23.01.2014 Views

Evolution of a Free Surface in a Porous Medium - Instituto de Física ...

Evolution of a Free Surface in a Porous Medium - Instituto de Física ...

Evolution of a Free Surface in a Porous Medium - Instituto de Física ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>Evolution</strong> <strong>of</strong> a <strong>Free</strong> <strong>Surface</strong> <strong>in</strong> a <strong>Porous</strong> <strong>Medium</strong><br />

<strong>Evolution</strong> <strong>of</strong> a <strong>Free</strong> <strong>Surface</strong> <strong>in</strong> a <strong>Porous</strong> <strong>Medium</strong><br />

Roberto André Kraenkel<br />

<strong>Instituto</strong> <strong>de</strong> Física Teórica-UNESP<br />

São Paulo - Brasil<br />

August 2007 / PDE’s-IMPA-Rio


<strong>Evolution</strong> <strong>of</strong> a <strong>Free</strong> <strong>Surface</strong> <strong>in</strong> a <strong>Porous</strong> <strong>Medium</strong><br />

Overview<br />

Un<strong>de</strong>rground water


<strong>Evolution</strong> <strong>of</strong> a <strong>Free</strong> <strong>Surface</strong> <strong>in</strong> a <strong>Porous</strong> <strong>Medium</strong><br />

Overview<br />

Un<strong>de</strong>rground water<br />

<strong>Free</strong> <strong>Surface</strong> <strong>Evolution</strong> <strong>in</strong> <strong>Porous</strong> <strong>Medium</strong>: sett<strong>in</strong>g the problem


<strong>Evolution</strong> <strong>of</strong> a <strong>Free</strong> <strong>Surface</strong> <strong>in</strong> a <strong>Porous</strong> <strong>Medium</strong><br />

Overview<br />

Un<strong>de</strong>rground water<br />

<strong>Free</strong> <strong>Surface</strong> <strong>Evolution</strong> <strong>in</strong> <strong>Porous</strong> <strong>Medium</strong>: sett<strong>in</strong>g the problem<br />

Well-known results


<strong>Evolution</strong> <strong>of</strong> a <strong>Free</strong> <strong>Surface</strong> <strong>in</strong> a <strong>Porous</strong> <strong>Medium</strong><br />

Overview<br />

Un<strong>de</strong>rground water<br />

<strong>Free</strong> <strong>Surface</strong> <strong>Evolution</strong> <strong>in</strong> <strong>Porous</strong> <strong>Medium</strong>: sett<strong>in</strong>g the problem<br />

Well-known results<br />

Exact equation


<strong>Evolution</strong> <strong>of</strong> a <strong>Free</strong> <strong>Surface</strong> <strong>in</strong> a <strong>Porous</strong> <strong>Medium</strong><br />

Overview<br />

Un<strong>de</strong>rground water<br />

<strong>Free</strong> <strong>Surface</strong> <strong>Evolution</strong> <strong>in</strong> <strong>Porous</strong> <strong>Medium</strong>: sett<strong>in</strong>g the problem<br />

Well-known results<br />

Exact equation<br />

Conclusions


<strong>Evolution</strong> <strong>of</strong> a <strong>Free</strong> <strong>Surface</strong> <strong>in</strong> a <strong>Porous</strong> <strong>Medium</strong><br />

Un<strong>de</strong>rground water<br />

Un<strong>de</strong>rground water<br />

◮ Water that lies below the surface <strong>of</strong> the Earth


<strong>Evolution</strong> <strong>of</strong> a <strong>Free</strong> <strong>Surface</strong> <strong>in</strong> a <strong>Porous</strong> <strong>Medium</strong><br />

Un<strong>de</strong>rground water<br />

Un<strong>de</strong>rground water<br />

◮ Water that lies below the surface <strong>of</strong> the Earth<br />

◮ The un<strong>de</strong>rground is mo<strong>de</strong>led as be<strong>in</strong>g an aggregation <strong>of</strong> particles<br />

with pores between them;


<strong>Evolution</strong> <strong>of</strong> a <strong>Free</strong> <strong>Surface</strong> <strong>in</strong> a <strong>Porous</strong> <strong>Medium</strong><br />

Un<strong>de</strong>rground water<br />

Un<strong>de</strong>rground water<br />

◮ Water that lies below the surface <strong>of</strong> the Earth<br />

◮ The un<strong>de</strong>rground is mo<strong>de</strong>led as be<strong>in</strong>g an aggregation <strong>of</strong> particles<br />

with pores between them;<br />

◮ Water can flow through these pores.


<strong>Evolution</strong> <strong>of</strong> a <strong>Free</strong> <strong>Surface</strong> <strong>in</strong> a <strong>Porous</strong> <strong>Medium</strong><br />

Un<strong>de</strong>rground water<br />

Un<strong>de</strong>rground water<br />

◮ Water that lies below the surface <strong>of</strong> the Earth<br />

◮ The un<strong>de</strong>rground is mo<strong>de</strong>led as be<strong>in</strong>g an aggregation <strong>of</strong> particles<br />

with pores between them;<br />

◮ Water can flow through these pores.<br />

◮ This flow will be consi<strong>de</strong>red lam<strong>in</strong>ar.


<strong>Evolution</strong> <strong>of</strong> a <strong>Free</strong> <strong>Surface</strong> <strong>in</strong> a <strong>Porous</strong> <strong>Medium</strong><br />

Un<strong>de</strong>rground water<br />

Un<strong>de</strong>rground water<br />

◮ Water that lies below the surface <strong>of</strong> the Earth<br />

◮ The un<strong>de</strong>rground is mo<strong>de</strong>led as be<strong>in</strong>g an aggregation <strong>of</strong> particles<br />

with pores between them;<br />

◮ Water can flow through these pores.<br />

◮ This flow will be consi<strong>de</strong>red lam<strong>in</strong>ar.<br />

◮ The medium is saturated <strong>of</strong> water( the pore space is filled with<br />

water)


<strong>Evolution</strong> <strong>of</strong> a <strong>Free</strong> <strong>Surface</strong> <strong>in</strong> a <strong>Porous</strong> <strong>Medium</strong><br />

Un<strong>de</strong>rground water<br />

Un<strong>de</strong>rground water<br />

◮ Water that lies below the surface <strong>of</strong> the Earth<br />

◮ The un<strong>de</strong>rground is mo<strong>de</strong>led as be<strong>in</strong>g an aggregation <strong>of</strong> particles<br />

with pores between them;<br />

◮ Water can flow through these pores.<br />

◮ This flow will be consi<strong>de</strong>red lam<strong>in</strong>ar.<br />

◮ The medium is saturated <strong>of</strong> water( the pore space is filled with<br />

water) up to a certa<strong>in</strong> constant-pressure surface,


<strong>Evolution</strong> <strong>of</strong> a <strong>Free</strong> <strong>Surface</strong> <strong>in</strong> a <strong>Porous</strong> <strong>Medium</strong><br />

Un<strong>de</strong>rground water<br />

Un<strong>de</strong>rground water<br />

◮ Water that lies below the surface <strong>of</strong> the Earth<br />

◮ The un<strong>de</strong>rground is mo<strong>de</strong>led as be<strong>in</strong>g an aggregation <strong>of</strong> particles<br />

with pores between them;<br />

◮ Water can flow through these pores.<br />

◮ This flow will be consi<strong>de</strong>red lam<strong>in</strong>ar.<br />

◮ The medium is saturated <strong>of</strong> water( the pore space is filled with<br />

water) up to a certa<strong>in</strong> constant-pressure surface,<br />

◮ This is called a piezometric surface;


<strong>Evolution</strong> <strong>of</strong> a <strong>Free</strong> <strong>Surface</strong> <strong>in</strong> a <strong>Porous</strong> <strong>Medium</strong><br />

Un<strong>de</strong>rground water<br />

Un<strong>de</strong>rground water<br />

◮ Water that lies below the surface <strong>of</strong> the Earth<br />

◮ The un<strong>de</strong>rground is mo<strong>de</strong>led as be<strong>in</strong>g an aggregation <strong>of</strong> particles<br />

with pores between them;<br />

◮ Water can flow through these pores.<br />

◮ This flow will be consi<strong>de</strong>red lam<strong>in</strong>ar.<br />

◮ The medium is saturated <strong>of</strong> water( the pore space is filled with<br />

water) up to a certa<strong>in</strong> constant-pressure surface,<br />

◮ This is called a piezometric surface;<br />

◮ Above this surface, pores are partially filled with water.


<strong>Evolution</strong> <strong>of</strong> a <strong>Free</strong> <strong>Surface</strong> <strong>in</strong> a <strong>Porous</strong> <strong>Medium</strong><br />

Un<strong>de</strong>rground water<br />

Un<strong>de</strong>rground water<br />

◮ Water that lies below the surface <strong>of</strong> the Earth<br />

◮ The un<strong>de</strong>rground is mo<strong>de</strong>led as be<strong>in</strong>g an aggregation <strong>of</strong> particles<br />

with pores between them;<br />

◮ Water can flow through these pores.<br />

◮ This flow will be consi<strong>de</strong>red lam<strong>in</strong>ar.<br />

◮ The medium is saturated <strong>of</strong> water( the pore space is filled with<br />

water) up to a certa<strong>in</strong> constant-pressure surface,<br />

◮ This is called a piezometric surface;<br />

◮ Above this surface, pores are partially filled with water.<br />

◮ We will only consi<strong>de</strong>r a medium that is:


<strong>Evolution</strong> <strong>of</strong> a <strong>Free</strong> <strong>Surface</strong> <strong>in</strong> a <strong>Porous</strong> <strong>Medium</strong><br />

Un<strong>de</strong>rground water<br />

Un<strong>de</strong>rground water<br />

◮ Water that lies below the surface <strong>of</strong> the Earth<br />

◮ The un<strong>de</strong>rground is mo<strong>de</strong>led as be<strong>in</strong>g an aggregation <strong>of</strong> particles<br />

with pores between them;<br />

◮ Water can flow through these pores.<br />

◮ This flow will be consi<strong>de</strong>red lam<strong>in</strong>ar.<br />

◮ The medium is saturated <strong>of</strong> water( the pore space is filled with<br />

water) up to a certa<strong>in</strong> constant-pressure surface,<br />

◮ This is called a piezometric surface;<br />

◮ Above this surface, pores are partially filled with water.<br />

◮ We will only consi<strong>de</strong>r a medium that is:<br />

◮ “constant”, that is, there is no movement <strong>of</strong> the material that<br />

composes it;


<strong>Evolution</strong> <strong>of</strong> a <strong>Free</strong> <strong>Surface</strong> <strong>in</strong> a <strong>Porous</strong> <strong>Medium</strong><br />

Un<strong>de</strong>rground water<br />

Un<strong>de</strong>rground water<br />

◮ Water that lies below the surface <strong>of</strong> the Earth<br />

◮ The un<strong>de</strong>rground is mo<strong>de</strong>led as be<strong>in</strong>g an aggregation <strong>of</strong> particles<br />

with pores between them;<br />

◮ Water can flow through these pores.<br />

◮ This flow will be consi<strong>de</strong>red lam<strong>in</strong>ar.<br />

◮ The medium is saturated <strong>of</strong> water( the pore space is filled with<br />

water) up to a certa<strong>in</strong> constant-pressure surface,<br />

◮ This is called a piezometric surface;<br />

◮ Above this surface, pores are partially filled with water.<br />

◮ We will only consi<strong>de</strong>r a medium that is:<br />

◮ “constant”, that is, there is no movement <strong>of</strong> the material that<br />

composes it;<br />

◮ homogeneous


<strong>Evolution</strong> <strong>of</strong> a <strong>Free</strong> <strong>Surface</strong> <strong>in</strong> a <strong>Porous</strong> <strong>Medium</strong><br />

Un<strong>de</strong>rground water<br />

Un<strong>de</strong>rground water<br />

◮ Water that lies below the surface <strong>of</strong> the Earth<br />

◮ The un<strong>de</strong>rground is mo<strong>de</strong>led as be<strong>in</strong>g an aggregation <strong>of</strong> particles<br />

with pores between them;<br />

◮ Water can flow through these pores.<br />

◮ This flow will be consi<strong>de</strong>red lam<strong>in</strong>ar.<br />

◮ The medium is saturated <strong>of</strong> water( the pore space is filled with<br />

water) up to a certa<strong>in</strong> constant-pressure surface,<br />

◮ This is called a piezometric surface;<br />

◮ Above this surface, pores are partially filled with water.<br />

◮ We will only consi<strong>de</strong>r a medium that is:<br />

◮ “constant”, that is, there is no movement <strong>of</strong> the material that<br />

composes it;<br />

◮ homogeneous<br />

◮ We will consi<strong>de</strong>r a macroscopic <strong>de</strong>scription <strong>of</strong> the flow.


<strong>Evolution</strong> <strong>of</strong> a <strong>Free</strong> <strong>Surface</strong> <strong>in</strong> a <strong>Porous</strong> <strong>Medium</strong><br />

Un<strong>de</strong>rground water<br />

Un<strong>de</strong>rground water<br />

◮ Water that lies below the surface <strong>of</strong> the Earth<br />

◮ The un<strong>de</strong>rground is mo<strong>de</strong>led as be<strong>in</strong>g an aggregation <strong>of</strong> particles<br />

with pores between them;<br />

◮ Water can flow through these pores.<br />

◮ This flow will be consi<strong>de</strong>red lam<strong>in</strong>ar.<br />

◮ The medium is saturated <strong>of</strong> water( the pore space is filled with<br />

water) up to a certa<strong>in</strong> constant-pressure surface,<br />

◮ This is called a piezometric surface;<br />

◮ Above this surface, pores are partially filled with water.<br />

◮ We will only consi<strong>de</strong>r a medium that is:<br />

◮ “constant”, that is, there is no movement <strong>of</strong> the material that<br />

composes it;<br />

◮ homogeneous<br />

◮ We will consi<strong>de</strong>r a macroscopic <strong>de</strong>scription <strong>of</strong> the flow.<br />

◮ Our porous medium is boun<strong>de</strong>d by below by an impermeable<br />

bottom.


<strong>Evolution</strong> <strong>of</strong> a <strong>Free</strong> <strong>Surface</strong> <strong>in</strong> a <strong>Porous</strong> <strong>Medium</strong><br />

Un<strong>de</strong>rground water<br />

Un<strong>de</strong>rground water<br />

◮ Water that lies below the surface <strong>of</strong> the Earth<br />

◮ The un<strong>de</strong>rground is mo<strong>de</strong>led as be<strong>in</strong>g an aggregation <strong>of</strong> particles<br />

with pores between them;<br />

◮ Water can flow through these pores.<br />

◮ This flow will be consi<strong>de</strong>red lam<strong>in</strong>ar.<br />

◮ The medium is saturated <strong>of</strong> water( the pore space is filled with<br />

water) up to a certa<strong>in</strong> constant-pressure surface,<br />

◮ This is called a piezometric surface;<br />

◮ Above this surface, pores are partially filled with water.<br />

◮ We will only consi<strong>de</strong>r a medium that is:<br />

◮ “constant”, that is, there is no movement <strong>of</strong> the material that<br />

composes it;<br />

◮ homogeneous<br />

◮ We will consi<strong>de</strong>r a macroscopic <strong>de</strong>scription <strong>of</strong> the flow.<br />

◮ Our porous medium is boun<strong>de</strong>d by below by an impermeable<br />

bottom.


<strong>Evolution</strong> <strong>of</strong> a <strong>Free</strong> <strong>Surface</strong> <strong>in</strong> a <strong>Porous</strong> <strong>Medium</strong><br />

<strong>Free</strong> <strong>Surface</strong> <strong>Evolution</strong> <strong>in</strong> <strong>Porous</strong> <strong>Medium</strong>: sett<strong>in</strong>g the problem<br />

Sett<strong>in</strong>g the problem


<strong>Evolution</strong> <strong>of</strong> a <strong>Free</strong> <strong>Surface</strong> <strong>in</strong> a <strong>Porous</strong> <strong>Medium</strong><br />

<strong>Free</strong> <strong>Surface</strong> <strong>Evolution</strong> <strong>in</strong> <strong>Porous</strong> <strong>Medium</strong>: sett<strong>in</strong>g the problem<br />

Sett<strong>in</strong>g the problem<br />

◮ The problem is to study the propagation <strong>of</strong> a disturbance on the<br />

surface <strong>of</strong> a fluid totally immersed <strong>in</strong> a porous medium.


<strong>Evolution</strong> <strong>of</strong> a <strong>Free</strong> <strong>Surface</strong> <strong>in</strong> a <strong>Porous</strong> <strong>Medium</strong><br />

<strong>Free</strong> <strong>Surface</strong> <strong>Evolution</strong> <strong>in</strong> <strong>Porous</strong> <strong>Medium</strong>: sett<strong>in</strong>g the problem<br />

Sett<strong>in</strong>g the problem<br />

◮ The problem is to study the propagation <strong>of</strong> a disturbance on the<br />

surface <strong>of</strong> a fluid totally immersed <strong>in</strong> a porous medium.<br />

◮ We want to get the equation govern<strong>in</strong>g the evolution <strong>of</strong> this<br />

disturbance.


<strong>Evolution</strong> <strong>of</strong> a <strong>Free</strong> <strong>Surface</strong> <strong>in</strong> a <strong>Porous</strong> <strong>Medium</strong><br />

<strong>Free</strong> <strong>Surface</strong> <strong>Evolution</strong> <strong>in</strong> <strong>Porous</strong> <strong>Medium</strong>: sett<strong>in</strong>g the problem<br />

Sett<strong>in</strong>g the problem<br />

◮ The problem is to study the propagation <strong>of</strong> a disturbance on the<br />

surface <strong>of</strong> a fluid totally immersed <strong>in</strong> a porous medium.<br />

◮ We want to get the equation govern<strong>in</strong>g the evolution <strong>of</strong> this<br />

disturbance.<br />

◮ Ma<strong>in</strong> Application:


<strong>Evolution</strong> <strong>of</strong> a <strong>Free</strong> <strong>Surface</strong> <strong>in</strong> a <strong>Porous</strong> <strong>Medium</strong><br />

<strong>Free</strong> <strong>Surface</strong> <strong>Evolution</strong> <strong>in</strong> <strong>Porous</strong> <strong>Medium</strong>: sett<strong>in</strong>g the problem<br />

Sett<strong>in</strong>g the problem<br />

◮ The problem is to study the propagation <strong>of</strong> a disturbance on the<br />

surface <strong>of</strong> a fluid totally immersed <strong>in</strong> a porous medium.<br />

◮ We want to get the equation govern<strong>in</strong>g the evolution <strong>of</strong> this<br />

disturbance.<br />

◮ Ma<strong>in</strong> Application:<br />

◮ Groundwater


<strong>Evolution</strong> <strong>of</strong> a <strong>Free</strong> <strong>Surface</strong> <strong>in</strong> a <strong>Porous</strong> <strong>Medium</strong><br />

<strong>Free</strong> <strong>Surface</strong> <strong>Evolution</strong> <strong>in</strong> <strong>Porous</strong> <strong>Medium</strong>: sett<strong>in</strong>g the problem<br />

Sett<strong>in</strong>g the problem<br />

◮ The problem is to study the propagation <strong>of</strong> a disturbance on the<br />

surface <strong>of</strong> a fluid totally immersed <strong>in</strong> a porous medium.<br />

◮ We want to get the equation govern<strong>in</strong>g the evolution <strong>of</strong> this<br />

disturbance.<br />

◮ Ma<strong>in</strong> Application:<br />

◮ Groundwater ⇒ Water table fluctuations


<strong>Evolution</strong> <strong>of</strong> a <strong>Free</strong> <strong>Surface</strong> <strong>in</strong> a <strong>Porous</strong> <strong>Medium</strong><br />

<strong>Free</strong> <strong>Surface</strong> <strong>Evolution</strong> <strong>in</strong> <strong>Porous</strong> <strong>Medium</strong>: sett<strong>in</strong>g the problem<br />

Sett<strong>in</strong>g the problem<br />

◮ The problem is to study the propagation <strong>of</strong> a disturbance on the<br />

surface <strong>of</strong> a fluid totally immersed <strong>in</strong> a porous medium.<br />

◮ We want to get the equation govern<strong>in</strong>g the evolution <strong>of</strong> this<br />

disturbance.<br />

◮ Ma<strong>in</strong> Application:<br />

◮ Groundwater ⇒ Water table fluctuations<br />

◮ Unconf<strong>in</strong>ed Aquifers


<strong>Evolution</strong> <strong>of</strong> a <strong>Free</strong> <strong>Surface</strong> <strong>in</strong> a <strong>Porous</strong> <strong>Medium</strong><br />

<strong>Free</strong> <strong>Surface</strong> <strong>Evolution</strong> <strong>in</strong> <strong>Porous</strong> <strong>Medium</strong>: sett<strong>in</strong>g the problem<br />

Sett<strong>in</strong>g the problem<br />

◮ The problem is to study the propagation <strong>of</strong> a disturbance on the<br />

surface <strong>of</strong> a fluid totally immersed <strong>in</strong> a porous medium.<br />

◮ We want to get the equation govern<strong>in</strong>g the evolution <strong>of</strong> this<br />

disturbance.<br />

◮ Ma<strong>in</strong> Application:<br />

◮ Groundwater ⇒ Water table fluctuations<br />

◮ Unconf<strong>in</strong>ed Aquifers<br />

◮ Dam seepage problem


<strong>Evolution</strong> <strong>of</strong> a <strong>Free</strong> <strong>Surface</strong> <strong>in</strong> a <strong>Porous</strong> <strong>Medium</strong><br />

<strong>Free</strong> <strong>Surface</strong> <strong>Evolution</strong> <strong>in</strong> <strong>Porous</strong> <strong>Medium</strong>: sett<strong>in</strong>g the problem<br />

Sett<strong>in</strong>g the problem<br />

◮ The problem is to study the propagation <strong>of</strong> a disturbance on the<br />

surface <strong>of</strong> a fluid totally immersed <strong>in</strong> a porous medium.<br />

◮ We want to get the equation govern<strong>in</strong>g the evolution <strong>of</strong> this<br />

disturbance.<br />

◮ Ma<strong>in</strong> Application:<br />

◮ Groundwater ⇒ Water table fluctuations<br />

◮ Unconf<strong>in</strong>ed Aquifers<br />

◮<br />

Dam seepage problem<br />

◮ We will consi<strong>de</strong>r 2 dimensional problems.


<strong>Evolution</strong> <strong>of</strong> a <strong>Free</strong> <strong>Surface</strong> <strong>in</strong> a <strong>Porous</strong> <strong>Medium</strong><br />

<strong>Free</strong> <strong>Surface</strong> <strong>Evolution</strong> <strong>in</strong> <strong>Porous</strong> <strong>Medium</strong>: sett<strong>in</strong>g the problem<br />

Sett<strong>in</strong>g the problem<br />

◮ The problem is to study the propagation <strong>of</strong> a disturbance on the<br />

surface <strong>of</strong> a fluid totally immersed <strong>in</strong> a porous medium.<br />

◮ We want to get the equation govern<strong>in</strong>g the evolution <strong>of</strong> this<br />

disturbance.<br />

◮ Ma<strong>in</strong> Application:<br />

◮ Groundwater ⇒ Water table fluctuations<br />

◮ Unconf<strong>in</strong>ed Aquifers<br />

◮<br />

Dam seepage problem<br />

◮ We will consi<strong>de</strong>r 2 dimensional problems.


<strong>Evolution</strong> <strong>of</strong> a <strong>Free</strong> <strong>Surface</strong> <strong>in</strong> a <strong>Porous</strong> <strong>Medium</strong><br />

<strong>Free</strong> <strong>Surface</strong> <strong>Evolution</strong> <strong>in</strong> <strong>Porous</strong> <strong>Medium</strong>: sett<strong>in</strong>g the problem<br />

The equations<br />

◮ The very basics:


<strong>Evolution</strong> <strong>of</strong> a <strong>Free</strong> <strong>Surface</strong> <strong>in</strong> a <strong>Porous</strong> <strong>Medium</strong><br />

<strong>Free</strong> <strong>Surface</strong> <strong>Evolution</strong> <strong>in</strong> <strong>Porous</strong> <strong>Medium</strong>: sett<strong>in</strong>g the problem<br />

The equations<br />

◮ The very basics: the Darcy’s law.


<strong>Evolution</strong> <strong>of</strong> a <strong>Free</strong> <strong>Surface</strong> <strong>in</strong> a <strong>Porous</strong> <strong>Medium</strong><br />

<strong>Free</strong> <strong>Surface</strong> <strong>Evolution</strong> <strong>in</strong> <strong>Porous</strong> <strong>Medium</strong>: sett<strong>in</strong>g the problem<br />

The equations<br />

◮ The very basics: the Darcy’s law.<br />

◮ “the volume flux per unit area is proportional to an applied<br />

pressure”


<strong>Evolution</strong> <strong>of</strong> a <strong>Free</strong> <strong>Surface</strong> <strong>in</strong> a <strong>Porous</strong> <strong>Medium</strong><br />

<strong>Free</strong> <strong>Surface</strong> <strong>Evolution</strong> <strong>in</strong> <strong>Porous</strong> <strong>Medium</strong>: sett<strong>in</strong>g the problem<br />

The equations<br />

◮ The very basics: the Darcy’s law.<br />

◮ “the volume flux per unit area is proportional to an applied<br />

pressure”<br />

u = −K∇p


<strong>Evolution</strong> <strong>of</strong> a <strong>Free</strong> <strong>Surface</strong> <strong>in</strong> a <strong>Porous</strong> <strong>Medium</strong><br />

<strong>Free</strong> <strong>Surface</strong> <strong>Evolution</strong> <strong>in</strong> <strong>Porous</strong> <strong>Medium</strong>: sett<strong>in</strong>g the problem<br />

The equations<br />

◮ The very basics: the Darcy’s law.<br />

◮ “the volume flux per unit area is proportional to an applied<br />

pressure”<br />

u = −K∇p<br />

◮<br />

where u has dimensions <strong>of</strong> velocity,


<strong>Evolution</strong> <strong>of</strong> a <strong>Free</strong> <strong>Surface</strong> <strong>in</strong> a <strong>Porous</strong> <strong>Medium</strong><br />

<strong>Free</strong> <strong>Surface</strong> <strong>Evolution</strong> <strong>in</strong> <strong>Porous</strong> <strong>Medium</strong>: sett<strong>in</strong>g the problem<br />

The equations<br />

◮ The very basics: the Darcy’s law.<br />

◮ “the volume flux per unit area is proportional to an applied<br />

pressure”<br />

u = −K∇p<br />

◮<br />

where u has dimensions <strong>of</strong> velocity, and is called discharge.


<strong>Evolution</strong> <strong>of</strong> a <strong>Free</strong> <strong>Surface</strong> <strong>in</strong> a <strong>Porous</strong> <strong>Medium</strong><br />

<strong>Free</strong> <strong>Surface</strong> <strong>Evolution</strong> <strong>in</strong> <strong>Porous</strong> <strong>Medium</strong>: sett<strong>in</strong>g the problem<br />

The equations<br />

◮ The very basics: the Darcy’s law.<br />

◮ “the volume flux per unit area is proportional to an applied<br />

pressure”<br />

u = −K∇p<br />

◮<br />

where u has dimensions <strong>of</strong> velocity, and is called discharge.<br />

◮ We also impose the conservation <strong>of</strong> the fluid mass


<strong>Evolution</strong> <strong>of</strong> a <strong>Free</strong> <strong>Surface</strong> <strong>in</strong> a <strong>Porous</strong> <strong>Medium</strong><br />

<strong>Free</strong> <strong>Surface</strong> <strong>Evolution</strong> <strong>in</strong> <strong>Porous</strong> <strong>Medium</strong>: sett<strong>in</strong>g the problem<br />

The equations<br />

◮ The very basics: the Darcy’s law.<br />

◮ “the volume flux per unit area is proportional to an applied<br />

pressure”<br />

u = −K∇p<br />

◮<br />

where u has dimensions <strong>of</strong> velocity, and is called discharge.<br />

◮ We also impose the conservation <strong>of</strong> the fluid mass<br />

◮<br />

∇ · u = 0


<strong>Evolution</strong> <strong>of</strong> a <strong>Free</strong> <strong>Surface</strong> <strong>in</strong> a <strong>Porous</strong> <strong>Medium</strong><br />

<strong>Free</strong> <strong>Surface</strong> <strong>Evolution</strong> <strong>in</strong> <strong>Porous</strong> <strong>Medium</strong>: sett<strong>in</strong>g the problem<br />

The equations<br />

◮ The very basics: the Darcy’s law.<br />

◮ “the volume flux per unit area is proportional to an applied<br />

pressure”<br />

u = −K∇p<br />

◮<br />

where u has dimensions <strong>of</strong> velocity, and is called discharge.<br />

◮ We also impose the conservation <strong>of</strong> the fluid mass<br />

◮<br />

∇ · u = 0<br />

◮ Lead<strong>in</strong>g to<br />

∇ 2 p = 0


<strong>Evolution</strong> <strong>of</strong> a <strong>Free</strong> <strong>Surface</strong> <strong>in</strong> a <strong>Porous</strong> <strong>Medium</strong><br />

<strong>Free</strong> <strong>Surface</strong> <strong>Evolution</strong> <strong>in</strong> <strong>Porous</strong> <strong>Medium</strong>: sett<strong>in</strong>g the problem<br />

The equations<br />

◮ The very basics: the Darcy’s law.<br />

◮ “the volume flux per unit area is proportional to an applied<br />

pressure”<br />

u = −K∇p<br />

◮<br />

where u has dimensions <strong>of</strong> velocity, and is called discharge.<br />

◮ We also impose the conservation <strong>of</strong> the fluid mass<br />

◮<br />

∇ · u = 0<br />

◮ Lead<strong>in</strong>g to<br />

Nice!<br />

∇ 2 p = 0


<strong>Evolution</strong> <strong>of</strong> a <strong>Free</strong> <strong>Surface</strong> <strong>in</strong> a <strong>Porous</strong> <strong>Medium</strong><br />

<strong>Free</strong> <strong>Surface</strong> <strong>Evolution</strong> <strong>in</strong> <strong>Porous</strong> <strong>Medium</strong>: sett<strong>in</strong>g the problem<br />

More on equations<br />

◮ It is usual to consi<strong>de</strong>r <strong>in</strong>stead <strong>of</strong> p, the piezometric head


<strong>Evolution</strong> <strong>of</strong> a <strong>Free</strong> <strong>Surface</strong> <strong>in</strong> a <strong>Porous</strong> <strong>Medium</strong><br />

<strong>Free</strong> <strong>Surface</strong> <strong>Evolution</strong> <strong>in</strong> <strong>Porous</strong> <strong>Medium</strong>: sett<strong>in</strong>g the problem<br />

More on equations<br />

◮ It is usual to consi<strong>de</strong>r <strong>in</strong>stead <strong>of</strong> p, the piezometric head<br />

Φ = C · p + y


<strong>Evolution</strong> <strong>of</strong> a <strong>Free</strong> <strong>Surface</strong> <strong>in</strong> a <strong>Porous</strong> <strong>Medium</strong><br />

<strong>Free</strong> <strong>Surface</strong> <strong>Evolution</strong> <strong>in</strong> <strong>Porous</strong> <strong>Medium</strong>: sett<strong>in</strong>g the problem<br />

More on equations<br />

◮ It is usual to consi<strong>de</strong>r <strong>in</strong>stead <strong>of</strong> p, the piezometric head<br />

Φ = C · p + y<br />

where y is the coord<strong>in</strong>ate <strong>in</strong> the direction <strong>of</strong> gravity, C is a<br />

constant


<strong>Evolution</strong> <strong>of</strong> a <strong>Free</strong> <strong>Surface</strong> <strong>in</strong> a <strong>Porous</strong> <strong>Medium</strong><br />

<strong>Free</strong> <strong>Surface</strong> <strong>Evolution</strong> <strong>in</strong> <strong>Porous</strong> <strong>Medium</strong>: sett<strong>in</strong>g the problem<br />

More on equations<br />

◮ It is usual to consi<strong>de</strong>r <strong>in</strong>stead <strong>of</strong> p, the piezometric head<br />

Φ = C · p + y<br />

where y is the coord<strong>in</strong>ate <strong>in</strong> the direction <strong>of</strong> gravity, C is a<br />

constant<br />

◮ and obviously,


<strong>Evolution</strong> <strong>of</strong> a <strong>Free</strong> <strong>Surface</strong> <strong>in</strong> a <strong>Porous</strong> <strong>Medium</strong><br />

<strong>Free</strong> <strong>Surface</strong> <strong>Evolution</strong> <strong>in</strong> <strong>Porous</strong> <strong>Medium</strong>: sett<strong>in</strong>g the problem<br />

More on equations<br />

◮ It is usual to consi<strong>de</strong>r <strong>in</strong>stead <strong>of</strong> p, the piezometric head<br />

Φ = C · p + y<br />

where y is the coord<strong>in</strong>ate <strong>in</strong> the direction <strong>of</strong> gravity, C is a<br />

constant<br />

◮ and obviously,<br />

◮<br />

∇ 2 Φ = 0


<strong>Evolution</strong> <strong>of</strong> a <strong>Free</strong> <strong>Surface</strong> <strong>in</strong> a <strong>Porous</strong> <strong>Medium</strong><br />

<strong>Free</strong> <strong>Surface</strong> <strong>Evolution</strong> <strong>in</strong> <strong>Porous</strong> <strong>Medium</strong>: sett<strong>in</strong>g the problem<br />

The non-dimensional equations and boundary conditions


<strong>Evolution</strong> <strong>of</strong> a <strong>Free</strong> <strong>Surface</strong> <strong>in</strong> a <strong>Porous</strong> <strong>Medium</strong><br />

<strong>Free</strong> <strong>Surface</strong> <strong>Evolution</strong> <strong>in</strong> <strong>Porous</strong> <strong>Medium</strong>: sett<strong>in</strong>g the problem<br />

The non-dimensional equations and boundary conditions<br />

∇ 2 Φ = 0 0 < y < µh(x, t), (1)<br />

Φ = h − 1 y = µh(x, t), (2)<br />

0 = h t − Φ x h x + 1 µ Φ y y = µh(x, t), (3)<br />

Φ y = 0 y = 0 , (4)<br />

In nondimensional variables where


<strong>Evolution</strong> <strong>of</strong> a <strong>Free</strong> <strong>Surface</strong> <strong>in</strong> a <strong>Porous</strong> <strong>Medium</strong><br />

<strong>Free</strong> <strong>Surface</strong> <strong>Evolution</strong> <strong>in</strong> <strong>Porous</strong> <strong>Medium</strong>: sett<strong>in</strong>g the problem<br />

The non-dimensional equations and boundary conditions<br />

∇ 2 Φ = 0 0 < y < µh(x, t), (1)<br />

Φ = h − 1 y = µh(x, t), (2)<br />

0 = h t − Φ x h x + 1 µ Φ y y = µh(x, t), (3)<br />

Φ y = 0 y = 0 , (4)<br />

In nondimensional variables where<br />

◮ h 0 (x, t) is the free surface,


<strong>Evolution</strong> <strong>of</strong> a <strong>Free</strong> <strong>Surface</strong> <strong>in</strong> a <strong>Porous</strong> <strong>Medium</strong><br />

<strong>Free</strong> <strong>Surface</strong> <strong>Evolution</strong> <strong>in</strong> <strong>Porous</strong> <strong>Medium</strong>: sett<strong>in</strong>g the problem<br />

The non-dimensional equations and boundary conditions<br />

∇ 2 Φ = 0 0 < y < µh(x, t), (1)<br />

Φ = h − 1 y = µh(x, t), (2)<br />

0 = h t − Φ x h x + 1 µ Φ y y = µh(x, t), (3)<br />

Φ y = 0 y = 0 , (4)<br />

In nondimensional variables where<br />

◮ h 0 (x, t) is the free surface,<br />

◮ µ = λ/h 0


<strong>Evolution</strong> <strong>of</strong> a <strong>Free</strong> <strong>Surface</strong> <strong>in</strong> a <strong>Porous</strong> <strong>Medium</strong><br />

<strong>Free</strong> <strong>Surface</strong> <strong>Evolution</strong> <strong>in</strong> <strong>Porous</strong> <strong>Medium</strong>: sett<strong>in</strong>g the problem<br />

The non-dimensional equations and boundary conditions<br />

∇ 2 Φ = 0 0 < y < µh(x, t), (1)<br />

Φ = h − 1 y = µh(x, t), (2)<br />

0 = h t − Φ x h x + 1 µ Φ y y = µh(x, t), (3)<br />

Φ y = 0 y = 0 , (4)<br />

In nondimensional variables where<br />

◮ h 0 (x, t) is the free surface,<br />

◮ µ = λ/h 0<br />

◮ λ is the the typical length <strong>of</strong> the surface disturbance


<strong>Evolution</strong> <strong>of</strong> a <strong>Free</strong> <strong>Surface</strong> <strong>in</strong> a <strong>Porous</strong> <strong>Medium</strong><br />

<strong>Free</strong> <strong>Surface</strong> <strong>Evolution</strong> <strong>in</strong> <strong>Porous</strong> <strong>Medium</strong>: sett<strong>in</strong>g the problem<br />

The non-dimensional equations and boundary conditions<br />

∇ 2 Φ = 0 0 < y < µh(x, t), (1)<br />

Φ = h − 1 y = µh(x, t), (2)<br />

0 = h t − Φ x h x + 1 µ Φ y y = µh(x, t), (3)<br />

Φ y = 0 y = 0 , (4)<br />

In nondimensional variables where<br />

◮ h 0 (x, t) is the free surface,<br />

◮ µ = λ/h 0<br />

◮ λ is the the typical length <strong>of</strong> the surface disturbance<br />

◮ h 0 is the undisturbed <strong>de</strong>pth.


<strong>Evolution</strong> <strong>of</strong> a <strong>Free</strong> <strong>Surface</strong> <strong>in</strong> a <strong>Porous</strong> <strong>Medium</strong><br />

<strong>Free</strong> <strong>Surface</strong> <strong>Evolution</strong> <strong>in</strong> <strong>Porous</strong> <strong>Medium</strong>: sett<strong>in</strong>g the problem<br />

The non-dimensional equations and boundary conditions<br />

∇ 2 Φ = 0 0 < y < µh(x, t), (1)<br />

Φ = h − 1 y = µh(x, t), (2)<br />

0 = h t − Φ x h x + 1 µ Φ y y = µh(x, t), (3)<br />

Φ y = 0 y = 0 , (4)<br />

In nondimensional variables where<br />

◮ h 0 (x, t) is the free surface,<br />

◮ µ = λ/h 0<br />

◮ λ is the the typical length <strong>of</strong> the surface disturbance<br />

◮ h 0 is the undisturbed <strong>de</strong>pth.<br />

◮ N.B.: we consi<strong>de</strong>r a flat bottom.


<strong>Evolution</strong> <strong>of</strong> a <strong>Free</strong> <strong>Surface</strong> <strong>in</strong> a <strong>Porous</strong> <strong>Medium</strong><br />

<strong>Free</strong> <strong>Surface</strong> <strong>Evolution</strong> <strong>in</strong> <strong>Porous</strong> <strong>Medium</strong>: sett<strong>in</strong>g the problem<br />

The non-dimensional equations and boundary conditions<br />

∇ 2 Φ = 0 0 < y < µh(x, t), (1)<br />

Φ = h − 1 y = µh(x, t), (2)<br />

0 = h t − Φ x h x + 1 µ Φ y y = µh(x, t), (3)<br />

Φ y = 0 y = 0 , (4)<br />

In nondimensional variables where<br />

◮ h 0 (x, t) is the free surface,<br />

◮ µ = λ/h 0<br />

◮ λ is the the typical length <strong>of</strong> the surface disturbance<br />

◮ h 0 is the undisturbed <strong>de</strong>pth.<br />

◮ N.B.: we consi<strong>de</strong>r a flat bottom.<br />

◮ Looks like usual hydrodynamics,


<strong>Evolution</strong> <strong>of</strong> a <strong>Free</strong> <strong>Surface</strong> <strong>in</strong> a <strong>Porous</strong> <strong>Medium</strong><br />

<strong>Free</strong> <strong>Surface</strong> <strong>Evolution</strong> <strong>in</strong> <strong>Porous</strong> <strong>Medium</strong>: sett<strong>in</strong>g the problem<br />

The non-dimensional equations and boundary conditions<br />

∇ 2 Φ = 0 0 < y < µh(x, t), (1)<br />

Φ = h − 1 y = µh(x, t), (2)<br />

0 = h t − Φ x h x + 1 µ Φ y y = µh(x, t), (3)<br />

Φ y = 0 y = 0 , (4)<br />

In nondimensional variables where<br />

◮ h 0 (x, t) is the free surface,<br />

◮ µ = λ/h 0<br />

◮ λ is the the typical length <strong>of</strong> the surface disturbance<br />

◮ h 0 is the undisturbed <strong>de</strong>pth.<br />

◮ N.B.: we consi<strong>de</strong>r a flat bottom.<br />

◮ Looks like usual hydrodynamics,but it is simpler!.


<strong>Evolution</strong> <strong>of</strong> a <strong>Free</strong> <strong>Surface</strong> <strong>in</strong> a <strong>Porous</strong> <strong>Medium</strong><br />

<strong>Free</strong> <strong>Surface</strong> <strong>Evolution</strong> <strong>in</strong> <strong>Porous</strong> <strong>Medium</strong>: sett<strong>in</strong>g the problem<br />

The non-dimensional equations and boundary conditions<br />

∇ 2 Φ = 0 0 < y < µh(x, t), (1)<br />

Φ = h − 1 y = µh(x, t), (2)<br />

0 = h t − Φ x h x + 1 µ Φ y y = µh(x, t), (3)<br />

Φ y = 0 y = 0 , (4)<br />

In nondimensional variables where<br />

◮ h 0 (x, t) is the free surface,<br />

◮ µ = λ/h 0<br />

◮ λ is the the typical length <strong>of</strong> the surface disturbance<br />

◮ h 0 is the undisturbed <strong>de</strong>pth.<br />

◮ N.B.: we consi<strong>de</strong>r a flat bottom.<br />

◮ Looks like usual hydrodynamics,but it is simpler!.


<strong>Evolution</strong> <strong>of</strong> a <strong>Free</strong> <strong>Surface</strong> <strong>in</strong> a <strong>Porous</strong> <strong>Medium</strong><br />

Well-known results<br />

Well-known results<br />

◮ The Dupuit-Forchheimer approximation


<strong>Evolution</strong> <strong>of</strong> a <strong>Free</strong> <strong>Surface</strong> <strong>in</strong> a <strong>Porous</strong> <strong>Medium</strong><br />

Well-known results<br />

Well-known results<br />

◮ The Dupuit-Forchheimer approximation<br />

◮ µ ≪ 1


<strong>Evolution</strong> <strong>of</strong> a <strong>Free</strong> <strong>Surface</strong> <strong>in</strong> a <strong>Porous</strong> <strong>Medium</strong><br />

Well-known results<br />

Well-known results<br />

◮ The Dupuit-Forchheimer approximation<br />

◮ µ ≪ 1<br />

◮ that is, we look for a longwave limit.


<strong>Evolution</strong> <strong>of</strong> a <strong>Free</strong> <strong>Surface</strong> <strong>in</strong> a <strong>Porous</strong> <strong>Medium</strong><br />

Well-known results<br />

Well-known results<br />

◮ The Dupuit-Forchheimer approximation<br />

◮ µ ≪ 1<br />

◮ that is, we look for a longwave limit.<br />

◮ for <strong>in</strong>stance, if you are <strong>in</strong>terested <strong>in</strong> a long and th<strong>in</strong> dam, this is<br />

OK.


<strong>Evolution</strong> <strong>of</strong> a <strong>Free</strong> <strong>Surface</strong> <strong>in</strong> a <strong>Porous</strong> <strong>Medium</strong><br />

Well-known results<br />

Well-known results<br />

◮ The Dupuit-Forchheimer approximation<br />

◮ µ ≪ 1<br />

◮ that is, we look for a longwave limit.<br />

◮ for <strong>in</strong>stance, if you are <strong>in</strong>terested <strong>in</strong> a long and th<strong>in</strong> dam, this is<br />

OK.<br />


<strong>Evolution</strong> <strong>of</strong> a <strong>Free</strong> <strong>Surface</strong> <strong>in</strong> a <strong>Porous</strong> <strong>Medium</strong><br />

Well-known results<br />

The equations for the surface <strong>in</strong> the Dupuit approximation<br />

◮ Hav<strong>in</strong>g a perturbative parameter


<strong>Evolution</strong> <strong>of</strong> a <strong>Free</strong> <strong>Surface</strong> <strong>in</strong> a <strong>Porous</strong> <strong>Medium</strong><br />

Well-known results<br />

The equations for the surface <strong>in</strong> the Dupuit approximation<br />

◮ Hav<strong>in</strong>g a perturbative parameter , let us take advange <strong>of</strong> it.


<strong>Evolution</strong> <strong>of</strong> a <strong>Free</strong> <strong>Surface</strong> <strong>in</strong> a <strong>Porous</strong> <strong>Medium</strong><br />

Well-known results<br />

The equations for the surface <strong>in</strong> the Dupuit approximation<br />

◮ Hav<strong>in</strong>g a perturbative parameter , let us take advange <strong>of</strong> it.<br />

◮ A long-wave expansion based on µ ≪ 1 gives us an equation for<br />

h(x, t)


<strong>Evolution</strong> <strong>of</strong> a <strong>Free</strong> <strong>Surface</strong> <strong>in</strong> a <strong>Porous</strong> <strong>Medium</strong><br />

Well-known results<br />

The equations for the surface <strong>in</strong> the Dupuit approximation<br />

◮ Hav<strong>in</strong>g a perturbative parameter , let us take advange <strong>of</strong> it.<br />

◮ A long-wave expansion based on µ ≪ 1 gives us an equation for<br />

h(x, t)correct to or<strong>de</strong>r µ:


<strong>Evolution</strong> <strong>of</strong> a <strong>Free</strong> <strong>Surface</strong> <strong>in</strong> a <strong>Porous</strong> <strong>Medium</strong><br />

Well-known results<br />

The equations for the surface <strong>in</strong> the Dupuit approximation<br />

◮ Hav<strong>in</strong>g a perturbative parameter , let us take advange <strong>of</strong> it.<br />

◮ A long-wave expansion based on µ ≪ 1 gives us an equation for<br />

h(x, t)correct to or<strong>de</strong>r µ:<br />

◮<br />

h t = (hh x ) x


<strong>Evolution</strong> <strong>of</strong> a <strong>Free</strong> <strong>Surface</strong> <strong>in</strong> a <strong>Porous</strong> <strong>Medium</strong><br />

Well-known results<br />

The equations for the surface <strong>in</strong> the Dupuit approximation<br />

◮ Hav<strong>in</strong>g a perturbative parameter , let us take advange <strong>of</strong> it.<br />

◮ A long-wave expansion based on µ ≪ 1 gives us an equation for<br />

h(x, t)correct to or<strong>de</strong>r µ:<br />

◮<br />

h t = (hh x ) x<br />

◮ This equation is called the Bouss<strong>in</strong>esq or


<strong>Evolution</strong> <strong>of</strong> a <strong>Free</strong> <strong>Surface</strong> <strong>in</strong> a <strong>Porous</strong> <strong>Medium</strong><br />

Well-known results<br />

The equations for the surface <strong>in</strong> the Dupuit approximation<br />

◮ Hav<strong>in</strong>g a perturbative parameter , let us take advange <strong>of</strong> it.<br />

◮ A long-wave expansion based on µ ≪ 1 gives us an equation for<br />

h(x, t)correct to or<strong>de</strong>r µ:<br />

◮<br />

h t = (hh x ) x<br />

◮ This equation is called the Bouss<strong>in</strong>esq or Dupuit-Bouss<strong>in</strong>esq<br />

equation


<strong>Evolution</strong> <strong>of</strong> a <strong>Free</strong> <strong>Surface</strong> <strong>in</strong> a <strong>Porous</strong> <strong>Medium</strong><br />

Well-known results<br />

Dupuit-Bouss<strong>in</strong>esq equation<br />

◮ A lot is known about this equation:


<strong>Evolution</strong> <strong>of</strong> a <strong>Free</strong> <strong>Surface</strong> <strong>in</strong> a <strong>Porous</strong> <strong>Medium</strong><br />

Well-known results<br />

Dupuit-Bouss<strong>in</strong>esq equation<br />

◮ A lot is known about this equation:<br />

◮ It possesses self-similar solutions.


<strong>Evolution</strong> <strong>of</strong> a <strong>Free</strong> <strong>Surface</strong> <strong>in</strong> a <strong>Porous</strong> <strong>Medium</strong><br />

Well-known results<br />

Dupuit-Bouss<strong>in</strong>esq equation<br />

◮ A lot is known about this equation:<br />

◮ It possesses self-similar solutions.<br />

◮ For <strong>in</strong>stance: h = t −1/3 g(ξ), with ξ = x/t 1/3


<strong>Evolution</strong> <strong>of</strong> a <strong>Free</strong> <strong>Surface</strong> <strong>in</strong> a <strong>Porous</strong> <strong>Medium</strong><br />

Well-known results<br />

Dupuit-Bouss<strong>in</strong>esq equation<br />

◮ A lot is known about this equation:<br />

◮ It possesses self-similar solutions.<br />

◮ For <strong>in</strong>stance: h = t −1/3 g(ξ), with ξ = x/t 1/3 and<br />

g = 0 if ξ > ξ 0 , and g = 1 6 (ξ2 0 − ξ2 ) if ξ < ξ 0 .


<strong>Evolution</strong> <strong>of</strong> a <strong>Free</strong> <strong>Surface</strong> <strong>in</strong> a <strong>Porous</strong> <strong>Medium</strong><br />

Well-known results<br />

Dupuit-Bouss<strong>in</strong>esq equation<br />

◮ A lot is known about this equation:<br />

◮ It possesses self-similar solutions.<br />

◮ For <strong>in</strong>stance: h = t −1/3 g(ξ), with ξ = x/t 1/3 and<br />

g = 0 if ξ > ξ 0 , and g = 1 6 (ξ2 0 − ξ2 ) if ξ < ξ 0 .<br />

◮ This is an open<strong>in</strong>g parabola with a shock at ξ0 .


<strong>Evolution</strong> <strong>of</strong> a <strong>Free</strong> <strong>Surface</strong> <strong>in</strong> a <strong>Porous</strong> <strong>Medium</strong><br />

Well-known results<br />

Dupuit-Bouss<strong>in</strong>esq equation<br />

◮ A lot is known about this equation:<br />

◮ It possesses self-similar solutions.<br />

◮ For <strong>in</strong>stance: h = t −1/3 g(ξ), with ξ = x/t 1/3 and<br />

g = 0 if ξ > ξ 0 , and g = 1 6 (ξ2 0 − ξ2 ) if ξ < ξ 0 .<br />

◮ This is an open<strong>in</strong>g parabola with a shock at ξ0 .<br />

◮ Self-similar solutions solutions dom<strong>in</strong>ate large time dynamics.


<strong>Evolution</strong> <strong>of</strong> a <strong>Free</strong> <strong>Surface</strong> <strong>in</strong> a <strong>Porous</strong> <strong>Medium</strong><br />

Well-known results<br />

Dupuit-Bouss<strong>in</strong>esq equation<br />

◮ A lot is known about this equation:<br />

◮ It possesses self-similar solutions.<br />

◮ For <strong>in</strong>stance: h = t −1/3 g(ξ), with ξ = x/t 1/3 and<br />

g = 0 if ξ > ξ 0 , and g = 1 6 (ξ2 0 − ξ2 ) if ξ < ξ 0 .<br />

◮ This is an open<strong>in</strong>g parabola with a shock at ξ0 .<br />

◮ Self-similar solutions solutions dom<strong>in</strong>ate large time dynamics.


<strong>Evolution</strong> <strong>of</strong> a <strong>Free</strong> <strong>Surface</strong> <strong>in</strong> a <strong>Porous</strong> <strong>Medium</strong><br />

Well-known results<br />

Dupuit-Bouss<strong>in</strong>esq equation<br />

◮ A lot is known about this equation:<br />

◮ It possesses self-similar solutions.<br />

◮ For <strong>in</strong>stance: h = t −1/3 g(ξ), with ξ = x/t 1/3 and<br />

g = 0 if ξ > ξ 0 , and g = 1 6 (ξ2 0 − ξ2 ) if ξ < ξ 0 .<br />

◮ This is an open<strong>in</strong>g parabola with a shock at ξ0 .<br />

◮ Self-similar solutions solutions dom<strong>in</strong>ate large time dynamics.


<strong>Evolution</strong> <strong>of</strong> a <strong>Free</strong> <strong>Surface</strong> <strong>in</strong> a <strong>Porous</strong> <strong>Medium</strong><br />

Well-known results<br />

◮ You can go beyond the first or<strong>de</strong>r approximation:


<strong>Evolution</strong> <strong>of</strong> a <strong>Free</strong> <strong>Surface</strong> <strong>in</strong> a <strong>Porous</strong> <strong>Medium</strong><br />

Well-known results<br />

◮ You can go beyond the first or<strong>de</strong>r approximation:<br />

h t = ( 1 2 h2 + µ2<br />

3 h3 h xx ) xx


<strong>Evolution</strong> <strong>of</strong> a <strong>Free</strong> <strong>Surface</strong> <strong>in</strong> a <strong>Porous</strong> <strong>Medium</strong><br />

Well-known results<br />

◮ You can go beyond the first or<strong>de</strong>r approximation:<br />

h t = ( 1 2 h2 + µ2<br />

3 h3 h xx ) xx<br />

◮ Which also <strong>de</strong>splays a – higher-or<strong>de</strong>r – shock.


<strong>Evolution</strong> <strong>of</strong> a <strong>Free</strong> <strong>Surface</strong> <strong>in</strong> a <strong>Porous</strong> <strong>Medium</strong><br />

Well-known results<br />

◮ You can go beyond the first or<strong>de</strong>r approximation:<br />

h t = ( 1 2 h2 + µ2<br />

3 h3 h xx ) xx<br />

◮ Which also <strong>de</strong>splays a – higher-or<strong>de</strong>r – shock.<br />

◮ So, what if µ is not small.


<strong>Evolution</strong> <strong>of</strong> a <strong>Free</strong> <strong>Surface</strong> <strong>in</strong> a <strong>Porous</strong> <strong>Medium</strong><br />

Well-known results<br />

◮ You can go beyond the first or<strong>de</strong>r approximation:<br />

h t = ( 1 2 h2 + µ2<br />

3 h3 h xx ) xx<br />

◮ Which also <strong>de</strong>splays a – higher-or<strong>de</strong>r – shock.<br />

◮ So, what if µ is not small.


<strong>Evolution</strong> <strong>of</strong> a <strong>Free</strong> <strong>Surface</strong> <strong>in</strong> a <strong>Porous</strong> <strong>Medium</strong><br />

Exact equation<br />

Less well-known results<br />

◮ So, let us say that µ is just a parameter.


<strong>Evolution</strong> <strong>of</strong> a <strong>Free</strong> <strong>Surface</strong> <strong>in</strong> a <strong>Porous</strong> <strong>Medium</strong><br />

Exact equation<br />

Less well-known results<br />

◮ So, let us say that µ is just a parameter.<br />

◮ No perturbation theory


<strong>Evolution</strong> <strong>of</strong> a <strong>Free</strong> <strong>Surface</strong> <strong>in</strong> a <strong>Porous</strong> <strong>Medium</strong><br />

Exact equation<br />

Less well-known results<br />

◮ So, let us say that µ is just a parameter.<br />

◮ No perturbation theory.<br />

◮ New strategy:


<strong>Evolution</strong> <strong>of</strong> a <strong>Free</strong> <strong>Surface</strong> <strong>in</strong> a <strong>Porous</strong> <strong>Medium</strong><br />

Exact equation<br />

Less well-known results<br />

◮ So, let us say that µ is just a parameter.<br />

◮ No perturbation theory.<br />

◮ New strategy:<br />

◮ <strong>de</strong>f<strong>in</strong>e a conformal transformation from the strip R × (0, h(x)) to<br />

R × (0, µ)


<strong>Evolution</strong> <strong>of</strong> a <strong>Free</strong> <strong>Surface</strong> <strong>in</strong> a <strong>Porous</strong> <strong>Medium</strong><br />

Exact equation<br />

Less well-known results<br />

◮ So, let us say that µ is just a parameter.<br />

◮ No perturbation theory.<br />

◮ New strategy:<br />

◮ <strong>de</strong>f<strong>in</strong>e a conformal transformation from the strip R × (0, h(x)) to<br />

R × (0, µ)<br />

◮ this transformation elim<strong>in</strong>ates the free-boundary problem,<br />

replac<strong>in</strong>g it by a Laplace equation with new boundary conditions,<br />

envolv<strong>in</strong>g the Jacobian <strong>of</strong> the transformation


<strong>Evolution</strong> <strong>of</strong> a <strong>Free</strong> <strong>Surface</strong> <strong>in</strong> a <strong>Porous</strong> <strong>Medium</strong><br />

Exact equation<br />

Less well-known results<br />

◮ So, let us say that µ is just a parameter.<br />

◮ No perturbation theory.<br />

◮ New strategy:<br />

◮ <strong>de</strong>f<strong>in</strong>e a conformal transformation from the strip R × (0, h(x)) to<br />

R × (0, µ)<br />

◮ this transformation elim<strong>in</strong>ates the free-boundary problem,<br />

replac<strong>in</strong>g it by a Laplace equation with new boundary conditions,<br />

envolv<strong>in</strong>g the Jacobian <strong>of</strong> the transformation<br />

◮ then solve the Laplace equation, with two <strong>of</strong> the boundary<br />

conditions


<strong>Evolution</strong> <strong>of</strong> a <strong>Free</strong> <strong>Surface</strong> <strong>in</strong> a <strong>Porous</strong> <strong>Medium</strong><br />

Exact equation<br />

Less well-known results<br />

◮ So, let us say that µ is just a parameter.<br />

◮ No perturbation theory.<br />

◮ New strategy:<br />

◮ <strong>de</strong>f<strong>in</strong>e a conformal transformation from the strip R × (0, h(x)) to<br />

R × (0, µ)<br />

◮ this transformation elim<strong>in</strong>ates the free-boundary problem,<br />

replac<strong>in</strong>g it by a Laplace equation with new boundary conditions,<br />

envolv<strong>in</strong>g the Jacobian <strong>of</strong> the transformation<br />

◮ then solve the Laplace equation, with two <strong>of</strong> the boundary<br />

conditions<br />

◮ this solution <strong>de</strong>pends on h(x) , which is yet un<strong>de</strong>term<strong>in</strong>ed


<strong>Evolution</strong> <strong>of</strong> a <strong>Free</strong> <strong>Surface</strong> <strong>in</strong> a <strong>Porous</strong> <strong>Medium</strong><br />

Exact equation<br />

Less well-known results<br />

◮ So, let us say that µ is just a parameter.<br />

◮ No perturbation theory.<br />

◮ New strategy:<br />

◮ <strong>de</strong>f<strong>in</strong>e a conformal transformation from the strip R × (0, h(x)) to<br />

R × (0, µ)<br />

◮ this transformation elim<strong>in</strong>ates the free-boundary problem,<br />

replac<strong>in</strong>g it by a Laplace equation with new boundary conditions,<br />

envolv<strong>in</strong>g the Jacobian <strong>of</strong> the transformation<br />

◮ then solve the Laplace equation, with two <strong>of</strong> the boundary<br />

conditions<br />

◮ this solution <strong>de</strong>pends on h(x) , which is yet un<strong>de</strong>term<strong>in</strong>ed<br />

◮ use the third boundary solution to get the equation for h(x).


<strong>Evolution</strong> <strong>of</strong> a <strong>Free</strong> <strong>Surface</strong> <strong>in</strong> a <strong>Porous</strong> <strong>Medium</strong><br />

Exact equation<br />

Less well-known results<br />

◮ So, let us say that µ is just a parameter.<br />

◮ No perturbation theory.<br />

◮ New strategy:<br />

◮ <strong>de</strong>f<strong>in</strong>e a conformal transformation from the strip R × (0, h(x)) to<br />

R × (0, µ)<br />

◮ this transformation elim<strong>in</strong>ates the free-boundary problem,<br />

replac<strong>in</strong>g it by a Laplace equation with new boundary conditions,<br />

envolv<strong>in</strong>g the Jacobian <strong>of</strong> the transformation<br />

◮ then solve the Laplace equation, with two <strong>of</strong> the boundary<br />

conditions<br />

◮ this solution <strong>de</strong>pends on h(x) , which is yet un<strong>de</strong>term<strong>in</strong>ed<br />

◮ use the third boundary solution to get the equation for h(x).<br />

◮ Seems nice, let’s do it!.


<strong>Evolution</strong> <strong>of</strong> a <strong>Free</strong> <strong>Surface</strong> <strong>in</strong> a <strong>Porous</strong> <strong>Medium</strong><br />

Exact equation<br />

Conformal transformation


<strong>Evolution</strong> <strong>of</strong> a <strong>Free</strong> <strong>Surface</strong> <strong>in</strong> a <strong>Porous</strong> <strong>Medium</strong><br />

Exact equation<br />

Conformal transformation


<strong>Evolution</strong> <strong>of</strong> a <strong>Free</strong> <strong>Surface</strong> <strong>in</strong> a <strong>Porous</strong> <strong>Medium</strong><br />

Exact equation<br />

Conformal transformation<br />

◮ We know that the transformation exists


<strong>Evolution</strong> <strong>of</strong> a <strong>Free</strong> <strong>Surface</strong> <strong>in</strong> a <strong>Porous</strong> <strong>Medium</strong><br />

Exact equation<br />

Conformal transformation<br />

◮ We know that the transformation exists<br />

◮ preserves the Laplacian


<strong>Evolution</strong> <strong>of</strong> a <strong>Free</strong> <strong>Surface</strong> <strong>in</strong> a <strong>Porous</strong> <strong>Medium</strong><br />

Exact equation<br />

Conformal transformation<br />

◮ We know that the transformation exists<br />

◮ preserves the Laplacian<br />

◮ preserves angles


<strong>Evolution</strong> <strong>of</strong> a <strong>Free</strong> <strong>Surface</strong> <strong>in</strong> a <strong>Porous</strong> <strong>Medium</strong><br />

Exact equation<br />

Conformal transformation<br />

◮ We know that the transformation exists<br />

◮ preserves the Laplacian<br />

◮ preserves angles<br />

◮ But the boundary conditions are not <strong>in</strong>variant.


<strong>Evolution</strong> <strong>of</strong> a <strong>Free</strong> <strong>Surface</strong> <strong>in</strong> a <strong>Porous</strong> <strong>Medium</strong><br />

Exact equation<br />

Conformal transformation<br />

◮ We know that the transformation exists<br />

◮ preserves the Laplacian<br />

◮ preserves angles<br />

◮ But the boundary conditions are not <strong>in</strong>variant.


<strong>Evolution</strong> <strong>of</strong> a <strong>Free</strong> <strong>Surface</strong> <strong>in</strong> a <strong>Porous</strong> <strong>Medium</strong><br />

Exact equation<br />

The transformed equations


<strong>Evolution</strong> <strong>of</strong> a <strong>Free</strong> <strong>Surface</strong> <strong>in</strong> a <strong>Porous</strong> <strong>Medium</strong><br />

Exact equation<br />

The transformed equations<br />

∇ 2 Φ = 0 0 < ζ < µ, (5)<br />

Φ = h − 1 ζ = µ, (6)<br />

0 = h t + Φ ζ<br />

µx ξ<br />

ζ = µ, (7)<br />

Φ ζ = 0 ζ = 0. (8)


<strong>Evolution</strong> <strong>of</strong> a <strong>Free</strong> <strong>Surface</strong> <strong>in</strong> a <strong>Porous</strong> <strong>Medium</strong><br />

Exact equation<br />

The transformed equations<br />

∇ 2 Φ = 0 0 < ζ < µ, (5)<br />

Our free-boundary problem<br />

Φ = h − 1 ζ = µ, (6)<br />

0 = h t + Φ ζ<br />

µx ξ<br />

ζ = µ, (7)<br />

Φ ζ = 0 ζ = 0. (8)


<strong>Evolution</strong> <strong>of</strong> a <strong>Free</strong> <strong>Surface</strong> <strong>in</strong> a <strong>Porous</strong> <strong>Medium</strong><br />

Exact equation<br />

The transformed equations<br />

∇ 2 Φ = 0 0 < ζ < µ, (5)<br />

Φ = h − 1 ζ = µ, (6)<br />

0 = h t + Φ ζ<br />

µx ξ<br />

ζ = µ, (7)<br />

Φ ζ = 0 ζ = 0. (8)<br />

Our free-boundary problemhas been transformed to a fixed-boundary<br />

problem


<strong>Evolution</strong> <strong>of</strong> a <strong>Free</strong> <strong>Surface</strong> <strong>in</strong> a <strong>Porous</strong> <strong>Medium</strong><br />

Exact equation<br />

The transformed equations<br />

∇ 2 Φ = 0 0 < ζ < µ, (5)<br />

Φ = h − 1 ζ = µ, (6)<br />

0 = h t + Φ ζ<br />

µx ξ<br />

ζ = µ, (7)<br />

Φ ζ = 0 ζ = 0. (8)<br />

Our free-boundary problemhas been transformed to a fixed-boundary<br />

problem with auxiliary conditions <strong>in</strong>volv<strong>in</strong>g an unknown function,<br />

h(x, t).


<strong>Evolution</strong> <strong>of</strong> a <strong>Free</strong> <strong>Surface</strong> <strong>in</strong> a <strong>Porous</strong> <strong>Medium</strong><br />

Exact equation<br />

The transformed equations<br />

∇ 2 Φ = 0 0 < ζ < µ, (5)<br />

Φ = h − 1 ζ = µ, (6)<br />

0 = h t + Φ ζ<br />

µx ξ<br />

ζ = µ, (7)<br />

Φ ζ = 0 ζ = 0. (8)<br />

Our free-boundary problemhas been transformed to a fixed-boundary<br />

problem with auxiliary conditions <strong>in</strong>volv<strong>in</strong>g an unknown function,<br />

h(x, t). So, let’s just solve Laplace equation!


<strong>Evolution</strong> <strong>of</strong> a <strong>Free</strong> <strong>Surface</strong> <strong>in</strong> a <strong>Porous</strong> <strong>Medium</strong><br />

Exact equation<br />

The transformed equations<br />

∇ 2 Φ = 0 0 < ζ < µ, (5)<br />

Φ = h − 1 ζ = µ, (6)<br />

0 = h t + Φ ζ<br />

µx ξ<br />

ζ = µ, (7)<br />

Φ ζ = 0 ζ = 0. (8)<br />

Our free-boundary problemhas been transformed to a fixed-boundary<br />

problem with auxiliary conditions <strong>in</strong>volv<strong>in</strong>g an unknown function,<br />

h(x, t). So, let’s just solve Laplace equation!


<strong>Evolution</strong> <strong>of</strong> a <strong>Free</strong> <strong>Surface</strong> <strong>in</strong> a <strong>Porous</strong> <strong>Medium</strong><br />

Exact equation<br />

Solv<strong>in</strong>g Laplace’s equation<br />

The follow<strong>in</strong>g expression solves Laplace equation,


<strong>Evolution</strong> <strong>of</strong> a <strong>Free</strong> <strong>Surface</strong> <strong>in</strong> a <strong>Porous</strong> <strong>Medium</strong><br />

Exact equation<br />

Solv<strong>in</strong>g Laplace’s equation<br />

The follow<strong>in</strong>g expression solves Laplace equation,<br />

◮ with Φ = h − 1 at ζ = µ and


<strong>Evolution</strong> <strong>of</strong> a <strong>Free</strong> <strong>Surface</strong> <strong>in</strong> a <strong>Porous</strong> <strong>Medium</strong><br />

Exact equation<br />

Solv<strong>in</strong>g Laplace’s equation<br />

The follow<strong>in</strong>g expression solves Laplace equation,<br />

◮ with Φ = h − 1 at ζ = µ and<br />

◮ Φ ζ = 0 at ζ = 0:


<strong>Evolution</strong> <strong>of</strong> a <strong>Free</strong> <strong>Surface</strong> <strong>in</strong> a <strong>Porous</strong> <strong>Medium</strong><br />

Exact equation<br />

Solv<strong>in</strong>g Laplace’s equation<br />

The follow<strong>in</strong>g expression solves Laplace equation,<br />

◮ with Φ = h − 1 at ζ = µ and<br />

◮ Φ ζ = 0 at ζ = 0:<br />

Φ(ξ, ζ, t) =<br />

∫ ∞<br />

−∞<br />

F[Φ(ξ, µ, t)] cosh[2πκζ]<br />

cosh[2πκµ] e2πiκξ dκ, (9)


<strong>Evolution</strong> <strong>of</strong> a <strong>Free</strong> <strong>Surface</strong> <strong>in</strong> a <strong>Porous</strong> <strong>Medium</strong><br />

Exact equation<br />

Solv<strong>in</strong>g Laplace’s equation<br />

The follow<strong>in</strong>g expression solves Laplace equation,<br />

◮ with Φ = h − 1 at ζ = µ and<br />

◮ Φ ζ = 0 at ζ = 0:<br />

Φ(ξ, ζ, t) =<br />

∫ ∞<br />

−∞<br />

F[Φ(ξ, µ, t)] cosh[2πκζ]<br />

cosh[2πκµ] e2πiκξ dκ, (9)<br />

where F[Φ](κ, µ, t) is the Fourier Transform <strong>of</strong> the piezometric head<br />

Φ at the surface ζ = µ, given <strong>in</strong> terms <strong>of</strong> h − 1.


<strong>Evolution</strong> <strong>of</strong> a <strong>Free</strong> <strong>Surface</strong> <strong>in</strong> a <strong>Porous</strong> <strong>Medium</strong><br />

Exact equation<br />

Solv<strong>in</strong>g Laplace’s equation<br />

The follow<strong>in</strong>g expression solves Laplace equation,<br />

◮ with Φ = h − 1 at ζ = µ and<br />

◮ Φ ζ = 0 at ζ = 0:<br />

Φ(ξ, ζ, t) =<br />

∫ ∞<br />

−∞<br />

F[Φ(ξ, µ, t)] cosh[2πκζ]<br />

cosh[2πκµ] e2πiκξ dκ, (9)<br />

where F[Φ](κ, µ, t) is the Fourier Transform <strong>of</strong> the piezometric head<br />

Φ at the surface ζ = µ, given <strong>in</strong> terms <strong>of</strong> h − 1.<br />

As noted before, everyth<strong>in</strong>g is given <strong>in</strong> terms <strong>of</strong> h(x(ξ, ζ), t).


<strong>Evolution</strong> <strong>of</strong> a <strong>Free</strong> <strong>Surface</strong> <strong>in</strong> a <strong>Porous</strong> <strong>Medium</strong><br />

Exact equation<br />

The EQUATION


<strong>Evolution</strong> <strong>of</strong> a <strong>Free</strong> <strong>Surface</strong> <strong>in</strong> a <strong>Porous</strong> <strong>Medium</strong><br />

Exact equation<br />

The EQUATION<br />

There rema<strong>in</strong>s the dynamics boundary condition:


<strong>Evolution</strong> <strong>of</strong> a <strong>Free</strong> <strong>Surface</strong> <strong>in</strong> a <strong>Porous</strong> <strong>Medium</strong><br />

Exact equation<br />

The EQUATION<br />

There rema<strong>in</strong>s the dynamics boundary condition:<br />

h t + Φ ζ<br />

µx ξ<br />

= 0 at ζ = µ


<strong>Evolution</strong> <strong>of</strong> a <strong>Free</strong> <strong>Surface</strong> <strong>in</strong> a <strong>Porous</strong> <strong>Medium</strong><br />

Exact equation<br />

The EQUATION<br />

There rema<strong>in</strong>s the dynamics boundary condition:<br />

We already calculated Φ(ξ, ζ, t).<br />

h t + Φ ζ<br />

µx ξ<br />

= 0 at ζ = µ


<strong>Evolution</strong> <strong>of</strong> a <strong>Free</strong> <strong>Surface</strong> <strong>in</strong> a <strong>Porous</strong> <strong>Medium</strong><br />

Exact equation<br />

The EQUATION<br />

There rema<strong>in</strong>s the dynamics boundary condition:<br />

h t + Φ ζ<br />

µx ξ<br />

= 0 at ζ = µ<br />

We already calculated Φ(ξ, ζ, t).Just calculate the <strong>de</strong>rivative and plug<br />

it <strong>in</strong>to this equation:


<strong>Evolution</strong> <strong>of</strong> a <strong>Free</strong> <strong>Surface</strong> <strong>in</strong> a <strong>Porous</strong> <strong>Medium</strong><br />

Exact equation<br />

The EQUATION<br />

There rema<strong>in</strong>s the dynamics boundary condition:<br />

h t + Φ ζ<br />

µx ξ<br />

= 0 at ζ = µ<br />

We already calculated Φ(ξ, ζ, t).Just calculate the <strong>de</strong>rivative and plug<br />

it <strong>in</strong>to this equation:The <strong>de</strong>rivative:


<strong>Evolution</strong> <strong>of</strong> a <strong>Free</strong> <strong>Surface</strong> <strong>in</strong> a <strong>Porous</strong> <strong>Medium</strong><br />

Exact equation<br />

The EQUATION<br />

There rema<strong>in</strong>s the dynamics boundary condition:<br />

h t + Φ ζ<br />

µx ξ<br />

= 0 at ζ = µ<br />

We already calculated Φ(ξ, ζ, t).Just calculate the <strong>de</strong>rivative and plug<br />

it <strong>in</strong>to this equation:The <strong>de</strong>rivative:<br />

Φ ζ (ξ, µ, t) =<br />

=<br />

∫ ∞<br />

−∞<br />

∫ ∞<br />

−∞<br />

2πκ tanh[2πκµ]F[Φ] e 2πiκξ dκ (10)<br />

−i tanh[2πκµ]F[Φ ξ ] e 2πiκξ dκ ≡ T[Φ ξ ] , (11)


<strong>Evolution</strong> <strong>of</strong> a <strong>Free</strong> <strong>Surface</strong> <strong>in</strong> a <strong>Porous</strong> <strong>Medium</strong><br />

Exact equation<br />

The EQUATION<br />

There rema<strong>in</strong>s the dynamics boundary condition:<br />

h t + Φ ζ<br />

µx ξ<br />

= 0 at ζ = µ<br />

We already calculated Φ(ξ, ζ, t).Just calculate the <strong>de</strong>rivative and plug<br />

it <strong>in</strong>to this equation:The <strong>de</strong>rivative:<br />

Φ ζ (ξ, µ, t) =<br />

=<br />

∫ ∞<br />

−∞<br />

∫ ∞<br />

−∞<br />

2πκ tanh[2πκµ]F[Φ] e 2πiκξ dκ (10)<br />

−i tanh[2πκµ]F[Φ ξ ] e 2πiκξ dκ ≡ T[Φ ξ ] , (11)<br />

where T[−] is an <strong>in</strong>tegral operator <strong>de</strong>f<strong>in</strong>ed by the above equation.


<strong>Evolution</strong> <strong>of</strong> a <strong>Free</strong> <strong>Surface</strong> <strong>in</strong> a <strong>Porous</strong> <strong>Medium</strong><br />

Exact equation<br />

The EQUATION<br />

There rema<strong>in</strong>s the dynamics boundary condition:<br />

h t + Φ ζ<br />

µx ξ<br />

= 0 at ζ = µ<br />

We already calculated Φ(ξ, ζ, t).Just calculate the <strong>de</strong>rivative and plug<br />

it <strong>in</strong>to this equation:The <strong>de</strong>rivative:<br />

Φ ζ (ξ, µ, t) =<br />

=<br />

∫ ∞<br />

−∞<br />

∫ ∞<br />

−∞<br />

2πκ tanh[2πκµ]F[Φ] e 2πiκξ dκ (10)<br />

−i tanh[2πκµ]F[Φ ξ ] e 2πiκξ dκ ≡ T[Φ ξ ] , (11)<br />

where T[−] is an <strong>in</strong>tegral operator <strong>de</strong>f<strong>in</strong>ed by the above equation. So,<br />

now we have the equation:


<strong>Evolution</strong> <strong>of</strong> a <strong>Free</strong> <strong>Surface</strong> <strong>in</strong> a <strong>Porous</strong> <strong>Medium</strong><br />

Exact equation<br />

The EQUATION<br />

There rema<strong>in</strong>s the dynamics boundary condition:<br />

h t + Φ ζ<br />

µx ξ<br />

= 0 at ζ = µ<br />

We already calculated Φ(ξ, ζ, t).Just calculate the <strong>de</strong>rivative and plug<br />

it <strong>in</strong>to this equation:The <strong>de</strong>rivative:<br />

Φ ζ (ξ, µ, t) =<br />

=<br />

∫ ∞<br />

−∞<br />

∫ ∞<br />

−∞<br />

2πκ tanh[2πκµ]F[Φ] e 2πiκξ dκ (10)<br />

−i tanh[2πκµ]F[Φ ξ ] e 2πiκξ dκ ≡ T[Φ ξ ] , (11)<br />

where T[−] is an <strong>in</strong>tegral operator <strong>de</strong>f<strong>in</strong>ed by the above equation. So,<br />

now we have the equation:<br />

h t + 1<br />

µx ξ<br />

T[h ξ ] = 0 , (12)


<strong>Evolution</strong> <strong>of</strong> a <strong>Free</strong> <strong>Surface</strong> <strong>in</strong> a <strong>Porous</strong> <strong>Medium</strong><br />

Exact equation<br />

The EQUATION<br />

There rema<strong>in</strong>s the dynamics boundary condition:<br />

h t + Φ ζ<br />

µx ξ<br />

= 0 at ζ = µ<br />

We already calculated Φ(ξ, ζ, t).Just calculate the <strong>de</strong>rivative and plug<br />

it <strong>in</strong>to this equation:The <strong>de</strong>rivative:<br />

Φ ζ (ξ, µ, t) =<br />

=<br />

∫ ∞<br />

−∞<br />

∫ ∞<br />

−∞<br />

2πκ tanh[2πκµ]F[Φ] e 2πiκξ dκ (10)<br />

−i tanh[2πκµ]F[Φ ξ ] e 2πiκξ dκ ≡ T[Φ ξ ] , (11)<br />

where T[−] is an <strong>in</strong>tegral operator <strong>de</strong>f<strong>in</strong>ed by the above equation. So,<br />

now we have the equation:<br />

h t + 1<br />

µx ξ<br />

T[h ξ ] = 0 , (12)


<strong>Evolution</strong> <strong>of</strong> a <strong>Free</strong> <strong>Surface</strong> <strong>in</strong> a <strong>Porous</strong> <strong>Medium</strong><br />

Exact equation<br />

Appraisal <strong>of</strong> the EQUATION


<strong>Evolution</strong> <strong>of</strong> a <strong>Free</strong> <strong>Surface</strong> <strong>in</strong> a <strong>Porous</strong> <strong>Medium</strong><br />

Exact equation<br />

Appraisal <strong>of</strong> the EQUATION<br />

◮ It is an exact equation


<strong>Evolution</strong> <strong>of</strong> a <strong>Free</strong> <strong>Surface</strong> <strong>in</strong> a <strong>Porous</strong> <strong>Medium</strong><br />

Exact equation<br />

Appraisal <strong>of</strong> the EQUATION<br />

◮ It is an exact equation<br />

◮ It is an elegant equation


<strong>Evolution</strong> <strong>of</strong> a <strong>Free</strong> <strong>Surface</strong> <strong>in</strong> a <strong>Porous</strong> <strong>Medium</strong><br />

Exact equation<br />

Appraisal <strong>of</strong> the EQUATION<br />

◮ It is an exact equation<br />

◮ It is an elegant equation<br />

◮ It is (1+1)-dimensional equation


<strong>Evolution</strong> <strong>of</strong> a <strong>Free</strong> <strong>Surface</strong> <strong>in</strong> a <strong>Porous</strong> <strong>Medium</strong><br />

Exact equation<br />

Appraisal <strong>of</strong> the EQUATION<br />

◮ It is an exact equation<br />

◮ It is an elegant equation<br />

◮ It is (1+1)-dimensional equation<br />

◮ Although it looks complicated,it is amenable to numerics with<br />

FFT implementation.


<strong>Evolution</strong> <strong>of</strong> a <strong>Free</strong> <strong>Surface</strong> <strong>in</strong> a <strong>Porous</strong> <strong>Medium</strong><br />

Exact equation<br />

Appraisal <strong>of</strong> the EQUATION<br />

◮ It is an exact equation<br />

◮ It is an elegant equation<br />

◮ It is (1+1)-dimensional equation<br />

◮ Although it looks complicated,it is amenable to numerics with<br />

FFT implementation.


<strong>Evolution</strong> <strong>of</strong> a <strong>Free</strong> <strong>Surface</strong> <strong>in</strong> a <strong>Porous</strong> <strong>Medium</strong><br />

Exact equation<br />

BUT,...


<strong>Evolution</strong> <strong>of</strong> a <strong>Free</strong> <strong>Surface</strong> <strong>in</strong> a <strong>Porous</strong> <strong>Medium</strong><br />

Exact equation<br />

BUT,...<br />

◮ Isn’t that a l<strong>in</strong>ear equation?


<strong>Evolution</strong> <strong>of</strong> a <strong>Free</strong> <strong>Surface</strong> <strong>in</strong> a <strong>Porous</strong> <strong>Medium</strong><br />

Exact equation<br />

BUT,...<br />

◮ Isn’t that a l<strong>in</strong>ear equation?<br />

◮ NO!.


<strong>Evolution</strong> <strong>of</strong> a <strong>Free</strong> <strong>Surface</strong> <strong>in</strong> a <strong>Porous</strong> <strong>Medium</strong><br />

Exact equation<br />

BUT,...<br />

◮ Isn’t that a l<strong>in</strong>ear equation?<br />

◮ NO!.<br />

◮ The EQUATION gives the time evolution <strong>of</strong> the free surface <strong>in</strong><br />

the conformal coord<strong>in</strong>ates (ξ, ζ).


<strong>Evolution</strong> <strong>of</strong> a <strong>Free</strong> <strong>Surface</strong> <strong>in</strong> a <strong>Porous</strong> <strong>Medium</strong><br />

Exact equation<br />

BUT,...<br />

◮ Isn’t that a l<strong>in</strong>ear equation?<br />

◮ NO!.<br />

◮ The EQUATION gives the time evolution <strong>of</strong> the free surface <strong>in</strong><br />

the conformal coord<strong>in</strong>ates (ξ, ζ).<br />

◮ x ξ , <strong>de</strong>pends on h(x, t), mak<strong>in</strong>g Eq.(12) nonl<strong>in</strong>ear.


<strong>Evolution</strong> <strong>of</strong> a <strong>Free</strong> <strong>Surface</strong> <strong>in</strong> a <strong>Porous</strong> <strong>Medium</strong><br />

Exact equation<br />

BUT,...<br />

◮ Isn’t that a l<strong>in</strong>ear equation?<br />

◮ NO!.<br />

◮ The EQUATION gives the time evolution <strong>of</strong> the free surface <strong>in</strong><br />

the conformal coord<strong>in</strong>ates (ξ, ζ).<br />

◮ x ξ , <strong>de</strong>pends on h(x, t), mak<strong>in</strong>g Eq.(12) nonl<strong>in</strong>ear.<br />

◮ But still...


<strong>Evolution</strong> <strong>of</strong> a <strong>Free</strong> <strong>Surface</strong> <strong>in</strong> a <strong>Porous</strong> <strong>Medium</strong><br />

Exact equation<br />

BUT,...<br />

◮ Isn’t that a l<strong>in</strong>ear equation?<br />

◮ NO!.<br />

◮ The EQUATION gives the time evolution <strong>of</strong> the free surface <strong>in</strong><br />

the conformal coord<strong>in</strong>ates (ξ, ζ).<br />

◮ x ξ , <strong>de</strong>pends on h(x, t), mak<strong>in</strong>g Eq.(12) nonl<strong>in</strong>ear.<br />

◮ But still... All <strong>of</strong> this is <strong>in</strong> the conformal coord<strong>in</strong>ates, which have<br />

not been shown.


<strong>Evolution</strong> <strong>of</strong> a <strong>Free</strong> <strong>Surface</strong> <strong>in</strong> a <strong>Porous</strong> <strong>Medium</strong><br />

Exact equation<br />

BUT,...<br />

◮ Isn’t that a l<strong>in</strong>ear equation?<br />

◮ NO!.<br />

◮ The EQUATION gives the time evolution <strong>of</strong> the free surface <strong>in</strong><br />

the conformal coord<strong>in</strong>ates (ξ, ζ).<br />

◮ x ξ , <strong>de</strong>pends on h(x, t), mak<strong>in</strong>g Eq.(12) nonl<strong>in</strong>ear.<br />

◮ But still... All <strong>of</strong> this is <strong>in</strong> the conformal coord<strong>in</strong>ates, which have<br />

not been shown.<br />

◮ Can one obta<strong>in</strong> them?


<strong>Evolution</strong> <strong>of</strong> a <strong>Free</strong> <strong>Surface</strong> <strong>in</strong> a <strong>Porous</strong> <strong>Medium</strong><br />

Exact equation<br />

BUT,...<br />

◮ Isn’t that a l<strong>in</strong>ear equation?<br />

◮ NO!.<br />

◮ The EQUATION gives the time evolution <strong>of</strong> the free surface <strong>in</strong><br />

the conformal coord<strong>in</strong>ates (ξ, ζ).<br />

◮ x ξ , <strong>de</strong>pends on h(x, t), mak<strong>in</strong>g Eq.(12) nonl<strong>in</strong>ear.<br />

◮ But still... All <strong>of</strong> this is <strong>in</strong> the conformal coord<strong>in</strong>ates, which have<br />

not been shown.<br />

◮ Can one obta<strong>in</strong> them? Sure.


<strong>Evolution</strong> <strong>of</strong> a <strong>Free</strong> <strong>Surface</strong> <strong>in</strong> a <strong>Porous</strong> <strong>Medium</strong><br />

Exact equation<br />

BUT,...<br />

◮ Isn’t that a l<strong>in</strong>ear equation?<br />

◮ NO!.<br />

◮ The EQUATION gives the time evolution <strong>of</strong> the free surface <strong>in</strong><br />

the conformal coord<strong>in</strong>ates (ξ, ζ).<br />

◮ x ξ , <strong>de</strong>pends on h(x, t), mak<strong>in</strong>g Eq.(12) nonl<strong>in</strong>ear.<br />

◮ But still... All <strong>of</strong> this is <strong>in</strong> the conformal coord<strong>in</strong>ates, which have<br />

not been shown.<br />

◮ Can one obta<strong>in</strong> them? Sure.


<strong>Evolution</strong> <strong>of</strong> a <strong>Free</strong> <strong>Surface</strong> <strong>in</strong> a <strong>Porous</strong> <strong>Medium</strong><br />

Exact equation<br />

Transformed coord<strong>in</strong>ates<br />

∫<br />

y(ξ, ζ) = µ<br />

∫<br />

= µ<br />

R<br />

R<br />

s<strong>in</strong>h[2πkζ]<br />

s<strong>in</strong>h[2πkµ] F[h]e2πiκξ dκ<br />

s<strong>in</strong>h[2πkζ]<br />

s<strong>in</strong>h[2πkµ] F[h − 1]e2πiκξ dκ + ζ.<br />

(13)


<strong>Evolution</strong> <strong>of</strong> a <strong>Free</strong> <strong>Surface</strong> <strong>in</strong> a <strong>Porous</strong> <strong>Medium</strong><br />

Exact equation<br />

Transformed coord<strong>in</strong>ates<br />

∫<br />

y(ξ, ζ) = µ<br />

∫<br />

= µ<br />

R<br />

R<br />

∫ ∞<br />

x(ξ, ζ) = −iµ<br />

= −iµ<br />

−∞<br />

∫ ∞<br />

−∞<br />

s<strong>in</strong>h[2πkζ]<br />

s<strong>in</strong>h[2πkµ] F[h]e2πiκξ dκ<br />

s<strong>in</strong>h[2πkζ]<br />

s<strong>in</strong>h[2πkµ] F[h − 1]e2πiκξ dκ + ζ.<br />

cosh[2πκζ]<br />

s<strong>in</strong>h[2πκµ] F[h]e2πiκξ dκ<br />

cosh[2πκζ]<br />

s<strong>in</strong>h[2πκµ] F[h − 1]e2πiκξ dκ + ξ,<br />

(13)<br />

(14)


<strong>Evolution</strong> <strong>of</strong> a <strong>Free</strong> <strong>Surface</strong> <strong>in</strong> a <strong>Porous</strong> <strong>Medium</strong><br />

Exact equation<br />

More..<br />

◮ You can do asymptotics for small µ and recover previous results.


<strong>Evolution</strong> <strong>of</strong> a <strong>Free</strong> <strong>Surface</strong> <strong>in</strong> a <strong>Porous</strong> <strong>Medium</strong><br />

Exact equation<br />

More..<br />

◮ You can do asymptotics for small µ and recover previous results.<br />

◮ You can also study the case l<strong>in</strong>ear case:


<strong>Evolution</strong> <strong>of</strong> a <strong>Free</strong> <strong>Surface</strong> <strong>in</strong> a <strong>Porous</strong> <strong>Medium</strong><br />

Exact equation<br />

More..<br />

◮ You can do asymptotics for small µ and recover previous results.<br />

◮ You can also study the case l<strong>in</strong>ear case:<br />

◮ Take h = 1 + η, where η is the displacement <strong>of</strong> the free surface<br />

from its undisturbed position.


<strong>Evolution</strong> <strong>of</strong> a <strong>Free</strong> <strong>Surface</strong> <strong>in</strong> a <strong>Porous</strong> <strong>Medium</strong><br />

Exact equation<br />

More..<br />

◮ You can do asymptotics for small µ and recover previous results.<br />

◮ You can also study the case l<strong>in</strong>ear case:<br />

◮ Take h = 1 + η, where η is the displacement <strong>of</strong> the free surface<br />

from its undisturbed position.<br />

◮ In the case where η ≪ 1, as a first approximation we can obta<strong>in</strong><br />

a differential equation for η by not<strong>in</strong>g that:


<strong>Evolution</strong> <strong>of</strong> a <strong>Free</strong> <strong>Surface</strong> <strong>in</strong> a <strong>Porous</strong> <strong>Medium</strong><br />

Exact equation<br />

More..<br />

◮ You can do asymptotics for small µ and recover previous results.<br />

◮ You can also study the case l<strong>in</strong>ear case:<br />

◮ Take h = 1 + η, where η is the displacement <strong>of</strong> the free surface<br />

from its undisturbed position.<br />

◮ In the case where η ≪ 1, as a first approximation we can obta<strong>in</strong><br />

a differential equation for η by not<strong>in</strong>g that:<br />

η t = − 1 T[η ξ ]<br />

µ 1 − µT −1 [η ξ ]<br />

= − 1 µ T[η ξ] − T[η ξ ]T −1 [η ξ ] + . . . ,<br />

(15)


<strong>Evolution</strong> <strong>of</strong> a <strong>Free</strong> <strong>Surface</strong> <strong>in</strong> a <strong>Porous</strong> <strong>Medium</strong><br />

Exact equation<br />

More..<br />

◮ You can do asymptotics for small µ and recover previous results.<br />

◮ You can also study the case l<strong>in</strong>ear case:<br />

◮ Take h = 1 + η, where η is the displacement <strong>of</strong> the free surface<br />

from its undisturbed position.<br />

◮ In the case where η ≪ 1, as a first approximation we can obta<strong>in</strong><br />

a differential equation for η by not<strong>in</strong>g that:<br />

η t = − 1 T[η ξ ]<br />

µ 1 − µT −1 [η ξ ]<br />

= − 1 µ T[η ξ] − T[η ξ ]T −1 [η ξ ] + . . . ,<br />

◮ and thus the lowest or<strong>de</strong>r, l<strong>in</strong>ear, equation reads<br />

(15)


<strong>Evolution</strong> <strong>of</strong> a <strong>Free</strong> <strong>Surface</strong> <strong>in</strong> a <strong>Porous</strong> <strong>Medium</strong><br />

Exact equation<br />

More..<br />

◮ You can do asymptotics for small µ and recover previous results.<br />

◮ You can also study the case l<strong>in</strong>ear case:<br />

◮ Take h = 1 + η, where η is the displacement <strong>of</strong> the free surface<br />

from its undisturbed position.<br />

◮ In the case where η ≪ 1, as a first approximation we can obta<strong>in</strong><br />

a differential equation for η by not<strong>in</strong>g that:<br />

η t = − 1 T[η ξ ]<br />

µ 1 − µT −1 [η ξ ]<br />

= − 1 µ T[η ξ] − T[η ξ ]T −1 [η ξ ] + . . . ,<br />

◮ and thus the lowest or<strong>de</strong>r, l<strong>in</strong>ear, equation reads<br />

(15)<br />

η t = − 1 µ T[η ξ] (16)


<strong>Evolution</strong> <strong>of</strong> a <strong>Free</strong> <strong>Surface</strong> <strong>in</strong> a <strong>Porous</strong> <strong>Medium</strong><br />

Exact equation<br />

More..<br />

◮ You can do asymptotics for small µ and recover previous results.<br />

◮ You can also study the case l<strong>in</strong>ear case:<br />

◮ Take h = 1 + η, where η is the displacement <strong>of</strong> the free surface<br />

from its undisturbed position.<br />

◮ In the case where η ≪ 1, as a first approximation we can obta<strong>in</strong><br />

a differential equation for η by not<strong>in</strong>g that:<br />

η t = − 1 T[η ξ ]<br />

µ 1 − µT −1 [η ξ ]<br />

= − 1 µ T[η ξ] − T[η ξ ]T −1 [η ξ ] + . . . ,<br />

◮ and thus the lowest or<strong>de</strong>r, l<strong>in</strong>ear, equation reads<br />

(15)<br />

η t = − 1 µ T[η ξ] (16)


<strong>Evolution</strong> <strong>of</strong> a <strong>Free</strong> <strong>Surface</strong> <strong>in</strong> a <strong>Porous</strong> <strong>Medium</strong><br />

Conclusions<br />

Conclusions


<strong>Evolution</strong> <strong>of</strong> a <strong>Free</strong> <strong>Surface</strong> <strong>in</strong> a <strong>Porous</strong> <strong>Medium</strong><br />

Conclusions<br />

Conclusions<br />

◮ We have <strong>in</strong>troduced a new <strong>in</strong>tegro-differential equation<br />

<strong>de</strong>scrib<strong>in</strong>g exactly the evolution <strong>of</strong> a free surface <strong>of</strong> a fluid totally<br />

imersed <strong>in</strong> a saturated porous medium and boun<strong>de</strong>d by below by<br />

an impermeable bottom.


<strong>Evolution</strong> <strong>of</strong> a <strong>Free</strong> <strong>Surface</strong> <strong>in</strong> a <strong>Porous</strong> <strong>Medium</strong><br />

Conclusions<br />

Conclusions<br />

◮ We have <strong>in</strong>troduced a new <strong>in</strong>tegro-differential equation<br />

<strong>de</strong>scrib<strong>in</strong>g exactly the evolution <strong>of</strong> a free surface <strong>of</strong> a fluid totally<br />

imersed <strong>in</strong> a saturated porous medium and boun<strong>de</strong>d by below by<br />

an impermeable bottom.<br />

◮ Our equation is a porous-media analog <strong>of</strong> the exact equation<br />

found for water waves by Zakharov.


<strong>Evolution</strong> <strong>of</strong> a <strong>Free</strong> <strong>Surface</strong> <strong>in</strong> a <strong>Porous</strong> <strong>Medium</strong><br />

Conclusions<br />

Conclusions<br />

◮ We have <strong>in</strong>troduced a new <strong>in</strong>tegro-differential equation<br />

<strong>de</strong>scrib<strong>in</strong>g exactly the evolution <strong>of</strong> a free surface <strong>of</strong> a fluid totally<br />

imersed <strong>in</strong> a saturated porous medium and boun<strong>de</strong>d by below by<br />

an impermeable bottom.<br />

◮ Our equation is a porous-media analog <strong>of</strong> the exact equation<br />

found for water waves by Zakharov.<br />

◮ We have also shown that the asymptotic long-wave expansion for<br />

this equations leads to known equations.


<strong>Evolution</strong> <strong>of</strong> a <strong>Free</strong> <strong>Surface</strong> <strong>in</strong> a <strong>Porous</strong> <strong>Medium</strong><br />

Conclusions<br />

Conclusions<br />

◮ We have <strong>in</strong>troduced a new <strong>in</strong>tegro-differential equation<br />

<strong>de</strong>scrib<strong>in</strong>g exactly the evolution <strong>of</strong> a free surface <strong>of</strong> a fluid totally<br />

imersed <strong>in</strong> a saturated porous medium and boun<strong>de</strong>d by below by<br />

an impermeable bottom.<br />

◮ Our equation is a porous-media analog <strong>of</strong> the exact equation<br />

found for water waves by Zakharov.<br />

◮ We have also shown that the asymptotic long-wave expansion for<br />

this equations leads to known equations.<br />

◮ We obta<strong>in</strong>ed the l<strong>in</strong>ear limit and ( although not shown here)<br />

obta<strong>in</strong> and exact solution.


<strong>Evolution</strong> <strong>of</strong> a <strong>Free</strong> <strong>Surface</strong> <strong>in</strong> a <strong>Porous</strong> <strong>Medium</strong><br />

Conclusions<br />

Conclusions<br />

◮ We have <strong>in</strong>troduced a new <strong>in</strong>tegro-differential equation<br />

<strong>de</strong>scrib<strong>in</strong>g exactly the evolution <strong>of</strong> a free surface <strong>of</strong> a fluid totally<br />

imersed <strong>in</strong> a saturated porous medium and boun<strong>de</strong>d by below by<br />

an impermeable bottom.<br />

◮ Our equation is a porous-media analog <strong>of</strong> the exact equation<br />

found for water waves by Zakharov.<br />

◮ We have also shown that the asymptotic long-wave expansion for<br />

this equations leads to known equations.<br />

◮ We obta<strong>in</strong>ed the l<strong>in</strong>ear limit and ( although not shown here)<br />

obta<strong>in</strong> and exact solution.<br />

◮ Reference: W. Artiles and R.A. Kraenkel, SIAM J. Appl.<br />

Math,67, 619, (2006)


<strong>Evolution</strong> <strong>of</strong> a <strong>Free</strong> <strong>Surface</strong> <strong>in</strong> a <strong>Porous</strong> <strong>Medium</strong><br />

Conclusions<br />

Conclusions<br />

◮ We have <strong>in</strong>troduced a new <strong>in</strong>tegro-differential equation<br />

<strong>de</strong>scrib<strong>in</strong>g exactly the evolution <strong>of</strong> a free surface <strong>of</strong> a fluid totally<br />

imersed <strong>in</strong> a saturated porous medium and boun<strong>de</strong>d by below by<br />

an impermeable bottom.<br />

◮ Our equation is a porous-media analog <strong>of</strong> the exact equation<br />

found for water waves by Zakharov.<br />

◮ We have also shown that the asymptotic long-wave expansion for<br />

this equations leads to known equations.<br />

◮ We obta<strong>in</strong>ed the l<strong>in</strong>ear limit and ( although not shown here)<br />

obta<strong>in</strong> and exact solution.<br />

◮ Reference: W. Artiles and R.A. Kraenkel, SIAM J. Appl.<br />

Math,67, 619, (2006)<br />

◮ Obrigado = Thanks

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!