Network 3 (c) is a 50% increase in forest, and Network 4 (d) has a 78% increase in forest.<br />

Nodes were placed in each network based <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> same habitat specific densities <str<strong>on</strong>g>of</str<strong>on</strong>g> 2.5<br />

<str<strong>on</strong>g>skunk</str<strong>on</strong>g>s/km 2 in forest, 2.1 <str<strong>on</strong>g>skunk</str<strong>on</strong>g>s/km 2 in urban habitat, and 0.06 <str<strong>on</strong>g>skunk</str<strong>on</strong>g>s/km 2 in <strong>grass</strong>land<br />

and agricultural lands.<br />

72


Figure 3.2 Forest habitat increase in proporti<strong>on</strong> to total habitat area in each <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> four<br />

watersheds divided by <str<strong>on</strong>g>the</str<strong>on</strong>g> Kansas River. Forest habitat north <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> Kansas River is<br />

indicated in blue and south is indicated in red. The watersheds were delineated based <strong>on</strong><br />

simulated increases in forested habitat area, with Watershed 1 representing <str<strong>on</strong>g>the</str<strong>on</strong>g> original<br />

habitat c<strong>on</strong>figurati<strong>on</strong>, Watershed 2 representing a 25% increase in forest habitat,<br />

Watershed 3 representing a 50% increase, and Watershed 4 representing a 78% increase.<br />

Forest proporti<strong>on</strong> in <str<strong>on</strong>g>the</str<strong>on</strong>g> south increased much less with each 25% increase in forest area<br />

than in <str<strong>on</strong>g>the</str<strong>on</strong>g> north.<br />

73


Figure 3.3 Node degree by habitat for Network 1 nodes south <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> river (a) and north (b)<br />

and Network 4 nodes south <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> river (c) and north (d). Dark green lines represent forest<br />

habitat, light green represent <strong>grass</strong>lands, red represent agricultural lands, and blue<br />

represent urban habitat. Networks 1 and 4 represent <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>tact networks <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>striped</str<strong>on</strong>g><br />

<str<strong>on</strong>g>skunk</str<strong>on</strong>g>s before and after a 78% increase in forested habitat. The north <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> watershed is<br />

dominated by forested habitat and <str<strong>on</strong>g>the</str<strong>on</strong>g> 78% increase greatly increased <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>nectivity <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> network. The sou<str<strong>on</strong>g>the</str<strong>on</strong>g>rn porti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> watershed is predominantly <strong>grass</strong>lands and<br />

agriculture and <str<strong>on</strong>g>the</str<strong>on</strong>g> increase in forested habitat did not have as significant effect <strong>on</strong><br />

c<strong>on</strong>nectivity.<br />

74


Figure 3.4 Disease spread by viral initiati<strong>on</strong> locati<strong>on</strong> for each <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> four networks (a.-d.).<br />

Red squares represent initiati<strong>on</strong> in Juncti<strong>on</strong> City, green triangles are Manhattan, purple<br />

crosses are Riley, blue stars are Fort Riley, and orange circles are initiati<strong>on</strong> in <str<strong>on</strong>g>the</str<strong>on</strong>g> south <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> watershed.<br />

75


Figure 3.5 Comparis<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> habitat compositi<strong>on</strong> for underlying landscape within network<br />

clusters (blue bars) and landscape outside <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> clusters (red bars) for each <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> four<br />

networks (a-d). These clusters were delineated to determine areas <str<strong>on</strong>g>of</str<strong>on</strong>g> high c<strong>on</strong>nectivity and<br />

to identify epidemic hotspots. An edge clustering coefficient was estimated by calculating<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> number <str<strong>on</strong>g>of</str<strong>on</strong>g> triangles an edge bel<strong>on</strong>ged to divided by <str<strong>on</strong>g>the</str<strong>on</strong>g> number it could bel<strong>on</strong>g to based<br />

<strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> node degree <str<strong>on</strong>g>of</str<strong>on</strong>g> adjacent nodes. Clusters were defined by removing edges with<br />

clustering coefficients < 7.4 x 10 -4 , a value which maximized clustering <str<strong>on</strong>g>of</str<strong>on</strong>g> nodes.<br />

76


Figure 3.6 Habitat compositi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> area <str<strong>on</strong>g>of</str<strong>on</strong>g> rabies spread through each network.<br />

Network 1 is blue, Network 2 red, Network 3 green, and Network 4 purple. Each graph<br />

represents an initiati<strong>on</strong> locati<strong>on</strong>: a) Juncti<strong>on</strong> City, b) Manhattan, c) Fort Riley, d) Town <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Riley, and e) South.<br />

77


Figure 3.7 Example <str<strong>on</strong>g>of</str<strong>on</strong>g> an increase in <str<strong>on</strong>g>the</str<strong>on</strong>g> number <str<strong>on</strong>g>of</str<strong>on</strong>g> nodes with high site betweenness.<br />

Node 1 has high site betweenness and removing this node would separate <str<strong>on</strong>g>the</str<strong>on</strong>g> network.<br />

However, <str<strong>on</strong>g>the</str<strong>on</strong>g> additi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> nodes 2 and 3 increases <str<strong>on</strong>g>the</str<strong>on</strong>g> average site betweenness and<br />

separati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> network requires <str<strong>on</strong>g>the</str<strong>on</strong>g> removal <str<strong>on</strong>g>of</str<strong>on</strong>g> 3 nodes.<br />

78


Table 3.1 General network descriptors for <str<strong>on</strong>g>the</str<strong>on</strong>g> four spatially explicit c<strong>on</strong>tact networks<br />

based <strong>on</strong> increases in tree area. Network 1 is based <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> current habitat c<strong>on</strong>figurati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> Upper Kansas River Watershed, while Networks 2-4 are based <strong>on</strong> increased forested<br />

habitat as indicated. Nodes representing individual <str<strong>on</strong>g>skunk</str<strong>on</strong>g> dens were placed across <str<strong>on</strong>g>the</str<strong>on</strong>g>se<br />

habitat c<strong>on</strong>figurati<strong>on</strong>s based <strong>on</strong> habitat-specific density estimates. Edges, or links, between<br />

2 nodes were determined based <strong>on</strong> pairwise proximity probabilities. Density is a measure<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> network sparseness calculated based <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> number <str<strong>on</strong>g>of</str<strong>on</strong>g> edges versus <str<strong>on</strong>g>the</str<strong>on</strong>g> number <str<strong>on</strong>g>of</str<strong>on</strong>g> nodes<br />

within each network. Densities


Table 3.2 Analyses <str<strong>on</strong>g>of</str<strong>on</strong>g> c<strong>on</strong>nectivity for <str<strong>on</strong>g>the</str<strong>on</strong>g> four spatially explicit c<strong>on</strong>tact networks based <strong>on</strong><br />

increases in tree area across <str<strong>on</strong>g>the</str<strong>on</strong>g> Upper Kansas River Watershed. Network 1 is based <strong>on</strong><br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> current watershed habitat c<strong>on</strong>figurati<strong>on</strong>, Network 2 is a 25% increase in forest habitat,<br />

Network 3 is a 50% increase, and Network 4 is a 78% increase. A c<strong>on</strong>nected comp<strong>on</strong>ent<br />

describes a divisi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> network that c<strong>on</strong>tains paths that c<strong>on</strong>nect any two nodes within<br />

that divisi<strong>on</strong>. Two comp<strong>on</strong>ents are disc<strong>on</strong>nected if it is not possible to create a path that<br />

c<strong>on</strong>nects any <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> nodes between <str<strong>on</strong>g>the</str<strong>on</strong>g> comp<strong>on</strong>ents. Site betweenness is <str<strong>on</strong>g>the</str<strong>on</strong>g> number <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

shortest paths between two nodes that pass through a node <str<strong>on</strong>g>of</str<strong>on</strong>g> interest. The diameter <str<strong>on</strong>g>of</str<strong>on</strong>g> a<br />

network is <str<strong>on</strong>g>the</str<strong>on</strong>g> maximum shortest path length am<strong>on</strong>g nodes, with <str<strong>on</strong>g>the</str<strong>on</strong>g> shortest path length<br />

calculated as <str<strong>on</strong>g>the</str<strong>on</strong>g> number <str<strong>on</strong>g>of</str<strong>on</strong>g> links forming <str<strong>on</strong>g>the</str<strong>on</strong>g> shortest path between nodes. Clusters were<br />

defined by removing edges with clustering coefficients < 7.4 x 10 -4 , a value which<br />

maximized clustering <str<strong>on</strong>g>of</str<strong>on</strong>g> nodes.<br />

C<strong>on</strong>nected Comp<strong>on</strong>ents Average Site Betweenness Diameter Isolates Clusters % Nodes in Largest Cluster<br />

Network 1 5 6494 + 279 25 16 47 51<br />

Network 2 4 7637 + 247 25 16 53 46<br />

Network 3 3 8944 + 270 28 9 41 25<br />

Network 4 1 110534 + 10047 30 11 40 66<br />

80


Table 3.3 Landscape metrics comparing habitat c<strong>on</strong>figurati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> observed viral habitat use<br />

against expected habitat use for <str<strong>on</strong>g>the</str<strong>on</strong>g> four spatially explicit c<strong>on</strong>tact networks based <strong>on</strong><br />

predicted forest increase across <str<strong>on</strong>g>the</str<strong>on</strong>g> Upper Kansas River Watershed at each rabies<br />

initiati<strong>on</strong> locati<strong>on</strong> for disease spread simulati<strong>on</strong>s.<br />

Patch Density<br />

Network Juncti<strong>on</strong> City Manhattan North Riley South<br />

1 5.7255 5.274 7.065 5.5861 7.2378<br />

2 3.8711 3.8839 3.8821 4.067 -<br />

3 2.753 2.6984 2.7116 2.688 5.6537<br />

4 2.1747 2.1708 2.1699 2.1722 3.0364<br />

Edge Density<br />

Network Juncti<strong>on</strong> City Manhattan North Riley South<br />

1 52.2857 52.73 60.8123 53.598 53.5083<br />

2 42.8798 43.0915 43.2132 43.587 -<br />

3 39.1766 38.8466 38.6903 38.9632 54.2141<br />

4 34.3232 34.3045<br />

C<strong>on</strong>tagi<strong>on</strong><br />

34.0869 34.309 34.9047<br />

Network Juncti<strong>on</strong> City Manhattan North Riley South<br />

1 36.2187 40.0345 54.2358 40.1194 29.1826<br />

2 43.9991 43.8907 43.6829 43.4777 -<br />

3 44.4949 44.7265 44.5944 44.6778 26.5611<br />

4 45.9883 45.9416 45.9798 46.0078 47.5774<br />

Shann<strong>on</strong> Diversity Index<br />

Network Juncti<strong>on</strong> City Manhattan North Riley South<br />

1 1.3514 1.2779 0.8342 1.2713 0.8783<br />

2 1.1847 1.1909 1.1953 1.1997 -<br />

3 1.1933 1.1886 1.194 1.1901 0.9191<br />

4 1.1878 1.1891 1.1909 1.1875 0.9286<br />

Shann<strong>on</strong> Evenness Index<br />

Network Juncti<strong>on</strong> City Manhattan North Riley South<br />

1 0.8397 0.794 0.5183 0.7899 0.7995<br />

2 0.7361 0.7399 0.7427 0.7454 -<br />

3 0.7414 0.7385 0.7419 0.7394 0.8366<br />

4 0.738 0.7388 0.7399 0.7378 0.6699<br />

81


CHAPTER 4 - C<strong>on</strong>clusi<strong>on</strong>s<br />

Zo<strong>on</strong>otic infectious disease epidemiology is dependent <strong>on</strong> three important factors:<br />

properties <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> pathogen, ecology <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> disease host species, and <str<strong>on</strong>g>the</str<strong>on</strong>g> habitat c<strong>on</strong>figurati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> underlying landscape. Multiple approaches should be integrated to study, manage, and<br />

c<strong>on</strong>trol emerging and re-emerging infectious disease across rapidly changing landscapes. In our<br />

work <strong>on</strong> rabies virus in <str<strong>on</strong>g>striped</str<strong>on</strong>g> <str<strong>on</strong>g>skunk</str<strong>on</strong>g> populati<strong>on</strong>s in <str<strong>on</strong>g>the</str<strong>on</strong>g> Flint Hills <str<strong>on</strong>g>of</str<strong>on</strong>g> Kansas, we combined field<br />

data, genetic analyses, and ma<str<strong>on</strong>g>the</str<strong>on</strong>g>matical modeling to characterize <str<strong>on</strong>g>the</str<strong>on</strong>g> epidemiology <str<strong>on</strong>g>of</str<strong>on</strong>g> an<br />

important zo<strong>on</strong>otic disease. I believe integrati<strong>on</strong>, al<strong>on</strong>g with cross-discipline collaborati<strong>on</strong>s,<br />

have greatly enhanced <str<strong>on</strong>g>the</str<strong>on</strong>g> completeness and breadth <str<strong>on</strong>g>of</str<strong>on</strong>g> our findings. Telemetry data collected<br />

<strong>on</strong> and around <str<strong>on</strong>g>the</str<strong>on</strong>g> K<strong>on</strong>za Prairie Biological Stati<strong>on</strong> provided fine-scaled informati<strong>on</strong> <strong>on</strong><br />

individual habitat use and spatial distributi<strong>on</strong>s in anthropogenically disturbed and undisturbed<br />

envir<strong>on</strong>ments. C<strong>on</strong>tributing to <str<strong>on</strong>g>the</str<strong>on</strong>g> findings from <str<strong>on</strong>g>the</str<strong>on</strong>g>se field data, genetic analyses revealed a<br />

lack <str<strong>on</strong>g>of</str<strong>on</strong>g> populati<strong>on</strong> structure delineati<strong>on</strong>s and high admixture in <str<strong>on</strong>g>striped</str<strong>on</strong>g> <str<strong>on</strong>g>skunk</str<strong>on</strong>g>s in <str<strong>on</strong>g>the</str<strong>on</strong>g> telemetry<br />

study and individuals across <str<strong>on</strong>g>the</str<strong>on</strong>g> Kansas Flint Hills. Field and genetic analyses provided a basis<br />

for ma<str<strong>on</strong>g>the</str<strong>on</strong>g>matical modeling <str<strong>on</strong>g>of</str<strong>on</strong>g> rabies spread across a broader spatial scale, <str<strong>on</strong>g>the</str<strong>on</strong>g> Upper Kansas<br />

River Watershed. Working with researchers in computer and electrical engineering, we were<br />

able to predict disease spread based <strong>on</strong> future land cover c<strong>on</strong>figurati<strong>on</strong>s based <strong>on</strong> habitat-specific<br />

densities <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>striped</str<strong>on</strong>g> <str<strong>on</strong>g>skunk</str<strong>on</strong>g> populati<strong>on</strong>s from <str<strong>on</strong>g>the</str<strong>on</strong>g> telemetry study. The combinati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>se three<br />

methods has led to several important c<strong>on</strong>clusi<strong>on</strong>s <strong>on</strong> <str<strong>on</strong>g>striped</str<strong>on</strong>g> <str<strong>on</strong>g>skunk</str<strong>on</strong>g> ecology and predicted<br />

patterns <str<strong>on</strong>g>of</str<strong>on</strong>g> rabies spread across an altered landscape.<br />

Through <str<strong>on</strong>g>the</str<strong>on</strong>g> integrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> field and genetic methods in Chapter 2, we c<strong>on</strong>cluded that 1)<br />

<str<strong>on</strong>g>striped</str<strong>on</strong>g> <str<strong>on</strong>g>skunk</str<strong>on</strong>g>s reached high populati<strong>on</strong> densities in anthropogenically disturbed habitats, 2) <str<strong>on</strong>g>the</str<strong>on</strong>g>se<br />

individuals were not closely related, and 3) c<strong>on</strong>tact rates could be influenced by temperature.<br />

82


Striped <str<strong>on</strong>g>skunk</str<strong>on</strong>g>s were found at higher densities in <str<strong>on</strong>g>the</str<strong>on</strong>g> disturbed habitat matrix <str<strong>on</strong>g>of</str<strong>on</strong>g> our study areas<br />

than in <str<strong>on</strong>g>the</str<strong>on</strong>g> relatively undisturbed <strong>grass</strong>lands dem<strong>on</strong>strated by high <str<strong>on</strong>g>skunk</str<strong>on</strong>g> and den densities, a<br />

greater degree <str<strong>on</strong>g>of</str<strong>on</strong>g> home range overlap, and more instances <str<strong>on</strong>g>of</str<strong>on</strong>g> communal denning. These<br />

densities indicate <str<strong>on</strong>g>the</str<strong>on</strong>g> potential for increased levels <str<strong>on</strong>g>of</str<strong>on</strong>g> c<strong>on</strong>tact am<strong>on</strong>g individuals <str<strong>on</strong>g>of</str<strong>on</strong>g> this disease<br />

host species. Adding to <str<strong>on</strong>g>the</str<strong>on</strong>g>se elevated c<strong>on</strong>tact probabilities is <str<strong>on</strong>g>the</str<strong>on</strong>g> fact that <str<strong>on</strong>g>striped</str<strong>on</strong>g> <str<strong>on</strong>g>skunk</str<strong>on</strong>g>s<br />

displayed high levels <str<strong>on</strong>g>of</str<strong>on</strong>g> genetic admixture and mobility within our study areas. Genetic analyses<br />

revealed that individuals with high levels <str<strong>on</strong>g>of</str<strong>on</strong>g> home range overlap were not more closely related<br />

than those outside <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>se groupings and <str<strong>on</strong>g>skunk</str<strong>on</strong>g>s in communal dens were not more closely<br />

related than those outside <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> dens. Distances am<strong>on</strong>g first and sec<strong>on</strong>d order related pairs were<br />

high, with average distances greater than 20 km, indicating large dispersal ranges. These results<br />

can have implicati<strong>on</strong>s for human health and risk <str<strong>on</strong>g>of</str<strong>on</strong>g> disease across <str<strong>on</strong>g>the</str<strong>on</strong>g> Flint Hills. The dense<br />

populati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>skunk</str<strong>on</strong>g>s are clustering in habitats near human development and <str<strong>on</strong>g>the</str<strong>on</strong>g>se individuals<br />

prefer to den within forested habitat. C<strong>on</strong>tact rates are <str<strong>on</strong>g>the</str<strong>on</strong>g>refore significantly heightened at <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

interface <str<strong>on</strong>g>of</str<strong>on</strong>g> human and domestic animal populati<strong>on</strong>s. Rabies risk will increase with increasing<br />

preferred <str<strong>on</strong>g>skunk</str<strong>on</strong>g> habitat. Adding to this scenario, ease <str<strong>on</strong>g>of</str<strong>on</strong>g> movement am<strong>on</strong>g <str<strong>on</strong>g>skunk</str<strong>on</strong>g> populati<strong>on</strong>s as<br />

dem<strong>on</strong>strated by <str<strong>on</strong>g>the</str<strong>on</strong>g> genetic analysis will allow for <str<strong>on</strong>g>the</str<strong>on</strong>g> disease to spread am<strong>on</strong>g regi<strong>on</strong>al urban<br />

centers. Rabies can lie dormant in individuals for extended lengths <str<strong>on</strong>g>of</str<strong>on</strong>g> time, allowing for a<br />

dispersing male to carry <str<strong>on</strong>g>the</str<strong>on</strong>g> disease from his communal den in <strong>on</strong>e disturbed area to ano<str<strong>on</strong>g>the</str<strong>on</strong>g>r<br />

disturbed habitat area in search <str<strong>on</strong>g>of</str<strong>on</strong>g> a mate. The infected <str<strong>on</strong>g>skunk</str<strong>on</strong>g> will meet little resistance from <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

n<strong>on</strong>-territorial residents.<br />

Anthropogenic land use change also has broader reaching c<strong>on</strong>sequences. As highly<br />

populated urban centers expand around <str<strong>on</strong>g>the</str<strong>on</strong>g> world, <str<strong>on</strong>g>the</str<strong>on</strong>g> resulting polluti<strong>on</strong> and climate change<br />

affect landscapes <strong>on</strong> a global scale. In eastern Kansas, models <str<strong>on</strong>g>of</str<strong>on</strong>g> future climate scenarios predict<br />

83


warmer winters with higher nightly temperatures over <str<strong>on</strong>g>the</str<strong>on</strong>g> next decades (Brunsell et al. 2008).<br />

Climate change may interact with rabies spread in <str<strong>on</strong>g>the</str<strong>on</strong>g>se highly clustered and genetically<br />

unrelated populati<strong>on</strong>s in complicated ways, exacerbating issues caused by habitat change in <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

Flint Hills. Skunks move from <str<strong>on</strong>g>the</str<strong>on</strong>g>ir dens during warmer winter nights, <str<strong>on</strong>g>the</str<strong>on</strong>g>refore increasing <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

potential for disease spread. Greater winter movement will increase c<strong>on</strong>tact rates am<strong>on</strong>g <str<strong>on</strong>g>skunk</str<strong>on</strong>g>s<br />

as well as c<strong>on</strong>tact with domesticated animals and o<str<strong>on</strong>g>the</str<strong>on</strong>g>r spill-over wildlife species. However,<br />

climate change may also help reduce rabies risk. Communal denning am<strong>on</strong>g individuals<br />

occurred <strong>on</strong>ly during <str<strong>on</strong>g>the</str<strong>on</strong>g> winter m<strong>on</strong>ths in our study areas and <str<strong>on</strong>g>skunk</str<strong>on</strong>g> weights declined in<br />

individuals over <str<strong>on</strong>g>the</str<strong>on</strong>g> cold winter m<strong>on</strong>ths <str<strong>on</strong>g>of</str<strong>on</strong>g> our study. The increased c<strong>on</strong>tact am<strong>on</strong>g individuals<br />

induced by communal denning would decline in a warmer winter scenario. Weight loss <str<strong>on</strong>g>of</str<strong>on</strong>g>ten<br />

indicates a compromised immune system in wildlife species (Altizer et al. 2006). Warmer<br />

winters would help maintain more resilient immunity in <str<strong>on</strong>g>striped</str<strong>on</strong>g> <str<strong>on</strong>g>skunk</str<strong>on</strong>g>s, potentially reducing<br />

susceptibility to disease.<br />

Based <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> spatial analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> telemetry data, we found that <str<strong>on</strong>g>striped</str<strong>on</strong>g> <str<strong>on</strong>g>skunk</str<strong>on</strong>g>s preferred<br />

to den within forested habitat. This habitat preference may lead to high densities <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> disease<br />

host within increasing woody cover across <str<strong>on</strong>g>the</str<strong>on</strong>g> Flint Hills. To analyze how <str<strong>on</strong>g>the</str<strong>on</strong>g> predicted<br />

increases in woody encroachment <strong>on</strong> open <strong>grass</strong>land will influence rabies spread, we simulated<br />

an increase in forested habitat through a c<strong>on</strong>tact network system <str<strong>on</strong>g>of</str<strong>on</strong>g> modeling, as described in<br />

Chapter 3. These models revealed that rabies spread does increase in area as forested habitat<br />

increases due to both heightened landscape c<strong>on</strong>nectivity and reduced efficiency <str<strong>on</strong>g>of</str<strong>on</strong>g> agricultural<br />

and <strong>grass</strong>land habitat buffers. In additi<strong>on</strong>, <str<strong>on</strong>g>the</str<strong>on</strong>g>re was a threshold to this increase and rabies<br />

spread reached its maximum rate <str<strong>on</strong>g>of</str<strong>on</strong>g> spread after <strong>on</strong>ly a 25% increase in woody cover. This<br />

finding emphasizes <str<strong>on</strong>g>the</str<strong>on</strong>g> need to manage woody encroachment now to avoid serious disease<br />

84


epidemics in <str<strong>on</strong>g>the</str<strong>on</strong>g> future. If woody encroachment c<strong>on</strong>tinues at its current rate <str<strong>on</strong>g>of</str<strong>on</strong>g> spread, <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

threshold for <str<strong>on</strong>g>the</str<strong>on</strong>g>se large scale epidemics will be reached in less than 30 years.<br />

A greater understanding <str<strong>on</strong>g>of</str<strong>on</strong>g> host habitat use patterns can also be advantageous for disease<br />

c<strong>on</strong>trol efforts. Given <str<strong>on</strong>g>the</str<strong>on</strong>g> affinity <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>striped</str<strong>on</strong>g> <str<strong>on</strong>g>skunk</str<strong>on</strong>g>s for encroaching woodlands, landowner<br />

incentives to increase prescribed fire regimes within <str<strong>on</strong>g>the</str<strong>on</strong>g> Flint Hills should be implemented to<br />

reduce <str<strong>on</strong>g>the</str<strong>on</strong>g> current expansi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> wooded vegetati<strong>on</strong> into <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>prairie</strong> ecosystems. Land cover<br />

management changes now could reduce future rabies epidemics ignited by <str<strong>on</strong>g>the</str<strong>on</strong>g> expanding<br />

forested habitat. In additi<strong>on</strong>, vaccinati<strong>on</strong> and culling efforts can be directed at forest and field<br />

habitat boundaries for more efficient c<strong>on</strong>trol <str<strong>on</strong>g>of</str<strong>on</strong>g> disease spread. Currently, oral rabies vaccinati<strong>on</strong><br />

(ORV) programs are used in North America through <str<strong>on</strong>g>the</str<strong>on</strong>g> use <str<strong>on</strong>g>of</str<strong>on</strong>g> bait, targeting specific host<br />

species (Slate et al. 2005). Striped <str<strong>on</strong>g>skunk</str<strong>on</strong>g> ORV is being improved for higher c<strong>on</strong>sumpti<strong>on</strong> by <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

animal and <str<strong>on</strong>g>the</str<strong>on</strong>g> trap-vaccinate-release method <str<strong>on</strong>g>of</str<strong>on</strong>g>fers ano<str<strong>on</strong>g>the</str<strong>on</strong>g>r, more direct effort for vaccinati<strong>on</strong><br />

(Rosatte et al. 1992). Whatever method is proven most effective for <str<strong>on</strong>g>striped</str<strong>on</strong>g> <str<strong>on</strong>g>skunk</str<strong>on</strong>g> rabies<br />

eradicati<strong>on</strong>, vaccinati<strong>on</strong> efforts should be c<strong>on</strong>centrated <strong>on</strong> hot spots <str<strong>on</strong>g>of</str<strong>on</strong>g> disease spread, such as <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

forest/field matrix.<br />

The syn<str<strong>on</strong>g>the</str<strong>on</strong>g>sis <str<strong>on</strong>g>of</str<strong>on</strong>g> a variety <str<strong>on</strong>g>of</str<strong>on</strong>g> research strategies to model patterns <str<strong>on</strong>g>of</str<strong>on</strong>g> an infectious disease<br />

is essential for disease spread predicti<strong>on</strong>s and <str<strong>on</strong>g>the</str<strong>on</strong>g> coordinati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> management efforts to prevent<br />

future epidemics and human casualties. Emerging infectious diseases are becoming increasingly<br />

widespread with increased human mobility and landscape alterati<strong>on</strong> (Field 2009) and are<br />

typically zo<strong>on</strong>otic and influenced by anthropogenic disturbance (Patz et al. 2004, Crowl et al.<br />

2008, Grimm et al. 2008). Therefore, accurate descripti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>se diseases must not <strong>on</strong>ly<br />

c<strong>on</strong>sider <str<strong>on</strong>g>the</str<strong>on</strong>g> pathogen, but also its animal host and <str<strong>on</strong>g>the</str<strong>on</strong>g> changing landscape <strong>on</strong> which it spreads.<br />

The increased emergence <str<strong>on</strong>g>of</str<strong>on</strong>g> zo<strong>on</strong>otic diseases have caused well-publicized scares in <str<strong>on</strong>g>the</str<strong>on</strong>g> United<br />

85


States and many European and Asian countries with outbreaks worldwide, including West Nile<br />

virus, severe acute respiratory syndrome (SARS), and most recently, H1N1 influenza virus. The<br />

development <str<strong>on</strong>g>of</str<strong>on</strong>g> a system to rapidly and accurately study, predict, and c<strong>on</strong>trol future outbreaks is<br />

critical to human health worldwide (Brug et al. 2009) and should involve <str<strong>on</strong>g>the</str<strong>on</strong>g> integrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> all<br />

comp<strong>on</strong>ents <str<strong>on</strong>g>of</str<strong>on</strong>g> disease epidemiology including disease pathogenesis, host ecology, and <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

underlying landscape. The methods and research strategies presented in <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>sis may be useful<br />

and applicable in future studies <str<strong>on</strong>g>of</str<strong>on</strong>g> rapidly emerging infectious disease.<br />

86


References<br />

Altizer, S., A. Dobs<strong>on</strong>, P. Hosseini, P. Huds<strong>on</strong>, M. Pascual, and P. Rohani. 2006. Seas<strong>on</strong>ality<br />

and <str<strong>on</strong>g>the</str<strong>on</strong>g> dynamics <str<strong>on</strong>g>of</str<strong>on</strong>g> infectious disease. <str<strong>on</strong>g>Ecology</str<strong>on</strong>g> Letters 9:467-484.<br />

Brug, J., A.R. Aro, and J.H. Richardus. 2009. Risk percepti<strong>on</strong>s and behavior: toward pandemic<br />

c<strong>on</strong>trol <str<strong>on</strong>g>of</str<strong>on</strong>g> emerging infectious diseases. Internati<strong>on</strong>al Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Behavioral Medicine<br />

16:3-6.<br />

Brunsell, N.A., A.R. J<strong>on</strong>es, T.L. Jacks<strong>on</strong> and J.J. Feddema. 2008. Seas<strong>on</strong>al trends in air<br />

temperature and precipitati<strong>on</strong> in IPCC AR4 GCM output for Kansas, USA: evaluati<strong>on</strong><br />

and implicati<strong>on</strong>s. Internati<strong>on</strong>al Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Climatology, in review.<br />

Crowl, T.A., T.O. Crist, R.R. Paramenter, G. Belovsky, and A.E. Lugo. 2008. The spread <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

invasive species and infectious disease as drivers <str<strong>on</strong>g>of</str<strong>on</strong>g> ecosystem change. Fr<strong>on</strong>tiers in<br />

<str<strong>on</strong>g>Ecology</str<strong>on</strong>g> and <str<strong>on</strong>g>the</str<strong>on</strong>g> Envir<strong>on</strong>ment 6:238-246.<br />

Field, H.E. 2009. Bats and emerging zo<strong>on</strong>oses: Henipaviruses and SARS. Zo<strong>on</strong>oses and Public<br />

Health 56:278-284.<br />

Grimm N.B., D. Foster, P. Gr<str<strong>on</strong>g>of</str<strong>on</strong>g>fman, J.M. Grove, C.S. Hopkins, K.J. Nadelh<str<strong>on</strong>g>of</str<strong>on</strong>g>fer, D.E. Pataki,<br />

and D.P.C. Peters. 2008. The changing landscape: ecosystem resp<strong>on</strong>ses to urbanizati<strong>on</strong><br />

and polluti<strong>on</strong> across climatic and societal gradients. Fr<strong>on</strong>tiers in <str<strong>on</strong>g>Ecology</str<strong>on</strong>g> and <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

Envir<strong>on</strong>ment 6:264-272.<br />

Patz J.A., P. Daszak, G.M. Tabor, A.A. Aguirre, M. Pearl, J. Epstein, N. D. Wolfe, A.M.<br />

Kilpatrick, J. Foufopoulos, D. Molyneux, D.J. Bradley, and Members <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> Working<br />

Group <strong>on</strong> Land Use Change and Disease Emergence. 2004. Unhealthy landscapes: policy<br />

recommendati<strong>on</strong>s <strong>on</strong> land use change and infectious disease emergence. Envir<strong>on</strong>mental<br />

Health Perspectives 112:1092-1098.<br />

Rosatte, R.C., M.J. Power, C.D. MacInnes, and J.B. Campbell. 1992. Trap-vaccinate-release and<br />

oral vaccinati<strong>on</strong> for rabies c<strong>on</strong>trol in urban <str<strong>on</strong>g>skunk</str<strong>on</strong>g>s, racco<strong>on</strong>s, and foxes. The Journal <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Wildlife Diseases 28:562-571.<br />

Slate, D., C.E. Rupprecht, J.A. Ro<strong>on</strong>ey, D. D<strong>on</strong>ovan, D.H. Lein, R.B. Chipman. 2005. Status <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

oral rabies vaccinati<strong>on</strong> in wild carnivores in <str<strong>on</strong>g>the</str<strong>on</strong>g> United States. Virus Research 111:68-76.<br />

87

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!