23.01.2014 Views

PDF, 0.8 MB

PDF, 0.8 MB

PDF, 0.8 MB

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

The University of Reading<br />

Large-scale processes in a<br />

migratory shorebird<br />

The challenge for behavioural models<br />

Ken Norris<br />

Jenny Gill


Behavioural models<br />

• Predict distribution,<br />

demography and<br />

abundance<br />

• Behavioural dynamics<br />

of resource<br />

competition<br />

• Depletion/interference


Limosa l. islandica<br />

L. l. limosa


Behavioural models:<br />

• Do models work at small-scales?<br />

• If so, how do we move up to larger<br />

scales?


Deben<br />

Alde<br />

Orwell<br />

Stour<br />

Colne<br />

Blackwater


East coast prey<br />

Proportion in diet<br />

1<br />

0.5<br />

0<br />

Oct Nov Dec Jan<br />

Feb Mar<br />

Bivalve density<br />

Bivalves<br />

Polychaetes<br />

Unknown<br />

3000<br />

2000<br />

1000<br />

Deben<br />

Orwell<br />

Stour<br />

0<br />

Oct Nov Dec Jan Feb Mar


Resource depletion models<br />

M<br />

P = T h ∑ ( j − d c<br />

) f j<br />

+1/ a ′ ∑ f j<br />

log( j / d c<br />

)<br />

d c<br />

M<br />

d c<br />

Sutherland & Anderson 1993<br />

• Resource abundance<br />

• Functional response<br />

Intake rate<br />

Prey abundance


Resource depletion models<br />

M<br />

P = T h ∑ ( j − d c<br />

) f j<br />

+1/ a ′ ∑ f j<br />

log( j / d c<br />

)<br />

d c<br />

M<br />

d c<br />

Sutherland & Anderson 1993<br />

• Resource abundance<br />

• Functional response<br />

Intake rate<br />

3<br />

2<br />

1<br />

0<br />

0 2000 4000<br />

Bivalve density


400<br />

Patch<br />

900<br />

Mudflat<br />

225<br />

400<br />

Observed godwit-days ha -1<br />

100<br />

25<br />

0<br />

0 25 100 225 400<br />

196<br />

100<br />

Estuary<br />

100<br />

0<br />

0 100 400 900<br />

36<br />

4<br />

4 36 100 196<br />

Predicted godwit-days ha -1<br />

Gill et al. (2001) Proc. Roy. Soc. B


Intake rates and prey density predict:<br />

• Current godwit distribution at smallscales<br />

• Can we use the same framework to<br />

describe distribution at larger spatial<br />

scales?


100<br />

Population index<br />

80<br />

60<br />

40<br />

20<br />

0<br />

70 74 78 82 86 90 94 98<br />

Year<br />

Source: Wetland Bird Survey


100<br />

101-1000<br />

> 1000<br />

Black-tailed Godwit<br />

Distribution


The buffer effect:<br />

Disproportionate use of poor quality sites with<br />

changing population size<br />

No. in site<br />

Good<br />

Poor<br />

Rate of increase<br />

Population size<br />

Initial population size


Buffer effects may:<br />

1. Explain why spatial distribution changes<br />

with population size<br />

2. Be a key mechanism in population<br />

regulation


Black-tailed godwit buffer effect pattern<br />

Rate of population increase<br />

7<br />

5<br />

3<br />

1<br />

-1<br />

East coast<br />

South coast<br />

-3<br />

0 1 2 3 4<br />

Mean population index (1970-74)


Scaling-up:<br />

• Are the same processes operating at<br />

small and large-scales?<br />

• If so, expect south coast sites to have<br />

higher quality food resources


South coast prey<br />

1<br />

Hydrobia<br />

Polychaetes<br />

Bivalves<br />

Crustaceans<br />

Gastropods<br />

Unknown<br />

Proportion in diet<br />

0.5<br />

0<br />

Oct Nov Dec Jan Feb Mar


South coast switch to<br />

freshwater meadows<br />

Density<br />

1500<br />

1000<br />

500<br />

Annelida<br />

Coleoptera<br />

Diptera<br />

Chironomidae<br />

0<br />

Oct Nov Dec Jan Feb Mar


Seasonal intake rates<br />

Intake Rate (g/sec)<br />

0.0006<br />

0.0004<br />

0.0002<br />

South estuaries<br />

East estuaries<br />

South freshwater<br />

0<br />

Oct Nov Dec Jan Feb Mar


Is intake rate related to rate of<br />

population increase ?<br />

Rate of population increase<br />

6<br />

4<br />

2<br />

0<br />

-2<br />

South coast<br />

East coast<br />

0 .2 .4 .6<br />

Mean spring intake rate (mg/sec)<br />

Gill et al. (2001) Nature


Buffer effects may:<br />

1. Explain why spatial distribution changes<br />

with population size<br />

<br />

2. Be a key mechanism in population<br />

regulation


Since 1993, >800 individually<br />

marked<br />

(c. 1-2% of population)<br />

70-90% resighted<br />

Annual survival rate<br />

87%<br />

94%


Does winter ecology<br />

influence breeding<br />

season processes?


April Isotherms 1961-1990<br />

*<br />

*<br />

= Arrival sites<br />

* * *<br />

* * *<br />

*


6<br />

4<br />

2<br />

0<br />

Arrival times in Iceland<br />

Wintering Location<br />

South coast<br />

East coast<br />

Frequency<br />

21.4.00<br />

23.4.00<br />

25.4.00<br />

27.4.00<br />

29.4.00<br />

1.5.00<br />

3.5.00<br />

5.5.00<br />

7.5.00<br />

9.5.00<br />

11.5.00


Is arrival date related to rate of<br />

population increase ?<br />

10<br />

South coast<br />

East coast<br />

Arrival date<br />

8<br />

6<br />

4<br />

2<br />

0<br />

-2 0 2 4 6<br />

Rate of population increase


<strong>0.8</strong><br />

Proportion of pairs successful<br />

0.6<br />

0.4<br />

0.2<br />

0.0<br />

-22 -20 -18 -16 -14 -12<br />

Fresh<br />

East<br />

coast<br />

South<br />

coast<br />

δ13C<br />

Portugal<br />

Saline


Buffer effects may:<br />

1. Explain why spatial distribution changes<br />

with population size<br />

<br />

2. Be a key mechanism in population<br />

regulation


The Challenge –<br />

Behavioural models at large-scales?<br />

1. What are the behavioural<br />

dynamics operating at largescales?<br />

2. Need to understand ‘carry over’<br />

effects

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!