21.01.2014 Views

New method for feature extraction based on fractal behavior - IDRBT

New method for feature extraction based on fractal behavior - IDRBT

New method for feature extraction based on fractal behavior - IDRBT

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

1074 Y.Y. Tang et al. / Pattern Recogniti<strong>on</strong> 35 (2002) 1071–1081<br />

The image pixels (m; n) with distance less than<br />

<strong>on</strong>e from (i; j) are taken to be the four immediate<br />

neighbors of (i; j). Similar expressi<strong>on</strong>s exist<br />

when the eight-neighborhood is desired. A point<br />

f(x; y) will be included in the blanket <str<strong>on</strong>g>for</str<strong>on</strong>g> when<br />

b (x; y) ¡f(x; y) ¡u (x; y). The blanket deniti<strong>on</strong><br />

uses the fact that the blanket of the surface <str<strong>on</strong>g>for</str<strong>on</strong>g><br />

radius includes all the points of the blanket <str<strong>on</strong>g>for</str<strong>on</strong>g> radius<br />

−1, together with all the points within radius<br />

1 from the surfaces of that blanket. Eq. (7) ensures<br />

that the new upper surface u is higher by at least<br />

1 from u −1 , andalso at a distance at least 1 from<br />

u −1 in the horiz<strong>on</strong>tal andvertical directi<strong>on</strong>s.<br />

The volume Vol of the blanket is computedfrom<br />

u and b :<br />

Vol = ∑ (u (i; j) − b (i; j)): (9)<br />

i;j<br />

As the volume Vol of the blanket is measuredwith<br />

radius , the area of a <strong>fractal</strong> surface can be deduced<br />

as<br />

A = Vol <br />

2<br />

or<br />

A = Vol − Vol −1<br />

: (10)<br />

2<br />

• Let A() be the area of the surface of the blanket.<br />

Based<strong>on</strong> the Minkowski dimensi<strong>on</strong>, we have<br />

A() ≈ 2−D ; if is suciently small; (11)<br />

where denotes a c<strong>on</strong>stant and D stands <str<strong>on</strong>g>for</str<strong>on</strong>g> the <strong>fractal</strong><br />

dimensi<strong>on</strong> of the image.<br />

Since the dimensi<strong>on</strong> can be regarded as a slope <strong>on</strong><br />

a log–log scale, <strong>on</strong>ly two points are needed to get<br />

the dimensi<strong>on</strong>. We use two values of to compute<br />

the <strong>fractal</strong> dimensi<strong>on</strong>, namely, we take = 1 and 2 ,<br />

then A 1 ≈ 2−D<br />

1<br />

and A 2 ≈ 2−D<br />

2<br />

. Thus, we have<br />

A 1 =A 2 ≈ 2−D<br />

1<br />

= 2−D<br />

2<br />

.<br />

Taking the logarithm of both sides yields<br />

2 − D ≈ log 2 A 1<br />

− log 2 A 2<br />

log 2 1 − log 2 2<br />

;<br />

D ≈ 2 − log 2 A 1<br />

− log 2 A 2<br />

: (12)<br />

log 2 1 − log 2 2<br />

It is usedto approximate the <strong>fractal</strong> dimensi<strong>on</strong> of the<br />

signature images, i.e.,<br />

D ≈ 2 − log 2 A() if is suciently small: (13)<br />

log 2 <br />

We call D as modied <strong>fractal</strong> signature of set F. It<br />

will be used to distinguish the dierent handwritten<br />

signatures.<br />

Several points are worth noting:<br />

1. Why do the dierent document images have dierent<br />

<strong>fractal</strong> dimensi<strong>on</strong>s? The essential distincti<strong>on</strong> of<br />

handwritten signature images is their values of A().<br />

2. The value of A() depends <strong>on</strong> the volume Vol 3 (F )<br />

of thickenedblanket F <strong>on</strong>ly.<br />

3. In summary, they can be representedas<br />

D ⇔ A() ⇔ Vol 3 (F ):<br />

C<strong>on</strong>sequently, in this paper, the volume Vol 3 (F )ofthe<br />

thickenedblanket F is applied to identify dierent handwritten<br />

signature, insteadof using the <strong>fractal</strong> dimensi<strong>on</strong>.<br />

We call such technique of approximating the <strong>fractal</strong> dimensi<strong>on</strong><br />

“Modied Fractal Signature”.<br />

3. Applicati<strong>on</strong>s<br />

From the specic point of view of shape characterizati<strong>on</strong><br />

of patterns the main aim of the <strong>fractal</strong> approach is to<br />

nd a “measure” to distinguish between curves with different,<br />

often very complicated, c<strong>on</strong>tours. The main idea<br />

is to describe the complexity of the curve through a new<br />

parameter, the <strong>fractal</strong> dimensi<strong>on</strong>, so as to ll in the gap<br />

between <strong>on</strong>e- andtwo-dimensi<strong>on</strong>al objects (<str<strong>on</strong>g>for</str<strong>on</strong>g> objects<br />

<strong>on</strong> a plane). Two applicati<strong>on</strong>s of the <strong>fractal</strong> theory are<br />

presentedin this secti<strong>on</strong>, namely: (1) the <strong>fractal</strong> technique<br />

is usedto extract the <str<strong>on</strong>g>feature</str<strong>on</strong>g>s <str<strong>on</strong>g>for</str<strong>on</strong>g> two-dimensi<strong>on</strong>al<br />

objects; (2) the <strong>fractal</strong> signature is employedto identify<br />

dierent handwritten signatures.<br />

3.1. Applicati<strong>on</strong> of <strong>fractal</strong> technique <str<strong>on</strong>g>for</str<strong>on</strong>g> <str<strong>on</strong>g>feature</str<strong>on</strong>g><br />

<str<strong>on</strong>g>extracti<strong>on</strong></str<strong>on</strong>g><br />

Feature <str<strong>on</strong>g>extracti<strong>on</strong></str<strong>on</strong>g> is a crucial step in pattern recogniti<strong>on</strong>.<br />

It is resp<strong>on</strong>sible <str<strong>on</strong>g>for</str<strong>on</strong>g> measuring the <str<strong>on</strong>g>feature</str<strong>on</strong>g>s of the<br />

objects in an image. Pattern recogniti<strong>on</strong> requires the <str<strong>on</strong>g>extracti<strong>on</strong></str<strong>on</strong>g><br />

of <str<strong>on</strong>g>feature</str<strong>on</strong>g>s from the regi<strong>on</strong>s of an image, andthe<br />

processing of these <str<strong>on</strong>g>feature</str<strong>on</strong>g>s with a pattern classicati<strong>on</strong><br />

technique. We employeda central projecti<strong>on</strong> <str<strong>on</strong>g>method</str<strong>on</strong>g><br />

to reduce the problem of two-dimensi<strong>on</strong>al patterns into<br />

that of <strong>on</strong>e-dimensi<strong>on</strong>al <strong>on</strong>es, and thereafter, utilize<br />

the well-established<strong>on</strong>e-dimensi<strong>on</strong>al wavelet trans<str<strong>on</strong>g>for</str<strong>on</strong>g>m<br />

coupledwith <strong>fractal</strong> theory to extract the <strong>on</strong>e-dimensi<strong>on</strong>al<br />

pattern’s <str<strong>on</strong>g>feature</str<strong>on</strong>g> vectors <str<strong>on</strong>g>for</str<strong>on</strong>g> the purpose of pattern<br />

recogniti<strong>on</strong>. The key steps of the experimental procedure<br />

c<strong>on</strong>sist of the following:<br />

Step 1: Central projecti<strong>on</strong> of two-dimensi<strong>on</strong>al<br />

patterns: We denote each of the two-dimensi<strong>on</strong>al patterns<br />

in questi<strong>on</strong> by p(x; y). Thus, the central projecti<strong>on</strong><br />

of p(x; y) can be expressedas follows:<br />

f(x k )=<br />

M∑<br />

p(x k cos i ;x k sin i ): (14)<br />

i=0<br />

Step 2: Wavelet trans<str<strong>on</strong>g>for</str<strong>on</strong>g>mati<strong>on</strong> of the <strong>on</strong>e-dimensi<strong>on</strong>al<br />

patterns: Let f(x k )=c j;k , where k =0; 1;:::;2N −1 and<br />

V 0 = {c j;0 ;c j;1 ;:::;c j;2N−1 }:

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!