23.01.2014 Views

An example of development of singularity in a solution to the force ...

An example of development of singularity in a solution to the force ...

An example of development of singularity in a solution to the force ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<strong>An</strong> <strong>example</strong> <strong>of</strong> <strong>development</strong> <strong>of</strong> <strong>s<strong>in</strong>gularity</strong><br />

<strong>in</strong> a <strong>solution</strong> <strong>to</strong> <strong>the</strong> <strong>force</strong>-free Euler equation<br />

Olga Podvig<strong>in</strong>a<br />

olgap@mitp.ru<br />

Vladislav Zheligovsky<br />

vlad@mitp.ru<br />

International Institute <strong>of</strong> Earthquake Prediction Theory<br />

and Ma<strong>the</strong>matical Geophysics,<br />

79 bldg. 2, Warshavskoe ave., 113556 Moscow, Russian Federation<br />

Labora<strong>to</strong>ry <strong>of</strong> general aerodynamics, Institute <strong>of</strong> Mechanics,<br />

Lomonosov Moscow State University,<br />

1, Michur<strong>in</strong>sky ave., 119899 Moscow, Russian Federation<br />

A mixed Euler-Lagrangian description <strong>of</strong> vortex l<strong>in</strong>e transport by a <strong>force</strong>-free<br />

non-viscous fluid flow was recently proposed by Kuznetsov & Ruban [1]. The motion<br />

<strong>of</strong> Lagrangian markers R(a, t) satisfies<br />

∂R<br />

∂t<br />

= v(R, t) −<br />

Ω(R, t) · v(R, t)<br />

|Ω(R, t)| 2 Ω(R, t). (1)<br />

Here a is <strong>the</strong> <strong>in</strong>itial position <strong>of</strong> a marker: R(a, 0) = a, t is time, v is <strong>the</strong> flow<br />

velocity, and<br />

Ω(R, t) ≡ curl R v(R, t) (2)<br />

is vorticity. Equations (1) and (2) are closed by <strong>the</strong> relation<br />

Ω(R(a, t), t) =<br />

(<br />

det ‖ ∂R<br />

∂a ‖ ) −1<br />

(Ω 0 · ∇ a )R(a, t), (3)<br />

where Ω(a, 0) = Ω 0 (a) is <strong>the</strong> <strong>in</strong>itial vorticity.<br />

We have developed a code for numerical <strong>solution</strong> <strong>of</strong> <strong>the</strong> system (1)-(3). 2π-periodicity<br />

<strong>in</strong> space is assumed, so that Fast Fourier Transforms can be used for <strong>the</strong><br />

<strong>in</strong>version <strong>of</strong> curl <strong>in</strong> (2). A second-order Adams-Bashforth f<strong>in</strong>ite-difference scheme is<br />

used for numeric <strong>in</strong>tegration <strong>of</strong> (1). To test <strong>the</strong> code, we have checked that an ABC<br />

flow, which is a steady <strong>solution</strong> <strong>to</strong> <strong>the</strong> <strong>force</strong>-free Euler equation, <strong>in</strong> computations<br />

rema<strong>in</strong>s unaltered. We have also verified that <strong>the</strong> numerical error <strong>in</strong> conservation<br />

<strong>of</strong> <strong>the</strong> <strong>to</strong>tal k<strong>in</strong>etic energy <strong>of</strong> <strong>the</strong> flow is O(h 2 ) (here h is <strong>the</strong> size <strong>of</strong> <strong>the</strong> a-mesh,<br />

where Ω 0 is set); this is consistent with <strong>the</strong> order <strong>of</strong> methods applied for spatial<br />

discretization <strong>of</strong> <strong>the</strong> problem (2) and with f<strong>in</strong>ite-difference schemes used <strong>to</strong> evaluate<br />

gradients <strong>in</strong> (3).<br />

1


Computations have been performed with a uniform mesh <strong>of</strong> 128 3 po<strong>in</strong>ts. Collapse<br />

is found <strong>to</strong> develop <strong>in</strong> a flow, which is <strong>in</strong>itially chosen <strong>to</strong> have random Fourier<br />

harmonics and an exponentially decay<strong>in</strong>g energy spectrum. The flow does not possess<br />

any symmetry. Accord<strong>in</strong>g <strong>to</strong> <strong>the</strong> <strong>the</strong>ory <strong>of</strong> Kuznetsov & Ruban [2], <strong>in</strong> <strong>the</strong><br />

region <strong>of</strong> collapse vorticity behaves as (t 0 − t) −1 , which is <strong>in</strong>deed found <strong>in</strong> computations<br />

(see Fig.1). Their ano<strong>the</strong>r prediction is confirmed: eigenvalues <strong>of</strong> <strong>the</strong> Hessian<br />

‖<br />

∂ 2<br />

∂a i ∂a j<br />

|Ω| −1 ‖ at <strong>the</strong> po<strong>in</strong>t <strong>of</strong> <strong>s<strong>in</strong>gularity</strong> are non-s<strong>in</strong>gular and slightly depend on<br />

time.<br />

Figure 1: |Ω| −1 (vertical axis) as a function <strong>of</strong> time (horizontal axis).<br />

References<br />

[1] Kuznetsov E.A. & Ruban V.P. (2000). Hamil<strong>to</strong>nian dynamics <strong>of</strong> vortex and<br />

magnetic l<strong>in</strong>es <strong>in</strong> hydrodynamic type systems. Phys. Rev. E, 61, 831–841.<br />

[2] Kuznetsov E.A. & Ruban V.P. (2001). Break<strong>in</strong>g <strong>of</strong> vortex l<strong>in</strong>es – a new mechanism<br />

<strong>of</strong> collapse <strong>in</strong> hydrodynamics. Submitted.<br />

2

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!