21.01.2014 Views

The roles of electricity and hydrogen storage in a low ... - iea-etsap

The roles of electricity and hydrogen storage in a low ... - iea-etsap

The roles of electricity and hydrogen storage in a low ... - iea-etsap

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Role <strong>of</strong> <strong>electricity</strong> <strong>and</strong> <strong>hydrogen</strong> <strong>storage</strong> <strong>in</strong> <strong>low</strong> carbon<br />

energy system – Modell<strong>in</strong>g <strong>in</strong> Temporal MARKAL model<br />

Ramach<strong>and</strong>ran Kannan<br />

K<strong>in</strong>g’s College London<br />

International Energy Workshop<br />

3 July 2008<br />

Outl<strong>in</strong>e<br />

• UK MARKAL models<br />

• DfT Hydrogen <strong>in</strong>frastructure project<br />

• Flexible time slice <strong>in</strong> MARKAL<br />

• Strengths <strong>and</strong> challenges<br />

• Insights from temporal model<br />

• Conclud<strong>in</strong>g remarks<br />

2


<strong>The</strong> UK MARKAL model<br />

• <strong>The</strong> first UK MARKAL model was developed for the 2003 Energy<br />

White Paper<br />

• Extensively updated dur<strong>in</strong>g 2006-08 through the UK Energy<br />

Research Centre (UKERC)<br />

• Development <strong>and</strong> application <strong>of</strong> the model is ma<strong>in</strong>ta<strong>in</strong>ed by a<br />

consortium <strong>of</strong> UK research organizations<br />

• K<strong>in</strong>g's College London<br />

• AEA Energy <strong>and</strong> Environment<br />

• Policy Studies Institute<br />

• Imperial College<br />

• University <strong>of</strong> Oxford<br />

• Objectives <strong>of</strong> the consortium<br />

• To ma<strong>in</strong>ta<strong>in</strong> the model's transparency, peer review <strong>and</strong> open access<br />

• To ensure that <strong>in</strong> iterative updates there is only one core model<br />

structure <strong>and</strong> data-base <strong>of</strong> the UK MARKAL model family, thus<br />

avoid<strong>in</strong>g compet<strong>in</strong>g models<br />

Application <strong>of</strong> the UK MARKAL model<br />

• DTI: Energy White Paper 2007<br />

• DfT: State-<strong>of</strong>-art modell<strong>in</strong>g <strong>of</strong> <strong>hydrogen</strong> <strong>in</strong>frastructure<br />

(with flexible time slice <strong>and</strong> GIS l<strong>in</strong>k)<br />

• SuperGen: UKSHEC1 Hydrogen visions<br />

• WWF 2050 Vision (80% CO2 reduction <strong>in</strong>clud<strong>in</strong>g <strong>in</strong>ternational aviation)<br />

• UK-Japan Low Carbon Scenarios<br />

• UKERC Energy 2050 scenarios<br />

• OFGEM: Electricity networks scearnio<br />

• SuperGen: UKSHEC2 Plus<br />

• SuperGen: Bioenergy<br />

• TSEC (Towards susta<strong>in</strong>able energy economy) - Biosys<br />

• EON


DfT Horizon project<br />

• Five projects explored different aspects <strong>of</strong> the practicality &<br />

tim<strong>in</strong>g <strong>of</strong> the <strong>in</strong>troduction <strong>of</strong> the <strong>in</strong>frastructure required to<br />

support <strong>hydrogen</strong>-fuelled vehicles funded by the<br />

Department for Transport<br />

• A state-<strong>of</strong>-the-art modell<strong>in</strong>g <strong>of</strong> <strong>hydrogen</strong> <strong>in</strong>frastructure<br />

development for the UK: Geographical, temporal <strong>and</strong><br />

technological optimisation modell<strong>in</strong>g<br />

• Methodology/tool: MARKAL energy system model<br />

• A s<strong>of</strong>t l<strong>in</strong>k to GIS database<br />

• An improved temporal representation<br />

• Full reports are available from<br />

http://www.dft.gov.uk/pgr/scienceresearch/futures/horizons/june08<br />

Temporal-MARKAL: Flexible time slice<br />

• Electricity & heat are tracked seasonally <strong>and</strong> diurnally.<br />

• By default six time slices <strong>in</strong> the st<strong>and</strong>ard MARKAL<br />

• Electricity load by six day/night <strong>and</strong> seasonal splits<br />

• Heat by three seasonal splits<br />

• In flexible time-slice, user specify the number <strong>of</strong> time-slices<br />

6


How many time slice can to be chosen?<br />

• Depends on variations <strong>in</strong> <strong>electricity</strong>-driven energy service dem<strong>and</strong>s & energy resources<br />

• UK experience:<br />

GW<br />

60<br />

55<br />

50<br />

45<br />

40<br />

Actual electrical load dem<strong>and</strong> <strong>in</strong> 2006<br />

Domestic hot-water dem<strong>and</strong><br />

35<br />

30<br />

25<br />

W<strong>in</strong>ter<br />

Spr<strong>in</strong>g<br />

Summer<br />

Autumn<br />

• Number <strong>of</strong> time slices - 20 Annual time periods from the orig<strong>in</strong>al six<br />

Diurnal<br />

Seasonal<br />

1. Morn<strong>in</strong>g: 6:00 – 9:00 (D1)<br />

1. W<strong>in</strong>ter: December – February (S1)<br />

2. Daytime: 9:00 – 16:00 (D2)<br />

2. Spr<strong>in</strong>g: March – May (S2)<br />

3. Even<strong>in</strong>g peak: 16:00 – 20:00 (D3)<br />

3. Summer: June – August (S3)<br />

4. Late even<strong>in</strong>g: 20:00 – 23:00 (D4)<br />

4. Autumn: September – November (S4)<br />

5. Night <strong>storage</strong>: 23:00 – 6:00 (D5)<br />

7<br />

20<br />

00:00 03:00 06:00 09:00 12:00 15:00 18:00 21:00<br />

Strengths – Power sector<br />

• Flexibility to model <strong>electricity</strong> dem<strong>and</strong> pr<strong>of</strong>ile thereby get a<br />

better fit on <strong>electricity</strong> dem<strong>and</strong><br />

60<br />

W<strong>in</strong>ter Electric Dem<strong>and</strong> (2006)<br />

60<br />

W<strong>in</strong>ter Electric Dem<strong>and</strong> (2006)<br />

50<br />

50<br />

GW<br />

40<br />

GW<br />

40<br />

30<br />

Night time<br />

dem<strong>and</strong><br />

(22:30 - 6:30)<br />

Day time dem<strong>and</strong><br />

(6:30 – 22:30)<br />

30<br />

D5<br />

Night Storage<br />

(23 - 7)<br />

D1<br />

Morn<strong>in</strong><br />

g<br />

(6 - 9)<br />

D2<br />

Day<br />

(9 -16)<br />

D3<br />

Peak<br />

(16 - 20)<br />

D4<br />

Even<strong>in</strong>g<br />

(20 - 23)<br />

20<br />

00:00 04:00 08:00 12:00 16:00 20:00<br />

20<br />

00:00 04:00 08:00 12:00 16:00 20:00<br />

Actual<br />

MARKAL<br />

Actual<br />

Temporal MARKAL<br />

8


Strengths – Power sector<br />

• Better convergence <strong>of</strong> actual versus MARKAL electric dem<strong>and</strong><br />

marg<strong>in</strong>s, i.e. levelised electric peak <strong>and</strong> actual peak dem<strong>and</strong>.<br />

• More justifiable electric reserve marg<strong>in</strong><br />

70<br />

W<strong>in</strong>ter Electric Dem<strong>and</strong><br />

70<br />

W<strong>in</strong>ter Electric Dem<strong>and</strong> (2006)<br />

GW<br />

Actual<br />

MARKAL<br />

60<br />

reserve<br />

reserve<br />

Total capacity<br />

capacity<br />

<strong>in</strong>stalled<br />

capacity<br />

50<br />

Night dem<strong>and</strong><br />

Actual peak<br />

(22:30 - 6:30)<br />

dem<strong>and</strong><br />

40<br />

Levelised<br />

Day dem<strong>and</strong><br />

day dem<strong>and</strong><br />

(6:30 – 22:30)<br />

30<br />

07:00 10:00 13:00 16:00 19:00 22:00 01:00 04:00<br />

GW<br />

60<br />

50<br />

40<br />

30<br />

Total<br />

<strong>in</strong>stalled<br />

capacity<br />

Actual reserve<br />

capacity<br />

Actual peak<br />

dem<strong>and</strong> Levelised<br />

peak dem<strong>and</strong><br />

00:00 04:00 08:00 12:00 16:00 20:00<br />

MARKAL<br />

reserve<br />

capacity<br />

Actual W<strong>in</strong>ter<br />

MARKAL W<strong>in</strong>ter<br />

Actual<br />

Temporal MARKAL<br />

9<br />

Strengths – Dem<strong>and</strong> & Resources<br />

• Detailed modell<strong>in</strong>g <strong>of</strong> fluctuat<strong>in</strong>g energy service dem<strong>and</strong>s<br />

• Seasonal representation <strong>of</strong> <strong>in</strong>termittence renewable energy<br />

sources<br />

W<strong>in</strong>d resources<br />

Residential lights<br />

10


Challenges<br />

• Storage is still limited to ONE period (YNITE).<br />

<strong>The</strong>refore a period to period <strong>storage</strong> is not<br />

possible to deal with <strong>in</strong>termittence renewable<br />

energy sources<br />

• Data Issues<br />

• Diurnal/seasonal break-up <strong>of</strong> energy service<br />

dem<strong>and</strong>s is not commonly available though their<br />

<strong>electricity</strong> dem<strong>and</strong> pr<strong>of</strong>ile can be found<br />

• Similar issues on availability <strong>of</strong> data for energy<br />

resources<br />

11<br />

Electricity <strong>storage</strong><br />

Electricity <strong>storage</strong>: Base<br />

160<br />

140<br />

120<br />

PJ<br />

100<br />

80<br />

60<br />

40<br />

20<br />

0<br />

2000 2010 2020 2030 2040 2050<br />

Storage heaters Plug-<strong>in</strong> hybrid<br />

Hydrogen <strong>storage</strong> Pumped hydro<br />

PJ<br />

Electricity <strong>storage</strong>: CO2<br />

160<br />

140<br />

120<br />

100<br />

80<br />

60<br />

40<br />

20<br />

0<br />

2000 2010 2020 2030 2040 2050<br />

Storage heaters Plug-<strong>in</strong> hybrid<br />

Hydrogen <strong>storage</strong> Pumped hydro<br />

• On average, the system chooses about 7 - 10% <strong>of</strong><br />

<strong>electricity</strong> dem<strong>and</strong> as <strong>storage</strong><br />

• Dem<strong>and</strong> side <strong>storage</strong> is preferred, partly due to their<br />

<strong>low</strong>er costs<br />

12


Electricity <strong>storage</strong> <strong>in</strong> 2050<br />

200<br />

Electricity <strong>storage</strong><br />

150<br />

100<br />

50<br />

0<br />

Base<br />

Base-1<br />

Base-1-D<br />

Base-1-N<br />

Base1-H<br />

Base-2<br />

Base-3<br />

Base-3-H<br />

Base-3-W<br />

Base-4<br />

Base-4-H<br />

CO2<br />

CO2-SLT<br />

CO2-1<br />

CO2-1-D<br />

CO2-1-N<br />

CO2-1-H<br />

CO2-2<br />

CO2-3<br />

CO2-3-H<br />

PJ<br />

CO2-4<br />

CO2-4-H<br />

Storage heaters Plug-<strong>in</strong> hybrid Hydrogen <strong>storage</strong> Pumped hydro<br />

Base<br />

A bus<strong>in</strong>ess as usual case<br />

13<br />

CO 2<br />

60% CO 2<br />

reduction from 2000 level by 2050<br />

Base-** / CO 2<br />

-**<br />

1: No plug-<strong>in</strong> hybrid vehicles<br />

2: No night <strong>storage</strong> heaters<br />

3: No plug-<strong>in</strong> or night <strong>storage</strong> heaters<br />

4: No <strong>storage</strong><br />

H: night <strong>storage</strong> <strong>hydrogen</strong> production enabled<br />

W: alternate w<strong>in</strong>d pr<strong>of</strong>ile enabled<br />

Generation by plant type<br />

• Better utilization <strong>of</strong> base load plants<br />

2000<br />

Genertion mix by plant type: Base<br />

2000<br />

Genertion mix by plant type: CO2<br />

1500<br />

1500<br />

PJ<br />

1000<br />

PJ<br />

1000<br />

500<br />

500<br />

0<br />

2000 2010 2020 2030 2040 2050<br />

0<br />

2000 2010 2020 2030 2040 2050<br />

Base non-base CHP Storage Dem<strong>and</strong><br />

Base non-base CHP Storage Dem<strong>and</strong><br />

14


Power system balanc<strong>in</strong>g<br />

• Electricity <strong>storage</strong> is important as a power<br />

system balanc<strong>in</strong>g mechanism (even though a 20<br />

time period model still represent aggregation).<br />

68<br />

Seasonal <strong>electricity</strong> supply <strong>in</strong> 2050 - CO2 scenario<br />

68.0<br />

Seasonal <strong>electricity</strong> supply <strong>in</strong> 2050 - CO2-4<br />

GW<br />

64<br />

60<br />

56<br />

52<br />

.<br />

48<br />

44<br />

40<br />

6.00 9.00 12.00 15.00 18.00 21.00 24.00 3.00<br />

W<strong>in</strong>ter Autumn Spr<strong>in</strong>g summer<br />

With <strong>electricity</strong> <strong>storage</strong><br />

GW<br />

64.0<br />

60.0<br />

56.0<br />

52.0<br />

.<br />

48.0<br />

44.0<br />

40.0<br />

6.00 9.00 12.00 15.00 18.00 21.00 24.00 3.00<br />

W<strong>in</strong>ter Autumn Spr<strong>in</strong>g summer<br />

Without <strong>electricity</strong> <strong>storage</strong><br />

15<br />

Power generation mix <strong>in</strong> 2050<br />

2000<br />

Electricity generation mix by fuel <strong>and</strong> plant type<br />

1500<br />

PJ<br />

1000<br />

500<br />

0<br />

Base<br />

Base-1<br />

Base-1-D<br />

Base-1-N<br />

Base1-H<br />

Base-2<br />

Base-3<br />

Base-3-H<br />

Base-3-W<br />

Base-4<br />

Base-4-H<br />

CO2<br />

CO2-SLT<br />

CO2-1<br />

CO2-1-D<br />

CO2-1-N<br />

CO2-1-H<br />

CO2-2<br />

CO2-3<br />

CO2-3-H<br />

CO2-4<br />

CO2-4-H<br />

Coal Coal CCS Nuclear Gas Hydro W<strong>in</strong>d Bio & waste<br />

Imports Mar<strong>in</strong>e Gas (CHP) Other (CHP) Storage<br />

16


Conclud<strong>in</strong>g remarks<br />

• Flexible time slice is successfully implemented <strong>in</strong> the<br />

UK MARKAL model<br />

• Temporal MARKAL enhances the depiction <strong>of</strong><br />

<strong>electricity</strong> dem<strong>and</strong> pr<strong>of</strong>ile <strong>and</strong> representation <strong>of</strong><br />

renewable energy resources<br />

• Electricity <strong>storage</strong> is <strong>in</strong>evitable for system balanc<strong>in</strong>g.<br />

However, with ONE time period <strong>storage</strong> option <strong>in</strong><br />

MARKAL, a detailed modell<strong>in</strong>g <strong>of</strong> <strong>in</strong>termittence<br />

renewable is <strong>in</strong>adequate<br />

• Other models (e.g. <strong>electricity</strong> dispatch model) could be<br />

used for <strong>in</strong>termittency analysis<br />

17<br />

Thanks!<br />

For further <strong>in</strong>formation<br />

• Contact:<br />

• Ramach<strong>and</strong>ran Kannan - r.kannan@kcl.ac.uk<br />

• Neil Strachan - neil.strachan@kcl.ac.uk<br />

• UK MARKAL documentation<br />

http://ukerc.ac.uk/ResearchProgrammes/EnergySystems<strong>and</strong>Modell<strong>in</strong>g/ESMMARKALDocs08.<br />

aspx<br />

• DfT <strong>hydrogen</strong> <strong>in</strong>frastructure reports<br />

http://www.dft.gov.uk/pgr/scienceresearch/futures/horizons/june08<br />

18

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!