22.01.2014 Views

Memristor-The Missing Circuit Element - IEEE Global History Network

Memristor-The Missing Circuit Element - IEEE Global History Network

Memristor-The Missing Circuit Element - IEEE Global History Network

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>IEEE</strong> ,EEE TRANSAcrlONS TRANSACTIONS ON CIRCUIT THEORY, VOL. cr-18, CT-18, No.5, NO. SEPTEMBER 1971 507<br />

<strong>Memristor</strong>-<strong>The</strong> <strong>Missing</strong> <strong>Circuit</strong> <strong>Element</strong><br />

LEON O. 0. CHUA, SENIOR MEMBER, <strong>IEEE</strong><br />

Abstract-A new two-terminal circuit element-called the memrirtor- memrislorcharacterized<br />

by a<br />

relationship between the charge q(I} q(t) == s f'-'" St% i(r} i(7J dr d7<br />

and the flux-linkage I~------:"<br />

i<br />

+<br />

i<br />

+<br />

(a)<br />

(b)<br />

(c) (cl<br />

(d) Cd)<br />

Fig. 1.<br />

Proposed symbol for memristor and its three basic realizations.<br />

(a) <strong>Memristor</strong> and its qrq q-q curve. (b) <strong>Memristor</strong> basic realization I: 1:<br />

M-R mutator terminated by nonlinear resistor CR. &t. (c) <strong>Memristor</strong><br />

basic realization 2: M-L mutator terminated by nonlinear inductor<br />

.c. C. (d) <strong>Memristor</strong> basic realization 3: M-C mutator terminated by<br />

nonlinear capacitor e.<br />

and theflux-linkage<br />

'P. cp. Out of the six possible combinations<br />

of these four variables, five have led to well-known relationships<br />

[I]. [l]. Two of these relationships are already given<br />

by q(t)=J~ q(t)=JL .. w i(T) dTd 7 and «J(t)= cp(t)=sf. J~ .. m v(T) D(T) dT. d7. Three other rela­<br />

rela-<br />

relationships<br />

are given, respectively,. by the axiomatic definition<br />

of the three classical circuit elements, namely, the resistor<br />

(defined by a relationship between v and i), the inductor<br />

(defined by a relationship between 'P cp and i), and the capacitor<br />

(defined by a relationship between q and v). Only one relationship<br />

remains undefined, the relationship between 'P 9<br />

relaand<br />

q. From the logical as well as axiomatic points of view,<br />

it is necessary for the sake of completeness to postulate the<br />

existence ofa a fourth basic two-terminal circuit element which<br />

R<br />

I.<br />

(<br />

Authorized licensed use limited to: <strong>IEEE</strong> Publications Staff. Downloaded on December 4, 2008 at 14:12 from <strong>IEEE</strong> Xplore. Restrictions apply.


508 <strong>IEEE</strong> TRANSACTIONS ON CIRCUIT THEORY, SEPTEMBER 1971<br />

508<br />

<strong>IEEE</strong> TRANSACTIONS ON CIRCUIT THEORY, SEPTEMBER 1971<br />

=<br />

TABLEI<br />

I<br />

CHARACTERIZATION CHARACTERIZATIONAND ANDREALIZATION REALIZATIONOF OFM-R, M-L, M-L, AND ANDM-C M-CMUTATORS<br />

MUTATORS<br />

[~:] [ T(P)] ~::]<br />

TRANSMISSION<br />

MATRIX MATRIX<br />

SYMBOL<br />

BASH: BASIC<br />

REALIZATIONS<br />

TYPE<br />

‘PE<br />

AND<br />

"<br />

::I = [T(P’][J<br />

USING CONTROLLED CHARACTERIZATION<br />

CHARACTERIZATION<br />

SOURCES<br />

I<br />

d£te<br />

REALIZATION I I REALIZATION 22<br />

w+gf<br />

D---a<br />

‘2<br />

F--ail<br />

il<br />

+<br />

[ 1<br />

(2) + i2+<br />

R<br />

+(!%) -i2+<br />

~ ~; “2<br />

P 0<br />

+<br />

+<br />

I<br />

I ~R,b) = “2 I c<br />

“2<br />

0 P<br />

Uqdt) -<br />

(li,dt)<br />

dVp<br />

“I= dt<br />

'..",{.:] I;i-[J'~') ,f~ ;i-@,:,') .f~<br />

- 1·-<br />

~ t ! ~ VI : t v 2<br />

I 0<br />

dV2<br />

I~ (/vldt) ~ ~ (/ildtl 1----4<br />

VI' dT<br />

dip di 2<br />

iI i = -7<br />

Y-R M·R<br />

l " -dT<br />

-<br />

MUTATOR MUTATOR (q.Vl -RvR,iR)<br />

REALIZATION I I REALIZATION 2<br />

~ 2 -<br />

~;<br />

2 -<br />

v, :;: ! v<br />

'.. ",{ 0<br />

2 VI ~ t v2<br />

2 P<br />

di2<br />

1';.- (/ildtl ~ ~ (/vldt) f.--4<br />

VI’ v I=--<br />

-7 dt<br />

:] l;i-~~).t \ ;i-[J~~;),{~<br />

I<br />

i I • ~ dt REALIZATION I REALIZATION 2<br />

M-L<br />

MUTATOR<br />

M-C<br />

MUTATOR<br />

II i i 2 l 1 2<br />

+ + +<br />

+<br />

(q,9?)"""'" (IL,cPLl<br />

~1'/lldt)<br />

VI<br />

gq-:<br />

~~ di 2 v<br />

LW<br />

2 v, v2<br />

)<br />

'.C ",{ ,<br />

:] - 12 -"'jjf<br />

- - .-<br />

~ ~ V; I 0<br />

I - I -<br />

REALIZATION 3 REALIZATtON REALIZATION 4<br />

VI" V<br />

(Identical to TcR,(p) TCR,( p)<br />

“I = “2 2 i l<br />

1 2<br />

i<br />

off ac Type , I CoR C-R MUTATOR)<br />

1<br />

2<br />

. di2 2 +<br />

II'-dl<br />

iI=-<br />

-<br />

2<br />

I<br />

2<br />

2 - 2 -<br />

-<br />

’ :<br />

v<br />

,"--<br />

i<br />

(/lldtl ~ .0-- (vI) -<br />

(q,~)-(jPL.iL) (q,# -WL, iL)<br />

REALIZATION I REALIZATION 2<br />

i, i 2<br />

[ 1<br />

i<br />

0 P<br />

m<br />

:<br />

TML2fP” )<br />

:]<br />

2 i, i 2<br />

.~ '.C ",{ 0 o<br />

Y<br />

di,<br />

v, = dt<br />

TLR2(p)<br />

'~R>' (v2' +<br />

- 2 - 2 I<br />

v, ~ ,~ t v2 ~~~)§""<br />

~ + ! ~<br />

_ lI 2<br />

vl dt) - (il)_<br />

VI' - dT<br />

(Identical to (p)<br />

ofmf ac Type 2 L-R MUTATOR)<br />

MUTATOA !I<br />

ii, l<br />

• =v2 v2<br />

.I<br />

REALIZATION REALIZATlON I REALIZATION 2<br />

I,<br />

~ i 2 i,<br />

~ 1 2<br />

+ + + +<br />

(q,tp) - (qc'v c )<br />

,<br />

:f-pq*<br />

[ 1<br />

v, (~- ) v 2 VI lIvldt-v, ) v2<br />

dt "2<br />

P 0<br />

- - -l<br />

I ;-<br />

'Me k,(P) ",{ , o (<br />

~ ~ v~ I 0<br />

I - I -<br />

I<br />

REALIZATION REALlZATlON 3 REALIZATION REALIZATlON 4<br />

• dV2 (Identical (I&tical to 10 TLRltp) ( p)<br />

VI<br />

I<br />

dt<br />

ofd a Type II L-R MUTATOR)<br />

'1<br />

~ ~<br />

i, = - i2<br />

~ :]<br />

v, =-i<br />

2<br />

(Idtmticdl t0 TCR2 ( p)<br />

. dV2 d”2<br />

of,f a Type 2 CoR C-R MUTATOR)<br />

WTATOF f)<br />

II il : =r(t Cit<br />

~[l',{~<br />

I +(!!k) i2+<br />

!TDq-y +<br />

(VI)-“!<br />

;i-@*),,~<br />

v, : t v2 VI t : v2<br />

~@~).,lE i 2<br />

L 1<br />

~@", ..f<br />

i2<br />

i," - 1 2<br />

v, : t v 2<br />

v t + v 2<br />

(q .'!') -(vc,qc)<br />

~ (i,) ~ (/Vldt)-<br />

~<br />

i l<br />

i2<br />

r. ,- il i2<br />

blcp=<br />

~ '.c,"'{: p o 3pq<br />

“2<br />

1 ~]<br />

v, • - i<br />

- (VI)<br />

2 (Identical to TCR2 (p) r---4 ~<br />

REALIZATION II<br />

REALIZATION 2<br />

-D---a<br />

'I '2 II<br />

[Jr.)"t<br />

12<br />

+<br />

(ipI<br />

+<br />

v, “I ;<br />

vx<br />

2 VI v2<br />

+: (/ll<br />

t/ildt)-<br />

):<br />

I<br />

I----i<br />

r+-<br />

~" ,,;t r-"+ ~ ~<br />

+<br />

Authorized licensed use limited to: <strong>IEEE</strong> Publications Staff. Downloaded on December 4, 2008 at 14:12 from <strong>IEEE</strong> Xplore. Restrictions apply.


CHUA: MEMRISTOR-MISSING CIRCUIT ELEMENT 509<br />

r-------------,....----~--~---o+Ecc<br />

l?&l50)<br />

RJ9lO)<br />

Q014<br />

I 4<br />

R4( IOOK)<br />

(2N4236)<br />

(2~4236) L<br />

+Ecc<br />

+<br />

~j=<br />

I f I 1 1 h-b--&<br />

Port I Port 2<br />

1 AR, 1 SO-IOA JRLq-<br />

4-<br />

iZ +<br />

- k +<br />

1<br />

“2<br />

-<br />

l~Z-<br />

I I I<br />

'------------------........---.4---Ecc<br />

’ *-kc<br />

Fig. 2. Practical active circuit realization of type-! type-l M-R mutator based on realization! 1 of Table I.<br />

is characterized by a


510 <strong>IEEE</strong> TRANSACfIONS TRANSACTIONS ON CIRCUIT THEORY, SEPTEMBER 1971<br />

r-----I+<br />

to-E<br />

'- ~M202 >-.......--,<br />

+E<br />

~<br />

E -E<br />

'--<br />

LM202 ~--~-- ­<br />

~+<br />

R I2<br />

(IK Pot)<br />

+E<br />

R I7<br />

(IOK.I~)<br />

I8<br />

R<br />

__.......-i{,ijR<br />

I4<br />

+E<br />

(IOK.I~)<br />

L<br />

..---- 10 + horizontal hwlZOontol<br />

to l<br />

lerminal twmiml of Of<br />

alcilloscope<br />

ouilloscop*<br />

t<br />

NEXUS<br />

IO-A '>--+~-~P----R-ll---"""'-'----lf---+--+ I<br />

+ t<br />

22+E v.(II=k.!v(TldT<br />

v,( I= k, jvbldr<br />

R 5<br />

_ -CD<br />

l?r+<br />

--(D<br />

'<br />

...---''--1- 1<br />

R~ -E NEXUS<br />

OOK.I~) SOIO-A -=<br />

-==- ...<br />

(IOK.I~)<br />

-E<br />

-E<br />

R 24<br />

(20KPat) +E<br />

R23 (22 Meg.l<br />

L...--. I ta to ground<br />

lerminal terminal at d<br />

olei1I0icope<br />

oscilbscom<br />

R2/(IOOKl<br />

R201300Kl<br />

R 4<br />

Seriel<br />

Resillance<br />

Cli ±C3<br />

R<br />

T I R2 I (Sla;;cor A-3801l<br />

,>OOO!<br />

WindillQ<br />

Cenler<br />

500Sl<br />

R I R 2<br />

Tap Winding'<br />

R 3<br />

3.300n<br />

WindillQ<br />

-.<br />

+<br />

v,(t) vI(I)<br />

10 to<br />

‘sine lin.<br />

*IO”8 wave<br />

VoltogI voltoge<br />

gonratot ge_alar<br />

~<br />

c4tl C2<br />

PARAMETER IAMETER SPECIFICAT0NS<br />

SPECIFICATIONS<br />

R, .R2(l/Oltage-divider resillorl.<br />

see le.11.<br />

(current (currenl sensing .....ing ruustor. resislor. i;p~cal iyPical<br />

value: volue' I, 1.10. I), loo, 100, or ooon 1OO0n ). ),<br />

( series resiSlor. ta be chosen<br />

by user as il depends on the<br />

IIOllage amplitude of Ihe<br />

sine-wave Qenerator),<br />

~. qgbca* Rglscale factor foelar for mtegmtof, inlegralor,<br />

should Ihould be ot at b+t least 5K). 5K),<br />

~, R12 R I2 .• R,s R I3<br />

(I (I K wtenttomelsr polentiomeler for<br />

offset offseladjustment adjuslment for<br />

LM202 lM 202 OP AMPI.<br />

I.<br />

R7' R~s RIB ,R22 •R 22<br />

(trmwnmg (trimmingieststor relislorfor<br />

NEXUS SO-IOA SO-lOA OP AMP,<br />

typtool Iypical voluo: value, 20K). 20Kl.<br />

C I ,C2 cp .c3.cg ,C (nsutrollzotlon<br />

3<br />

,C 4 (neulrallzallon<br />

capocltors. capacitors, sea ,.. te*t text) 1<br />

C , CT C ( factor Integrator,<br />

5 7<br />

(scale foclor for inlegralor,<br />

seetmt1.<br />

1..1),<br />

R S<br />

OK Pol,)<br />

+E<br />

-E<br />

R e (100K)<br />

NEXUS<br />

SQIO-A<br />

+<br />

-E<br />

All<br />

(20K Pot) +E<br />

R IO<br />

(22Meg.)<br />

R g (300K)<br />

1<br />

I =<br />

L<br />

r<br />

I<br />

to ta + vwtlcd verlical<br />

terminal<br />

of<br />

oscillo*copr oaci1I0icope<br />

t<br />

vi{ t )*k, ]ilr)dr<br />

--o<br />

k ze!?-s<br />

X<br />

%C5<br />

to ground<br />

'-- 10 grOOM<br />

twmiml lerminalof<br />

oscilloscope oscillalcope<br />

%E (( power supply voltag.e. vollage, *% I5 15<br />

Yolts volllrtth wilhrespect reopec! to 10qound).<br />

ground),<br />

Fig. 3.<br />

Complete schematic diagramof of memristor tracerfor for tracing thepq CP-q curveof of a memristor.<br />

Authorized licensed use limited to: <strong>IEEE</strong> Publications Staff. Downloaded on December 4, 2008 at 14:12 from <strong>IEEE</strong> Xplore. Restrictions apply.


.<br />

CHUA: MEMRISTOR-MISSING CIRCUIT ELEMENT 511<br />

I<br />

q ( I) • J i( T) dT<br />

-CI)<br />

I<br />

0 p(t)?:.O and the memristor is obviously passive. To prove the<br />

converse, suppose that there exists a point qo q. such that<br />

M(qo)O e> 0 such that M(qo+.6.q)


512 <strong>IEEE</strong> TRANSACTIONS ON CIRCUIT THEORY, SEPTEMBER 1971<br />

512 <strong>IEEE</strong> TRANSACTIONS ON CIRCUIT THEORY, SEPTEMBER 1971<br />

t<br />

q(tl q.(t) -ji(TldT<br />

=ii(r)dr<br />

-CD -m<br />

t<br />

9I(tl -jv(TldT<br />

-CD<br />

(0). (a ). Simple <strong>Memristor</strong> Voltage-Divider <strong>Circuit</strong><br />

v( t I, volts<br />

i(t), mo<br />

t, 1, msec.<br />

rp, Q, milliweber<br />

milli-<br />

t,msec. t , ( b 1 Horuontal Scole:2.66 milli-weber per division,<br />

Vertical Stole: 5 p coul per division.<br />

(c( c I.Horizontol hlorizontol Scale' Scale: 2 msec. per division.<br />

Vertical Scale' Scale:5 5 mo per division (upper trocel. trace).<br />

101lOits lOvolts per division (lower trocel. trace).<br />

v( t I. volts<br />

i(t), mo<br />

'''~'~l!,,''''''':'''':'''':'-<br />

i -t -+-J - 1<br />

_+.~ ~ -+- I J-<br />

'P, p. milJiweber<br />

milli-<br />

(d ).Horizontol Mlorizontol Scale' Scala: 2.66 milli-weber per division.<br />

Vertical Scale: 5 ,. p coul per division.<br />

t, t , msec.<br />

t, msec.<br />

(e I.Horizontol LHorizontol Scale' Scale: 5 msec. per division. divisioo.<br />

Vertical Scale:2 2 mo a per division (upper tracel. tmce).<br />

5 volts volte per division (lower tracel. trace).<br />

V( t I, volts<br />

i(t I,mo<br />

. . . . ,:) . .<br />

J=~A·.····.····.·<br />

(jJ, p, milliweber<br />

milli-<br />

( f I.Horizontal Mlorizontol Scale' Scale: 2.66 milli-weber per division. division,<br />

Vertical Scale' Scale: 5,. 5 p coul per division.<br />

(g g I.Horizontal ).Horizontol Scale, Scale:5 5 msec. per division.<br />

Vertical Scole'5 Scale:5 mo per division (upper trocel. trace).<br />

5 volts wits .per division (lower trocel. trace).<br />

Fig. 5.<br />

Voltage and current waveforms associated with simple memristor circuit corresponding to a sinusoidal input<br />

signal [(c) and (e)] and a triangular input signal [(g)], r(g)], respectively.<br />

t,msec.<br />

t,msec.<br />

<strong>The</strong>orem 2: Closure <strong>The</strong>orem<br />

(Kirchhoff voltage law) equations:<br />

A one-port containing only memristors is equivalent to a<br />

memristor.<br />

Proof: If we let ij, ii, Vj, vj, qj, and 'Pj vj denote the current, voltage,<br />

charge, and flux-linkage of the jth memristor, where j= I, 1,<br />

2, 2;.., ... , b, and if we let i and v denote the port current and<br />

port voltage of the one-port, then we can write (n-I) 1) independent<br />

KCL (Kirchhoff current law) equations (assuming<br />

the network is connected); namely,<br />

inde-<br />

b<br />

cxjoi CvjOi + 2 L cxjkik ajkik = 0,<br />

j=l,2,.*.,n-1 j = 1, ... , n - 1 (6)<br />

k=l k~l<br />

@j&J + 5 PjkVk = 0, j=l,2,..., j = 1, 2, ... , b - n + 2 (7)<br />

k=l k~l<br />

where (3jk @jk is either I, 1, -I,- 1, or 0. If we integrate each equation<br />

in (6) and (7) with respect to time and then substitute<br />

'Pk ‘pk = 'Pk(qk) (pk(qk) for 'Pk pk in the resulting expressions,? expressions,7 we obtain<br />

b<br />

& L CXjkqk ffjk@ = Qj -<br />

CXjoq, ffjoPt j=l,2,***,n-1 j = 1, ... , n - 1 (8)<br />

k=l<br />

PjOCp + f: pjk(pk(qk) = *j, j = 1, 27 ’ ’ . , b - n + 2 (9)<br />

k=l kzl<br />

b<br />

{3jOV + L {3jkVk = 0,<br />

b<br />

(6) {3jO'P + L (3jk'Pk(qk) = j, j = 1,2, ... , b - n + 2 (9)<br />

where CXjk ajk is either I, 1, -I,- 1, or 0, b is the total number of<br />

memristors, and n is the total number of nodes. Similarly,<br />

we can write a system of (b-n+2) independent KVL<br />

7 We have assumed for simplicity that the mernristors are chargecontrolled.<br />

<strong>The</strong> proof can be easily modified to allow memristors mernristors char­<br />

char-<br />

chargeacterized<br />

by arbitrary qr-q e curves.<br />

Authorized licensed use limited to: <strong>IEEE</strong> Publications Staff. Downloaded on December 4, 2008 at 14:12 from <strong>IEEE</strong> Xplore. Restrictions apply.


CHUA: MEMRISTOR-MISSING CIRCUIT ELEMENT 513<br />

513<br />

where Qi Qj and _joUQo. Following identical procedure<br />

and notation as given in [11, [ll, ch. 3], 31, we let Wwa a denote<br />

the set of independent frequencies and make a small change<br />

in ocf>a=o(wat). This<br />

pro-<br />

6~$,=Li(~,t). perturbation induces a change in the<br />

action A(t): :<br />

(14)<br />

(14)<br />

But since sintie A(q) = J&(q) fgcp(q) dq, we have<br />

oA 6A = (cp)(oq) ((p)(Sq) = [Re L: F ~~ TY c@at<br />

iwat ]<br />

[ a JWWC2 a 1<br />

.[Re L: c 5 I a (awajawa)Ciwatocf>a]. (ao,/aw,)ej~‘h<br />

1 (15)<br />

’<br />

aLI Wa al<br />

Equating (14) and (15) and taking their time averages, we<br />

obtain the following Manley-Rowe-like formula relating the<br />

. ~ _1<br />

reactwe reactive powers P,=+ Pa=2" I<br />

Im m (V,Z,*): a<br />

1*)' a .<br />

~[ac&/awa] [P&a = 0 .<br />

(16)<br />

(16)<br />

P<br />

a<br />

Authorized licensed use limited to: <strong>IEEE</strong> Publications Staff. Downloaded on December 4, 2008 at 14:12 from <strong>IEEE</strong> Xplore. Restrictions apply.


Authorized licensed use limited to: <strong>IEEE</strong> Publications Staff. Downloaded on December 4, 2008 at 14:12 from <strong>IEEE</strong> Xplore. Restrictions apply.<br />

514 <strong>IEEE</strong> TRANSACTIONS ON CIRCUIT THEORY, SEPTEMBER 1971<br />

It is possible to derive a Page-Pantell-like inequality re- relating<br />

the realpowers of a passive memristor by making use<br />

of the passivity criterion (&)(64)>0 (ocp)(oq)'?°(<strong>The</strong>orem (<strong>The</strong>orem 1); namely,<br />

L<br />

where Pa=3 Pa== t Re (Val:) VaZz) is the real power at frequency w,. wa.<br />

Since the procedure for deriving (17) follows again mutatis<br />

mutandis that given by Penfield [11], 111, it will not be given here<br />

to conserve space. An examination of (17) shows that gain<br />

proportional to the frequency squared is likely in a mem- memristor<br />

upconverter, but that severe loss is to be expected in<br />

a memristor mixer. It is also easy to show that converting<br />

efficiencies approaching 100 percent may be possible in a<br />

memristor harmonic generator.<br />

So far we have considered only pure memristor networks.<br />

Let us now consider the general case of a network containing<br />

resistors, inductors, capacitors, and memristors. <strong>The</strong> equa- equations<br />

of motion for this class of networks now take the form<br />

of a system of m first-order nonlinear differential equations<br />

in the normal form $=f(x, x=f(x, t) [I], [l], where x is an mX 1 vector<br />

whose components are the state variables. <strong>The</strong> number m is<br />

called the “order "order of complexity” complexity" of the network and is equal<br />

to the maximum number of independent initial conditions<br />

that can be arbitrarily specified [1]. [I]. <strong>The</strong> following theorem<br />

shows how the order of complexity can be determined by<br />

inspection.<br />

<strong>The</strong>orem 5: Order of Complexity<br />

Let N be a network containing resistors, inductors, capacitors,<br />

memristors, independent voltage sources, and inde­<br />

inde-<br />

pendent current sources. <strong>The</strong>n the order of complexity m of<br />

N is given capaciby<br />

I<br />

(17)<br />

-1<br />

(18)<br />

state variables occurs whenever an independent loop con- consisting<br />

of elements corresponding to those specified in the<br />

definition of IZ.&~ nM and nLw nLM is present in the network. [We as- assume<br />

the algebraic sum of charges around any loop (flux- (fluxlinkages<br />

in any cut set) is zero.] Similarly, a constraint<br />

among the state variables occms occ\:lrs whenever an independent<br />

cut set consisting of elements corresponding to those speci- specified<br />

in the definition ofnM fiM and &CM nCM is present in the network.<br />

Since each constraint removes one degree of freedom each<br />

time this situation occurs, the maximum order of complexity<br />

(bL+bc+bM) must be reduced by one.<br />

Q.E.D.<br />

IV. AN ELECTROMAGNETIC INTERPRETATION<br />

OF MEMRISTOR CHARACTERIZATION<br />

It is well known that circuit theory is a ;llimiting limiting<br />

special<br />

casg cas~<br />

of electromagnetic field theory. In particular, the char- characterization<br />

of the three classical circuit elements can be<br />

given an elegant electromagnetic ekctromagnetic interpretation in terms of<br />

the quasi-static expansion of Maxwell’s Maxwell's equations [12]. Our<br />

objective in this section is to give an analogous interpreta- interpretation<br />

for the characterization of memristors. While this<br />

interpretation does not prove the physical realizability of a<br />

“memristor "memristor device” device" without internal power supply, it does<br />

suggest the strong plausiblity that such a device might some- someday<br />

be discovqred. discovered. Let us begin by writing down Maxwell’s Maxwell's<br />

equations in differential form:<br />

curl E =<br />

aD<br />

curl H = J +-­+ f8f at<br />

dB<br />

curl E = -<br />

a-­ Ly --<br />

(21)<br />

aT a7<br />

where bL br. is the total number of inductors; bc is the total<br />

number of capacitors; b,ll M is the total number of memristors;<br />

aD<br />

curl H = J + a! $<br />

(?a<br />

nM nnl is the number of independent loops containing only<br />

(22)<br />

aT<br />

memristors; liCE /?CE is the number of independent loops containing<br />

only capacitors and voltage sources; 11 nL.ll LM is the<br />

where E, H, D, B, and J are functions of not only the posi­<br />

posi-<br />

connumber<br />

of independent loops containing only<br />

inductors<br />

and memristors; ;nM h,,r is the number of independent cut sets<br />

containing only memristors;nLJ fiLJ is the number of independent<br />

cut sets containing only inductors and current<br />

sources; flCM ric.nr is the number of independent cut sets con­<br />

con-<br />

indetion<br />

(x, y, z), but also of a(Y and T. 7. If we were to expand these<br />

vector quantities as aformala power series in acy and substitute<br />

them into (21) and (22), we would obtain upon equating the<br />

coefficients coeficients of an, CP, the nth-order Maxwell's Maxwell’s equatiol1s, equaiions, where<br />

n=O, 1,2, .... ’ . . .<br />

taining only capacitors arid and memristors. .<br />

Many electromagnetic phenomena and systems can be<br />

Proof: ProCf: It is well known that the order of complexity of an<br />

satisfactorily analyzed by using only the zero-order and firstorder<br />

first-<br />

RLC network is given by m~(bL+bc)-l1cE-fzLJ<br />

m=(bL+bc)-IzCE-YiLJ [IJ. [l]. It<br />

Maxwell's Maxwell’s equations; the corresponding solutions are<br />

follows, therefore, from (1)-(4) (l)-(4) that for an RLC-memristor<br />

called quasi-staticfields. It has been shown that circuit theory<br />

network with I1 n, m =nLM=ii,l/=fi= nLlll = i?,,, = i2c.1, cJ1 =0, =O, each nlemristor niemristor belongs to the realm of quasi-static fields and can be studied<br />

introduces a new state variable and we have m=(bl.+bc<br />

m=(b,,+bc with the help of<br />

r the<br />

.<br />

following Maxwell's Maxwell’s equations in quasistatic<br />

form [12].<br />

quasi-<br />

+bM)-ncE-nLJ. +b,+i)--ncg-CiLJ. Observe next that a constraint among the<br />

1121.<br />

aB<br />

at<br />

(19) 09)<br />

(20)<br />

where E and H are the electric and magnetic field intensity,<br />

D and B are the electric and magnetic flux density, and J<br />

is the current density. We will follow the approach presented<br />

in [12][ 121 by defining a "family “family time" time” T=cd, r=at, where a is called<br />

the "time-rate “time-rate parameter." parameter.” In terms of the new variable T,<br />

Maxwell's Maxwell’s equations become<br />

aB


CHUA: MEMRISTOR-MISSING CIRCUIT ELEMENT 515<br />

Zero-Order Maxwell’s Maxwell's Equations<br />

curl Eo EIJ = 0<br />

where .§J('), 3( .), (B( (R(.), and D(-) a)( .) are one-to-one continuous functions<br />

from R3 onto R3. Under these assumptions, (26) and<br />

(23)<br />

func-<br />

(23) (27) can be combined to give<br />

curl Ho o = Jo.<br />

(24)<br />

First-Order Maxwell’s Maxwell's Equations<br />

curl HI = d(E1). (30)<br />

Observe that (30) does not contain any time derivative.<br />

aBo<br />

(25)<br />

Hence, hence, under any specified boundary condition con,dition appropriate<br />

cur1 E1 = - a, aT<br />

for the device, the first-order electric field E1 1 is related to<br />

aDo<br />

the first-order magnetic field HI dy by a functional relation;<br />

;<br />

aoo<br />

curl HI = II J1 +--. -I- -. (26) cw namely<br />

a7<br />

aT<br />

<strong>The</strong> total quasi-static vector quantities are obtained by keeping<br />

keep-<br />

EI = f(H,). (31)<br />

only oniy the first two terms of the formal pdwer power series and atid Oy by If we substitute (31) for E1 1 in (29) and then substitute the in­<br />

in-<br />

setting a= CY= I; 1; namely, E~Eo+EI, E-Eo+E1, H~Ho+HI, H=H”+Hl, D~bo+DI'<br />

D=&+D1, verse function of (B( CR( .) from (28) into the resulting expression,<br />

we obtain<br />

have been identified as electromagnetic systems whose solu­<br />

solu-<br />

expres-<br />

B= B~Bo+BI, Bo+ B1, J-Jo+ J~Jo+lI. JI. <strong>The</strong> three classical circuit elements<br />

tions correspond to certain combinations of the zero-order<br />

D1 = a, o f o [W(B1)] = g(B1). (32)<br />

and first-order solutions of (23)--(26). (23)


516 1EEETRANSACTIONSON <strong>IEEE</strong> TRANsACnONS ON CIRCUITTHEORY,SEPTEMBER THEORY, SEPTEMBER 1971<br />

RI<br />

i +<br />

+<br />

” T<br />

v*( t 1 i “0<br />

i<br />

I<br />

v*( t )<br />

I----'1<br />

IO).<br />

Rz<br />

l-<br />

E ---..,..-------:<br />

v,(t)<br />

E,<br />

I<br />

---_<br />

T<br />

------_______<br />

-l<br />

by<br />

dq/dt = u&V[RI<br />

+ Rz + M(q)].<br />

Since the variables are separable, the solution is readily found<br />

to be<br />

where<br />

dq/dt = v.(t)/[RI + R 2 + M(q)]. (33)<br />

q(t) = h- l 0 (Jot v.(r) dr + «'(q(to») (34)<br />

I h(q) = 6% + R& + u?(q) I<br />

(35)<br />

and cp


CHUA: MEMRISTOR-MISSING CIRCUIT ELEMENT 517<br />

q<br />

1<br />

IIOP.·W3·~3<br />

IoP.·W2·~<br />

041 0<br />


518 <strong>IEEE</strong> TRANSACTIONS ON CIRCUIT THEORY, SEPTEMBER 1971<br />

I<br />

~-------------,<br />

+<br />

0-- --'<br />

Zener breakdown vallage: voltage : E, = + l!.zE •, E~=E,=E~=AE Z • E • t>.E<br />

3 4 R, =R2 =R3 =R4 =R3 = +<br />

(01.<br />

5G 8<br />

9<br />

------------.-::::>F-+*r-+--+----+-~ V<br />

2<br />

(b).<br />

(e).<br />

v,(I I<br />

r------,---------------i'=E~--...--------------r_--~<br />

o<br />

0 -t<br />

4<br />

-----!--------------'-------l:--E:.-----------'--_~<br />

-._____ -----__<br />

(d). Cd).<br />

, :'<br />

L.--_<br />

.-- I 1-------------:-<br />

, ,<br />

---------:~~~! i-------------i---------- !<br />

------ ------------- ------ -~-~~~ -~==~~~~-~---~~~~~==----<br />

-------- -------------i--<br />

(el.<br />

Fig. 9.<br />

Nine-segment memristor can be used to generate ten-step staircase periodic waveform.<br />

used in many instruments such as the sampling oscilloscope<br />

and the transistor curve tracer.<br />

To simplify discussion, let us consider the design ofa a fourstep<br />

staircase waveform generator. <strong>The</strong> output voltage wave­<br />

wave-<br />

fourform<br />

shown in Fig. 7(d) suggests that a four-step staircase<br />

waveform can be generated by driving the circuit in Fig.<br />

7(a) with a symmetrical square wave, provided that a<br />

memristor with the 'f'-q cp-q curve shown in Fig. 7(b) is available.<br />

This memristor can be synthesized by the methods presented<br />

in Section U. II. In fact, a simple realization is shown in Fig.<br />

8(a) with a nonlinear resistor (R @ connected across port 2 of<br />

a type-2 M-.R M-R mutator. This nonlinear resistor is, in turn,<br />

realized by two back-to-back series Zener diodes in parallel<br />

with a linear resistor and has a V-I curve as shown in Fig.<br />

8(b). To obtain the desired


CHUA: MEMRISTOR-MISSING CIRCUIT ELEMENT<br />

VI. CONCLUDING REMARKS<br />

VI. CONCLUDING REMARKS<br />

<strong>The</strong> memristor has been introduced as the fourth basic.<br />

circuit element. Three new types ofmutators have been introduced<br />

for realizing memristors in the form of active circuits.<br />

An appropriate cascade connection of these mutators and<br />

those already introduced in [3] can be used to realize higher<br />

order elements characterized by a relationship between v(m)(t) @j(t)<br />

introand<br />

i(n)(t), i@)(t), where v(m)(t) rW(t) (i(n)(t» (P(t)) denotes the mth (nth) time<br />

derivative of v(t) u(t) (i(t» (i(t)) if m>O (n>O), (n>(j), or the mth iterated<br />

time integral of v(t) u(t) (i(t» (i(t)) if m

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!