22.01.2014 Views

the torque measurement based on various principles

the torque measurement based on various principles

the torque measurement based on various principles

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Bohumil SKALA<br />

621.3.08<br />

621.313.32<br />

621.317.3<br />

THE TORQUE MEASUREMENT BASED<br />

ON VARIOUS PRINCIPLES *)<br />

ABSTRACT Torque <str<strong>on</strong>g>measurement</str<strong>on</strong>g> under fast transient<br />

phenomena of <str<strong>on</strong>g>the</str<strong>on</strong>g> electrical machines is sometimes a serious problem.<br />

The squirrel cage asynchr<strong>on</strong>ous machine is <str<strong>on</strong>g>the</str<strong>on</strong>g> most used electrical<br />

machine in <str<strong>on</strong>g>the</str<strong>on</strong>g> industry, very often toge<str<strong>on</strong>g>the</str<strong>on</strong>g>r with <str<strong>on</strong>g>the</str<strong>on</strong>g> frequency<br />

c<strong>on</strong>verter. Therefore <str<strong>on</strong>g>the</str<strong>on</strong>g> main attenti<strong>on</strong> is paid to this machine. The<br />

aim of this work is to use <strong>various</strong> methods of <str<strong>on</strong>g>torque</str<strong>on</strong>g> <str<strong>on</strong>g>measurement</str<strong>on</strong>g> <strong>on</strong><br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> same machine and to compare <str<strong>on</strong>g>the</str<strong>on</strong>g> obtained results.<br />

Some methods need ei<str<strong>on</strong>g>the</str<strong>on</strong>g>r a special interventi<strong>on</strong> to <str<strong>on</strong>g>the</str<strong>on</strong>g> machine<br />

under <str<strong>on</strong>g>the</str<strong>on</strong>g> test or expensive equipment. Due to this fact <str<strong>on</strong>g>the</str<strong>on</strong>g>se<br />

methods are applicable almost exclusively in <str<strong>on</strong>g>the</str<strong>on</strong>g> laboratory.<br />

Never<str<strong>on</strong>g>the</str<strong>on</strong>g>less, <str<strong>on</strong>g>the</str<strong>on</strong>g>y would give important results.<br />

As a c<strong>on</strong>trast, some methods need just a speed sensor, current<br />

sensors or helping <str<strong>on</strong>g>measurement</str<strong>on</strong>g> turns. The speed or current sensors<br />

can be used for o<str<strong>on</strong>g>the</str<strong>on</strong>g>r purposes simultaneously. These methods are<br />

very suitable for industry.<br />

Finally, we choose some suitable transient phenomena (run-up,<br />

reversal operati<strong>on</strong>,…) and we will analyse <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>torque</str<strong>on</strong>g> by each<br />

different method. For a complete descripti<strong>on</strong>, this paper c<strong>on</strong>tains <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

short overview of all, well known methods:<br />

• Ma<str<strong>on</strong>g>the</str<strong>on</strong>g>matical Simulati<strong>on</strong><br />

• Ma<str<strong>on</strong>g>the</str<strong>on</strong>g>matical calculati<strong>on</strong> <str<strong>on</strong>g>based</str<strong>on</strong>g> <strong>on</strong> mutual flux <str<strong>on</strong>g>measurement</str<strong>on</strong>g><br />

• The dynamometer <str<strong>on</strong>g>measurement</str<strong>on</strong>g><br />

• The torsi<strong>on</strong> <str<strong>on</strong>g>torque</str<strong>on</strong>g> transducer<br />

• Methods of determinati<strong>on</strong> of <str<strong>on</strong>g>torque</str<strong>on</strong>g> curve (run-up method)<br />

• Rotary c<strong>on</strong>tactless accelerometer<br />

• Torque <str<strong>on</strong>g>measurement</str<strong>on</strong>g> with <str<strong>on</strong>g>the</str<strong>on</strong>g> help of piezoelectric<br />

accelerometers<br />

* ) This work has been supported by <str<strong>on</strong>g>the</str<strong>on</strong>g> project MSM 232200008.<br />

Ing. Bohumil SKALA, Ph. D.<br />

Faculty of Electrical Engineering<br />

University of West Bohemia in Pilsen<br />

Univerzitni 8, 306 14 Pilsen, CZECH REPUBLIC<br />

tel. +420 377 634 473, fax: +420 377 634 002<br />

e-mail: skalab@kev.zcu.cz<br />

PRACE INSTYTUTU ELEKTROTECHNIKI, zeszyt 220, 2004


18<br />

B. Skala<br />

The aim of this submissi<strong>on</strong> is to describe some suitable methods<br />

for <str<strong>on</strong>g>torque</str<strong>on</strong>g> <str<strong>on</strong>g>measurement</str<strong>on</strong>g>. The choice of <str<strong>on</strong>g>the</str<strong>on</strong>g> suitable method of<br />

<str<strong>on</strong>g>measurement</str<strong>on</strong>g> depends <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> actual situati<strong>on</strong>, equipment and<br />

instruments that are at <str<strong>on</strong>g>the</str<strong>on</strong>g> hand.<br />

This work has been supported by <str<strong>on</strong>g>the</str<strong>on</strong>g> project MSM 232200008.<br />

1. INTRODUCTION<br />

Normally <str<strong>on</strong>g>the</str<strong>on</strong>g> performance of rotating drives is described by <str<strong>on</strong>g>torque</str<strong>on</strong>g> and<br />

rotati<strong>on</strong>al speed. In electrical machine practice we need a method of measuring<br />

accelerati<strong>on</strong> (or speed) and <str<strong>on</strong>g>torque</str<strong>on</strong>g> under widely different c<strong>on</strong>diti<strong>on</strong>s. Measuring<br />

of <str<strong>on</strong>g>the</str<strong>on</strong>g> rotati<strong>on</strong>al speed can be d<strong>on</strong>e accurately in many cases. The <str<strong>on</strong>g>torque</str<strong>on</strong>g><br />

<str<strong>on</strong>g>measurement</str<strong>on</strong>g> requires suitable equipment which is sometimes very expensive.<br />

It is possible to say that <str<strong>on</strong>g>the</str<strong>on</strong>g> following methods, which will be menti<strong>on</strong>ed<br />

here, are valid generally but some methods are designed especially for<br />

asynchr<strong>on</strong>ous machine <str<strong>on</strong>g>torque</str<strong>on</strong>g> <str<strong>on</strong>g>measurement</str<strong>on</strong>g>.<br />

The squirrel cage asynchr<strong>on</strong>ous machine is <str<strong>on</strong>g>the</str<strong>on</strong>g> most used electrical<br />

machine in <str<strong>on</strong>g>the</str<strong>on</strong>g> industry, very often toge<str<strong>on</strong>g>the</str<strong>on</strong>g>r with <str<strong>on</strong>g>the</str<strong>on</strong>g> frequency c<strong>on</strong>verter.<br />

Therefore <str<strong>on</strong>g>the</str<strong>on</strong>g> main attenti<strong>on</strong> is paid to this machine.<br />

The aim of this work is to use <strong>various</strong> methods of <str<strong>on</strong>g>torque</str<strong>on</strong>g> <str<strong>on</strong>g>measurement</str<strong>on</strong>g><br />

<strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> same machine and to compare <str<strong>on</strong>g>the</str<strong>on</strong>g> obtained results. The methods of<br />

<str<strong>on</strong>g>measurement</str<strong>on</strong>g> could be divided into two groups.<br />

Some methods need ei<str<strong>on</strong>g>the</str<strong>on</strong>g>r a special interventi<strong>on</strong> to <str<strong>on</strong>g>the</str<strong>on</strong>g> machine under <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

test or expensive equipment. Due to this fact <str<strong>on</strong>g>the</str<strong>on</strong>g>se methods are applicable almost<br />

exclusively in <str<strong>on</strong>g>the</str<strong>on</strong>g> laboratory. Never<str<strong>on</strong>g>the</str<strong>on</strong>g>less, <str<strong>on</strong>g>the</str<strong>on</strong>g>y would give important results.<br />

As a c<strong>on</strong>trast, some methods need just a speed sensor, current sensors<br />

or helping <str<strong>on</strong>g>measurement</str<strong>on</strong>g> turns. The speed or current sensors can be used for<br />

o<str<strong>on</strong>g>the</str<strong>on</strong>g>r purposes simultaneously. These methods are very suitable for industry.<br />

Finally, we choose some suitable transient phenomena (run-up,<br />

reversing,…) and we will analyse <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>torque</str<strong>on</strong>g> by each different method. For<br />

a complete descripti<strong>on</strong>, this paper c<strong>on</strong>tains <str<strong>on</strong>g>the</str<strong>on</strong>g> short overview of all, well known<br />

methods. The attenti<strong>on</strong> is paid to <str<strong>on</strong>g>the</str<strong>on</strong>g> latest case – <str<strong>on</strong>g>the</str<strong>on</strong>g> proposal of <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>torque</str<strong>on</strong>g><br />

<str<strong>on</strong>g>measurement</str<strong>on</strong>g> thanks to piezoelectric accelerometers.<br />

2. MATHEMATICAL SIMULATION<br />

The ma<str<strong>on</strong>g>the</str<strong>on</strong>g>matical model is menti<strong>on</strong>ed here just for <str<strong>on</strong>g>the</str<strong>on</strong>g> sake of complexity.<br />

Several scientific books and research papers are devoted to <str<strong>on</strong>g>the</str<strong>on</strong>g> ma<str<strong>on</strong>g>the</str<strong>on</strong>g>matical


The <str<strong>on</strong>g>torque</str<strong>on</strong>g> <str<strong>on</strong>g>measurement</str<strong>on</strong>g> <str<strong>on</strong>g>based</str<strong>on</strong>g> <strong>on</strong> <strong>various</strong> <strong>principles</strong> 19<br />

model. The basic ma<str<strong>on</strong>g>the</str<strong>on</strong>g>matical model is very well known and <str<strong>on</strong>g>the</str<strong>on</strong>g> electrical and<br />

mechanical magnitudes as well can be easy calculated. Never<str<strong>on</strong>g>the</str<strong>on</strong>g>less, <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

ma<str<strong>on</strong>g>the</str<strong>on</strong>g>matical model c<strong>on</strong>tains certain simplificati<strong>on</strong>s, i.e. <str<strong>on</strong>g>the</str<strong>on</strong>g> slot effect, magnetic<br />

circuit losses or skin-effect in rotor aluminium bars is neglected. Especially<br />

during <str<strong>on</strong>g>the</str<strong>on</strong>g> transient phenomena <str<strong>on</strong>g>the</str<strong>on</strong>g>se simplificati<strong>on</strong>s could be <str<strong>on</strong>g>the</str<strong>on</strong>g> cause<br />

of significant differences between ma<str<strong>on</strong>g>the</str<strong>on</strong>g>matical model and reality. In this respect,<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> experiment is irreplaceable.<br />

3. MATHEMATICAL CALCULATION BASED<br />

ON MUTUAL FLUX MEASUREMENT<br />

It is also possible to calculate <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>torque</str<strong>on</strong>g>. This way is <str<strong>on</strong>g>based</str<strong>on</strong>g> <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

instantaneous flux <str<strong>on</strong>g>measurement</str<strong>on</strong>g>. In <str<strong>on</strong>g>the</str<strong>on</strong>g> case of <str<strong>on</strong>g>the</str<strong>on</strong>g> asynchr<strong>on</strong>ous machine<br />

<str<strong>on</strong>g>torque</str<strong>on</strong>g> <str<strong>on</strong>g>measurement</str<strong>on</strong>g> we can replace <str<strong>on</strong>g>the</str<strong>on</strong>g> flux by <str<strong>on</strong>g>the</str<strong>on</strong>g> integrati<strong>on</strong> of <str<strong>on</strong>g>the</str<strong>on</strong>g> terminal<br />

voltage. The error, caused by neglecting <str<strong>on</strong>g>the</str<strong>on</strong>g> voltage drop <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> winding<br />

resistivity, is small in <str<strong>on</strong>g>the</str<strong>on</strong>g> first approach. A better soluti<strong>on</strong> is to add <str<strong>on</strong>g>the</str<strong>on</strong>g> special<br />

helping turn into <str<strong>on</strong>g>the</str<strong>on</strong>g> main winding. Then we can calculate <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>torque</str<strong>on</strong>g> with <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

help of relati<strong>on</strong><br />

T<br />

e<br />

2<br />

= a b c b c a ψ c<br />

3 3<br />

[ ψ ( i − i ) + ψ ( i − i ) + ( i − i )]<br />

a<br />

b<br />

(1)<br />

a) b)<br />

Fig.1.<br />

a) Run-up of <str<strong>on</strong>g>the</str<strong>on</strong>g> asynchr<strong>on</strong>ous machine (low voltage, special rotor, <str<strong>on</strong>g>the</str<strong>on</strong>g> sign is wittingly opposite).<br />

b) The helping turns voltage. We can see <str<strong>on</strong>g>the</str<strong>on</strong>g> slots effect. c) The calculated <str<strong>on</strong>g>torque</str<strong>on</strong>g>. The calculati<strong>on</strong><br />

is <str<strong>on</strong>g>based</str<strong>on</strong>g> <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> integrati<strong>on</strong> of stator voltage terminals.


20<br />

B. Skala<br />

a) b)<br />

Fig.2. The calculated <str<strong>on</strong>g>torque</str<strong>on</strong>g>. The calculati<strong>on</strong> is <str<strong>on</strong>g>based</str<strong>on</strong>g> <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> integrati<strong>on</strong> of:<br />

a) helping turn voltage (stator resistivity is neglected), b) stator voltage terminals.<br />

The special helping turn in <str<strong>on</strong>g>the</str<strong>on</strong>g> slots must be situated as near to <str<strong>on</strong>g>the</str<strong>on</strong>g> air<br />

gap as possible. The reas<strong>on</strong> is <str<strong>on</strong>g>based</str<strong>on</strong>g> <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> rule that <str<strong>on</strong>g>the</str<strong>on</strong>g> leakage flux has no<br />

influence <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>torque</str<strong>on</strong>g>. C<strong>on</strong>sequently, <str<strong>on</strong>g>the</str<strong>on</strong>g> leakage flux can not be detected by<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> helping turn.<br />

This soluti<strong>on</strong> is quite precise but requires a specially adapted machine.<br />

If we use <str<strong>on</strong>g>the</str<strong>on</strong>g> first menti<strong>on</strong>ed possibility, we can apply this way <strong>on</strong> any asynchr<strong>on</strong>ous<br />

machine, but <str<strong>on</strong>g>the</str<strong>on</strong>g> accuracy is little bit lower.<br />

4. THE DYNAMOMETER MEASUREMENT<br />

In this case of <str<strong>on</strong>g>measurement</str<strong>on</strong>g>, <str<strong>on</strong>g>the</str<strong>on</strong>g> stator of <str<strong>on</strong>g>the</str<strong>on</strong>g> dynamo has no fixing<br />

shoes but <str<strong>on</strong>g>the</str<strong>on</strong>g> stator can swing round. With <str<strong>on</strong>g>the</str<strong>on</strong>g> help of spring and arm of <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

well known length we can measure <str<strong>on</strong>g>the</str<strong>on</strong>g> stator reacti<strong>on</strong> of <str<strong>on</strong>g>torque</str<strong>on</strong>g> which is produced<br />

<strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> rotor.<br />

In this case we also have several possibilities and variability. The <str<strong>on</strong>g>torque</str<strong>on</strong>g>dynamometer<br />

could be<br />

• a DC machine,<br />

• an AC machine + frequency c<strong>on</strong>verter,<br />

• an eddy current machine,<br />

• or powder-brake machine.<br />

The <str<strong>on</strong>g>measurement</str<strong>on</strong>g> device could be made not <strong>on</strong>ly of a spring but also of <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

piezoelectric sensor or any ano<str<strong>on</strong>g>the</str<strong>on</strong>g>r press or force sensor, etc.


The <str<strong>on</strong>g>torque</str<strong>on</strong>g> <str<strong>on</strong>g>measurement</str<strong>on</strong>g> <str<strong>on</strong>g>based</str<strong>on</strong>g> <strong>on</strong> <strong>various</strong> <strong>principles</strong> 21<br />

5. THE TORSION TORQUE TRANSDUCER<br />

The principle is <str<strong>on</strong>g>based</str<strong>on</strong>g> <strong>on</strong> torsi<strong>on</strong> part of shaft and its torsi<strong>on</strong>. Measurement<br />

of torsi<strong>on</strong> of <str<strong>on</strong>g>the</str<strong>on</strong>g> shaft is possible in several ways.<br />

a) b)<br />

Fig.3. Measurement of <str<strong>on</strong>g>torque</str<strong>on</strong>g> with <str<strong>on</strong>g>the</str<strong>on</strong>g> help of strain gauges (four gauges in full bridge<br />

arrangement)<br />

For a <str<strong>on</strong>g>torque</str<strong>on</strong>g> <str<strong>on</strong>g>measurement</str<strong>on</strong>g>, we must place <str<strong>on</strong>g>the</str<strong>on</strong>g>se strain gauges in this<br />

way. For pressure, tensi<strong>on</strong> and bending <str<strong>on</strong>g>measurement</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> positi<strong>on</strong> of strain<br />

gauges are different. For <str<strong>on</strong>g>the</str<strong>on</strong>g> transfer of <str<strong>on</strong>g>the</str<strong>on</strong>g> signal from moving rotor to stator<br />

terminals, <str<strong>on</strong>g>the</str<strong>on</strong>g> slip rings are used. In this way, <str<strong>on</strong>g>the</str<strong>on</strong>g> signal is partly interfered. It is<br />

also possible to use instead of slip rings <str<strong>on</strong>g>the</str<strong>on</strong>g> special c<strong>on</strong>tacts with mercury or<br />

c<strong>on</strong>tactless telemetry data transfer.<br />

O<str<strong>on</strong>g>the</str<strong>on</strong>g>rwise, <str<strong>on</strong>g>the</str<strong>on</strong>g> torsi<strong>on</strong> of <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>measurement</str<strong>on</strong>g> torsi<strong>on</strong> shaft is transferred to<br />

a phase shift of <str<strong>on</strong>g>the</str<strong>on</strong>g> impulses. These impulses should be produced by optical,<br />

magnetic or ano<str<strong>on</strong>g>the</str<strong>on</strong>g>r suitable type of sensors.<br />

6. METHODS OF DETERMINATION<br />

OF TORQUE CURVE<br />

We can determine <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>torque</str<strong>on</strong>g> characteristic of asynchr<strong>on</strong>ous machine by<br />

loading with <str<strong>on</strong>g>the</str<strong>on</strong>g> help of some of <str<strong>on</strong>g>the</str<strong>on</strong>g> previously menti<strong>on</strong>ed methods. However,<br />

this way is time and energy c<strong>on</strong>suming.


22<br />

B. Skala<br />

We must set several value of loading, i.e. points of <str<strong>on</strong>g>torque</str<strong>on</strong>g> curve. When<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> slip is increasing, we must solve additi<strong>on</strong>al problems, like <str<strong>on</strong>g>the</str<strong>on</strong>g> over-current,<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g>rmal stress, etc.<br />

Ano<str<strong>on</strong>g>the</str<strong>on</strong>g>r way is to derive <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>torque</str<strong>on</strong>g> characteristic from <str<strong>on</strong>g>the</str<strong>on</strong>g> run-up<br />

characteristic. If <str<strong>on</strong>g>the</str<strong>on</strong>g> run-up of <str<strong>on</strong>g>the</str<strong>on</strong>g> machine is retarded, we can determine <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

static <str<strong>on</strong>g>torque</str<strong>on</strong>g> curve instead of dynamic <str<strong>on</strong>g>torque</str<strong>on</strong>g> curve. Both <str<strong>on</strong>g>the</str<strong>on</strong>g>se characteristic<br />

could be very different. The retardati<strong>on</strong> can be made by lower voltage instead of<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> nominal voltage or additi<strong>on</strong>al moment of inertia <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> shaft.<br />

During <str<strong>on</strong>g>the</str<strong>on</strong>g> run-up of <str<strong>on</strong>g>the</str<strong>on</strong>g> asynchr<strong>on</strong>ous machine <str<strong>on</strong>g>the</str<strong>on</strong>g> slip is changing from<br />

1 to 0 (zero) and <str<strong>on</strong>g>the</str<strong>on</strong>g> machine must go through every point of <str<strong>on</strong>g>torque</str<strong>on</strong>g><br />

characteristic. The following equati<strong>on</strong> is valid, when <str<strong>on</strong>g>the</str<strong>on</strong>g> machine is unloaded<br />

and <str<strong>on</strong>g>the</str<strong>on</strong>g> mechanical losses are neglected:<br />

T<br />

dω<br />

= (2)<br />

dt<br />

Fig.4. Run-up of <str<strong>on</strong>g>the</str<strong>on</strong>g> asynchr<strong>on</strong>ous machine and its derivati<strong>on</strong> – <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>torque</str<strong>on</strong>g> as dependent<br />

<strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> slip<br />

During <str<strong>on</strong>g>the</str<strong>on</strong>g> run-up we must measure <str<strong>on</strong>g>the</str<strong>on</strong>g> speed as dependent <strong>on</strong> time and<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g>n ma<str<strong>on</strong>g>the</str<strong>on</strong>g>matically derive it. This could be a serious problem. Electrical<br />

derivati<strong>on</strong> during <str<strong>on</strong>g>the</str<strong>on</strong>g> run-up is also possible as well.<br />

7. ROTARY CONTACTLESS ACCELEROMETER<br />

The <str<strong>on</strong>g>torque</str<strong>on</strong>g> <str<strong>on</strong>g>measurement</str<strong>on</strong>g> with <str<strong>on</strong>g>the</str<strong>on</strong>g> help of accelerometer is <str<strong>on</strong>g>based</str<strong>on</strong>g> <strong>on</strong> this<br />

equati<strong>on</strong>. If we measure in principle <str<strong>on</strong>g>the</str<strong>on</strong>g> accelerati<strong>on</strong> instead of speed, we need<br />

not to derive <str<strong>on</strong>g>the</str<strong>on</strong>g> speed signal and we have directly (after multiplying by <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

moment of inertia of course) <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>torque</str<strong>on</strong>g> signal.


The <str<strong>on</strong>g>torque</str<strong>on</strong>g> <str<strong>on</strong>g>measurement</str<strong>on</strong>g> <str<strong>on</strong>g>based</str<strong>on</strong>g> <strong>on</strong> <strong>various</strong> <strong>principles</strong> 23<br />

a) b)<br />

Fig.5.<br />

a)Schematic view of angular accelerati<strong>on</strong> sensor: 4-pole sensor, 6-pole sensor, cross secti<strong>on</strong>,<br />

b) accelerometer’s measured signal and evaluated <str<strong>on</strong>g>torque</str<strong>on</strong>g> and speed as dependent <strong>on</strong> time<br />

For this purpose c<strong>on</strong>tactless accelerati<strong>on</strong> sensors <str<strong>on</strong>g>based</str<strong>on</strong>g> <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> Ferraris<br />

principle are very suitable. With this sensor, highly dynamic signals proporti<strong>on</strong>al<br />

to <str<strong>on</strong>g>the</str<strong>on</strong>g> change of speed are available, even at standstill.<br />

8. TORQUE MEASUREMENT WITH THE HELP<br />

OF PIEZOELECTRIC ACCELEROMETERS<br />

Piezoelectric accelerometer is a sensor, whose signal is proporti<strong>on</strong>al to<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> accelerati<strong>on</strong>. For <str<strong>on</strong>g>the</str<strong>on</strong>g>se purposes we choose <str<strong>on</strong>g>the</str<strong>on</strong>g> sensor which is sensitive in<br />

<strong>on</strong>e directi<strong>on</strong> <strong>on</strong>ly. These sensors are placed <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> stator of <str<strong>on</strong>g>the</str<strong>on</strong>g> asynchr<strong>on</strong>ous<br />

machine. The stator can swing round thanks to <str<strong>on</strong>g>the</str<strong>on</strong>g> additi<strong>on</strong>al bearings.<br />

The additi<strong>on</strong>al bearings are fixed in <str<strong>on</strong>g>the</str<strong>on</strong>g> helping end-shield. In this way<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> rotor has to be equipped with a special extended shaft. O<str<strong>on</strong>g>the</str<strong>on</strong>g>rwise it could<br />

be impossible to c<strong>on</strong>nect <str<strong>on</strong>g>the</str<strong>on</strong>g> coupling and loading machine. Also <str<strong>on</strong>g>the</str<strong>on</strong>g> fan <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

shaft was removed.


24<br />

B. Skala<br />

The first helping end-shield is fixed to <str<strong>on</strong>g>the</str<strong>on</strong>g> main frame. The sec<strong>on</strong>d<br />

helping end-shield must be fixed through a spring element. This is suitable for<br />

balancing <str<strong>on</strong>g>the</str<strong>on</strong>g> manufacturing tolerance, <str<strong>on</strong>g>the</str<strong>on</strong>g>rmal expansi<strong>on</strong>, etc. The first fixing<br />

end-shield prevents <str<strong>on</strong>g>the</str<strong>on</strong>g> stator from any different movement but waving. In this<br />

case <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>on</strong>e piezoelectric accelerometer is sufficient for measuring <str<strong>on</strong>g>the</str<strong>on</strong>g> reacti<strong>on</strong><br />

of <str<strong>on</strong>g>the</str<strong>on</strong>g> stator.<br />

If we fix both helping end-shields via spring element, <str<strong>on</strong>g>the</str<strong>on</strong>g> stator is hanging<br />

and completely released for movement in any directi<strong>on</strong>. In this case we need at<br />

least two piezoelectric sensors to determine <str<strong>on</strong>g>the</str<strong>on</strong>g> reacti<strong>on</strong> movement in general<br />

directi<strong>on</strong>. The movement in shaft directi<strong>on</strong> usually can be neglected.<br />

We can change <str<strong>on</strong>g>the</str<strong>on</strong>g> positi<strong>on</strong> and orientati<strong>on</strong> of accelerometers. Fig. X<br />

represents <str<strong>on</strong>g>the</str<strong>on</strong>g> orientati<strong>on</strong> for stator’s rotary movement, Fig. Y represents <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

stator’s shift in <strong>on</strong>e (specified) directi<strong>on</strong> and Fig. Z shows <str<strong>on</strong>g>the</str<strong>on</strong>g> accelerometer’s<br />

positi<strong>on</strong> for general jump of <str<strong>on</strong>g>the</str<strong>on</strong>g> machine in <str<strong>on</strong>g>the</str<strong>on</strong>g> XY-plane.<br />

Each accelerometer sensors is placed <strong>on</strong> a special truckst<strong>on</strong>e. These<br />

truckst<strong>on</strong>es allowed us to change <str<strong>on</strong>g>the</str<strong>on</strong>g> sensor orientati<strong>on</strong> by about 90 deg. The<br />

whole truckst<strong>on</strong>e toge<str<strong>on</strong>g>the</str<strong>on</strong>g>r with sensor allowed us to change <str<strong>on</strong>g>the</str<strong>on</strong>g> orientati<strong>on</strong> with<br />

respect to <str<strong>on</strong>g>the</str<strong>on</strong>g> stator of <str<strong>on</strong>g>the</str<strong>on</strong>g> dynamometer by about ± 30 deg. In this way <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

accelerometer can take almost any orientati<strong>on</strong> in surface xy.<br />

a) b) c)<br />

φ 203,2<br />

4x φ8,8<br />

R 16<br />

Fig. 6.<br />

a) The accelerometers orientati<strong>on</strong> for stator’s rotary movement, b) <str<strong>on</strong>g>the</str<strong>on</strong>g> stator’s shift in <strong>on</strong>e<br />

(specified) directi<strong>on</strong>, c) <str<strong>on</strong>g>the</str<strong>on</strong>g> accelerometer’s positi<strong>on</strong> for general jump of <str<strong>on</strong>g>the</str<strong>on</strong>g> machine in <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

XY-plane<br />

In future, <str<strong>on</strong>g>the</str<strong>on</strong>g> dynamometer will be fur<str<strong>on</strong>g>the</str<strong>on</strong>g>r equipped by a rotary<br />

c<strong>on</strong>tactless accelerometer, helping turns for mutual flux <str<strong>on</strong>g>measurement</str<strong>on</strong>g>, rotor and<br />

stator incremental sensor and current and voltage transducers as well.


The <str<strong>on</strong>g>torque</str<strong>on</strong>g> <str<strong>on</strong>g>measurement</str<strong>on</strong>g> <str<strong>on</strong>g>based</str<strong>on</strong>g> <strong>on</strong> <strong>various</strong> <strong>principles</strong> 25<br />

a) b)<br />

c)<br />

Fig.7.<br />

a) The accelerometer signal, b) The speed<br />

signal, c) Displacement (<str<strong>on</strong>g>torque</str<strong>on</strong>g>) of <str<strong>on</strong>g>the</str<strong>on</strong>g> stator<br />

9. REMARKS AND CONCLUSION<br />

The aim of this submissi<strong>on</strong> is to describe some suitable methods for <str<strong>on</strong>g>torque</str<strong>on</strong>g><br />

<str<strong>on</strong>g>measurement</str<strong>on</strong>g>. The choice of <str<strong>on</strong>g>the</str<strong>on</strong>g> suitable method of <str<strong>on</strong>g>measurement</str<strong>on</strong>g> depends <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

actual situati<strong>on</strong>, equipment and instruments that are at <str<strong>on</strong>g>the</str<strong>on</strong>g> hand.<br />

The asynchr<strong>on</strong>ous dynamometer is supplied by a frequency c<strong>on</strong>verter. In<br />

this way it should work in <str<strong>on</strong>g>the</str<strong>on</strong>g> motor as well as <str<strong>on</strong>g>the</str<strong>on</strong>g> generator mode. The<br />

mechanical load will be c<strong>on</strong>nected through <str<strong>on</strong>g>the</str<strong>on</strong>g> Cardan shaft. Thanks to this<br />

special shaft <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>torque</str<strong>on</strong>g> can be periodically changed during <strong>on</strong>e revoluti<strong>on</strong>. In<br />

this way we can replace <str<strong>on</strong>g>the</str<strong>on</strong>g> mechanical load of <str<strong>on</strong>g>the</str<strong>on</strong>g> pist<strong>on</strong>-engine-type by <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

electrical rotary machine. The rotor of <str<strong>on</strong>g>the</str<strong>on</strong>g> dynamometer is exchangeable. We<br />

can use <str<strong>on</strong>g>the</str<strong>on</strong>g> classical squirrel cage rotor, squirrel cage rotor with defected bar or<br />

defected short circuited ring etc.


26<br />

B. Skala<br />

LITERATURE<br />

1. Maga, D., Harťanský, R.: Numerical analysis of electromechanical problems. University of<br />

Trencin, Ľudoprint Trencin, 2001, ISBN 80-88914-29-9<br />

2. Rafajdus, P.; Hrabovcová, V.; Zrak, I.: Design and Parameter Analysis of Switched<br />

Reluctance Motor with Permanent Magnets, Advances in Electrical and Electr<strong>on</strong>ic<br />

Engineering, No.2, Vol. 3/2004, ISSN 1336-1376, p.35-38<br />

3. Rafajdus, P.; Hrabovcová, V; Zrak, I.: Analytical Investigati<strong>on</strong> of Switched Reluctance Motor<br />

Parameters, ISEM 2003, Praha, p. 127 – 134<br />

4. White, J.,C., Placek, R.,J., Walker, D.,N.: Turbine-generator shaft torsi<strong>on</strong>al fatigue and<br />

m<strong>on</strong>itoring. Publ. 68, AIM, Liege, 1981<br />

Manuscript submitted 28.10.2004<br />

Reviewed by Jarosław Zadrożny<br />

POMIAR MOMENTU W OPARCIU<br />

O RÓŻNE ZASADY<br />

Bohumil SKALA<br />

STRESZCZENIE Pomiar momentu przy szybkich nieustal<strong>on</strong>ych<br />

stanach w maszynach elektrycznych bywa poważnym problemem.<br />

Maszyna asynchr<strong>on</strong>iczna z wirnikiem klatkowym jest najczęściej<br />

używaną maszyną w przemyśle, bardzo często wraz z przetwornikiem<br />

częstotliwości. Dlatego też główną uwagę zwróc<strong>on</strong>o na tę<br />

maszynę.<br />

Celem tej pracy było zastosowanie różnych metod pomiaru momentu<br />

tej samej maszyny i porównanie uzyskanych wyników.<br />

Niektóre metody wymagają dok<strong>on</strong>ania specjalnego zabiegu w badanej<br />

maszynie lub drogiego wyposażenia. Z tego powodu metody te<br />

nadają się do zastosowania wyłącznie w laboratorium. Tym niemniej<br />

zapewniają <strong>on</strong>e uzyskiwanie ważnych wyników.<br />

Przeciwnie, niektóre metody wymagają tylko czujnika prędkości,<br />

czujników prądu lub pomocniczych zwojów pomiarowych. Czujniki<br />

prędkości lub prądu mogą być równocześnie wykorzystywane do<br />

innych celów. Takie metody są bardzo odpowiednie dla przemysłu.<br />

P<strong>on</strong>adto wybieramy pewne odpowiednie zjawiska nieustal<strong>on</strong>e<br />

w stanach przejściowych (rozbieg, praca nawrotna) i będziemy analizowali<br />

moment każdą metodą. Z troski o kompletność opinii praca zawiera<br />

krótki opis wszystkich znanych metod:<br />

• Symulacja matematyczna<br />

• Obliczanie matematyczne oparte o pomiar strumienia głównego<br />

• Pomiar dynamometryczny


The <str<strong>on</strong>g>torque</str<strong>on</strong>g> <str<strong>on</strong>g>measurement</str<strong>on</strong>g> <str<strong>on</strong>g>based</str<strong>on</strong>g> <strong>on</strong> <strong>various</strong> <strong>principles</strong> 27<br />

• Czujnik momentu skrętnego<br />

• Metody oparte o wyznaczenie krzywej momentu (metoda rozbiegu)<br />

• Bezzestykowy akcelerometr obrotowy<br />

• Pomiar momentu za pomocą akcelerometrów piezoelektrycznych.<br />

Celem przedstawi<strong>on</strong>ej pracy jest opis metod nadających się do<br />

pomiaru momentu. Wybór odpowiedniej metody pomiaru zależy od<br />

aktualnej sytuacji, wyposażenia i od przyrządów będących do<br />

dyspozycji.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!