26.01.2014 Views

Use of High and Low- Density SNP Genotypes in Genomic ... - Illumina

Use of High and Low- Density SNP Genotypes in Genomic ... - Illumina

Use of High and Low- Density SNP Genotypes in Genomic ... - Illumina

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>Use</strong> <strong>of</strong> <strong>High</strong> <strong>and</strong> <strong>Low</strong>-<br />

<strong>Density</strong> <strong>SNP</strong> <strong>Genotypes</strong> <strong>in</strong><br />

<strong>Genomic</strong> Selection <strong>and</strong> QTL<br />

Discovery <strong>in</strong> Dairy Cattle<br />

Kent A. Weigel, Ph.D.<br />

Department <strong>of</strong> Dairy Science<br />

University <strong>of</strong> Wiscons<strong>in</strong>


Cattle Genome Sequence<br />

<br />

AGTCCATGGGGTTGCAGAGTCAGACACAGTGGAGTCACACACATACACACG<br />

GCCCCACGCTGGGTTAAGGCGGGGCTGAGACAAGGGCAGGTGAGGCCTCCCA<br />

• 30 pairs <strong>of</strong> chromosome pairs (<strong>in</strong>cl. X,Y)<br />

• 3 billion base pairs


Illum<strong>in</strong>a Bov<strong>in</strong>e<strong>SNP</strong>50<br />

Genotyp<strong>in</strong>g BeadChip<br />

~ $225 per animal today


Dairy Cattle Genotyp<strong>in</strong>g<br />

(as <strong>of</strong> January 2009)<br />

Countries<br />

Source: USDA-ARS<br />

Animals<br />

United States <strong>and</strong> Canada 22,344<br />

France 8,500<br />

Netherl<strong>and</strong>s, New Zeal<strong>and</strong> 1 6,000<br />

New Zeal<strong>and</strong> <strong>and</strong> Irel<strong>and</strong> 4,500<br />

Germany 3,000<br />

Australia 2,000<br />

Denmark, F<strong>in</strong>l<strong>and</strong>, Sweden 2,000


CDDR Contributors<br />

(Cooperative Dairy DNA Repository)


Source: USDA-ARS<br />

<strong>SNP</strong> Genotype <strong>of</strong> Elevation<br />

(chromosome 1)<br />

1000111220020012111011112111101111001121100020122002220111<br />

1202101200211122110021112001111001011011010220011002201101<br />

1200201101020222121122102010011100011220221222112021120120<br />

2010020220200002110001120201122111211102201111000021220200<br />

0221012020002211220111012100111211102112110020102100022000<br />

2201000201100002202211022112101121110122220012112122200200<br />

0200202020122211002222222002212111121002111120011011101120<br />

0202220001112011010211121211102022100211201211001111102111<br />

2110211122000101101110202200221110102011121111011202102102<br />

1211011022122001211011211012022011002220021002110001110021<br />

1021101110002220020221212110002220102002222121221121112002<br />

0110202001222222112212021211210110012110110200220002001002<br />

0001111011001211021212111201010121202210101011111021102112<br />

2111111212111210110120011111021111011111220121012121101022<br />

202021211222120222002121210121210201100111222121101


<strong>SNP</strong> Effects for Milk Yield<br />

O’Connell, 2008


Source: USDA-ARS (O’Connell)<br />

<strong>SNP</strong> Effects for Net Merit


What is a <strong>Genomic</strong> PTA?<br />

• Approximately 40,000 genetic markers<br />

(<strong>SNP</strong>s) are evaluated<br />

• For each <strong>SNP</strong>, the difference <strong>in</strong><br />

predicted transmitt<strong>in</strong>g ability (PTA)<br />

between animals with 0, 1, or 2 copies<br />

<strong>of</strong> a specific allele is estimated<br />

• <strong>Genomic</strong> evaluations comb<strong>in</strong>e <strong>SNP</strong><br />

effect estimates with the exist<strong>in</strong>g<br />

parent average (PA) or PTA for each<br />

animal


Source: USDA-ARS (VanRaden)<br />

Validation Study<br />

(2004 data were used to predict 2009 data)<br />

HOL JER BSW<br />

Predictor:<br />

Bulls born 2000 2,035 388 150


Source: USDA-ARS (VanRaden)<br />

Reliability Ga<strong>in</strong>s by Trait<br />

(ga<strong>in</strong> above parent average reliability ~35%)<br />

HOL JER BSW<br />

Lifetime Net Merit 24% 8% 9%<br />

Milk Yield 26% 6% 17%<br />

Fat Yield 32% 11% 10%<br />

Prote<strong>in</strong> Yield 24% 2% 14%<br />

Fat % 50% 36% 8%<br />

Prote<strong>in</strong> % 38% 29% 10%


Source: USDA-ARS (VanRaden)<br />

Reliability Ga<strong>in</strong>s by Trait<br />

(ga<strong>in</strong> above parent average reliability ~35%)<br />

HOL JER BSW<br />

Productive Life 32% 7% 12%<br />

Somatic Cell Score 23% 3% 17%<br />

Daughter Pregnancy Rate 28% 7% 18%<br />

F<strong>in</strong>al Score 20% 2% 5%<br />

Udder Depth 37% 20% 8%<br />

Foot Angle 25% 11% (1%)


Source: USDA-ARS (VanRaden)<br />

Reliabilities for Young Bulls<br />

Parent Average vs. <strong>Genomic</strong> PTA


Source: USDA-ARS<br />

Adoption <strong>of</strong> <strong>Genomic</strong> Test<strong>in</strong>g<br />

(young bulls <strong>in</strong> US AI studs, April 2009)<br />

Birth<br />

Year<br />

No. Bulls<br />

Sampled<br />

No. Bulls<br />

Tested<br />

Percent<br />

Tested<br />

2008* 649 615 95%<br />

2007* 1548 1172 76%<br />

2006 1726 1118 65%<br />

2005 1677 1217 73%<br />

2004 1655 991 60%<br />

*count for birth year is <strong>in</strong>complete


<strong>Low</strong>-Cost Genotyp<strong>in</strong>g Assays<br />

• At the current price, the Bov<strong>in</strong>e<strong>SNP</strong>50<br />

BeadChip is limited to applications<br />

<strong>in</strong>volv<strong>in</strong>g males <strong>and</strong> elite females<br />

• An with 300-1000 selected <strong>SNP</strong>s might<br />

deliver a substantial portion <strong>of</strong> the ga<strong>in</strong><br />

for a fraction <strong>of</strong> the price<br />

• Applications may <strong>in</strong>clude: parentage<br />

discovery, selection <strong>of</strong> replacement<br />

heifers, prelim<strong>in</strong>ary screen<strong>in</strong>g <strong>of</strong> young<br />

bulls, <strong>and</strong> genomic mat<strong>in</strong>g programs


Which <strong>SNP</strong>s to Select?<br />

Pick the <strong>SNP</strong>s with largest estimated effects?<br />

How many do we need?


Which <strong>SNP</strong>s to Select?<br />

Pick evenly spaced <strong>SNP</strong>s?<br />

How many do we need?


Validation <strong>of</strong> <strong>Low</strong>-<strong>Density</strong><br />

<strong>Genomic</strong> PTAs<br />

• Compute parent averages <strong>and</strong> genomic<br />

PTAs us<strong>in</strong>g 2003 data from 3,305<br />

Holste<strong>in</strong> bulls born <strong>in</strong> 1952-1998<br />

“Tra<strong>in</strong><strong>in</strong>g Set”<br />

• Compare ability to predict daughter<br />

deviations <strong>in</strong> 2008 data for 1,398 bulls<br />

born from 1999-2002<br />

“Test<strong>in</strong>g Set”


PTA from Progeny Test<strong>in</strong>g (gen. SD)<br />

Predictive Ability for Net Merit<br />

(<strong>Genomic</strong> PTA vs. Progeny Test PTA <strong>in</strong> Test<strong>in</strong>g Set)<br />

Correlation = 0.61<br />

32,518 <strong>SNP</strong>s<br />

Predicted <strong>Genomic</strong> PTA from All <strong>SNP</strong>s


Predictive Ability for Net Merit<br />

(<strong>Genomic</strong> PTA from <strong>SNP</strong>s vs. Progeny Test PTA <strong>in</strong> Test<strong>in</strong>g Set)<br />

Correlation = 0.43 Correlation = 0.52<br />

PTA from Progeny Test<strong>in</strong>g<br />

300 <strong>SNP</strong>s<br />

Correlation = 0.55 Correlation = 0.57<br />

750 <strong>SNP</strong>s<br />

1250 <strong>SNP</strong>s<br />

2000 <strong>SNP</strong>s<br />

Predicted <strong>Genomic</strong> PTA from Top ___ <strong>SNP</strong>s


Animal ID Applications<br />

(96+ <strong>SNP</strong>s <strong>in</strong> the parentage panel)<br />

• Verify reported parents<br />

• Discover parents if unknown or <strong>in</strong>correct<br />

• Trace animals or animal products


Close Inbreed<strong>in</strong>g (F=14.7%)<br />

Double Gr<strong>and</strong>son <strong>of</strong> Aerostar<br />

(Chromosome 24)<br />

Aerostar<br />

Megastar<br />

Aerostar<br />

VanRaden, 2008


<strong>SNP</strong> Genotype <strong>of</strong> Megastar<br />

(chromosome 24)<br />

1021222101021021011102110112112211211002202000222020002020220<br />

0000220020222202202000020020222222000020222200000220200002002<br />

2002000000222200022220000000000020222022002000222020222220002<br />

2022222222200002002202022202000200022000000002202220000002200<br />

2020002222002020020020202220222222220222020002022022022220202<br />

2202020202200022002220220022200000220200002002002000200222220<br />

0022220202002220022202000020200000022222020200002002002222000<br />

2022022220022000222202200222202020002202202222002220022000200<br />

2202000002200220222000022000022000222202002222000220020020202<br />

2020002220002220022202202200000220220020020020220002000222202<br />

2002220020220200222202220000020220002020020202000220022000002<br />

2022200202220200022002000200022002002000200220222220022022000<br />

2000020002000020220020220200200002220000222002000200222000022<br />

0220020022002202202020202020200022202000220200202202220220000<br />

2020200002020200022222200222200020022022220000020220020200202<br />

022022020200002000200220220002200


Effects on Inbreed<strong>in</strong>g<br />

• Traditional animal model evaluations<br />

favor co-selection <strong>of</strong> families or relatives<br />

• <strong>Genomic</strong> selection allows with<strong>in</strong>-family<br />

selection, which leads to less <strong>in</strong>breed<strong>in</strong>g<br />

• <strong>Low</strong>-cost, low-density genotyp<strong>in</strong>g<br />

assays will allow widespread screen<strong>in</strong>g <strong>of</strong><br />

families that might provide unique genetic<br />

contributions to the population<br />

• Identification <strong>and</strong> control <strong>of</strong> <strong>in</strong>herited<br />

defects will be greatly enhanced as well


Potential for Mate Selection<br />

• Millions <strong>of</strong> cows are mated us<strong>in</strong>g<br />

computerized programs each year, based<br />

on faults <strong>in</strong> conformation or avoidance <strong>of</strong><br />

<strong>in</strong>breed<strong>in</strong>g<br />

• <strong>SNP</strong> genotypes <strong>of</strong> AI sires <strong>and</strong><br />

potential mates could be used to m<strong>in</strong>imize<br />

<strong>in</strong>breed<strong>in</strong>g or to identify parents with<br />

“complementary” DNA pr<strong>of</strong>iles<br />

NM$<br />

80<br />

60<br />

40<br />

20<br />

0<br />

-20<br />

-40<br />

X 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30<br />

Chromosome<br />

NM$


NM$<br />

80<br />

60<br />

40<br />

20<br />

0<br />

-20<br />

-40<br />

Net Merit by Chromosome<br />

7HO6417 O Man<br />

X 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30<br />

Chromosome<br />

NM$<br />

VanRaden, 2008


Net Merit by Chromosome<br />

7HO8081 Planet<br />

100<br />

80<br />

NM$<br />

60<br />

NM$<br />

40<br />

20<br />

0<br />

-20<br />

X 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30<br />

Chromosome<br />

VanRaden, 2008


Possibilities for Novel Traits<br />

• Opportunities to collect DNA <strong>and</strong><br />

phenotypes for traits not rout<strong>in</strong>ely<br />

assessed <strong>in</strong> national record<strong>in</strong>g schemes<br />

• Examples <strong>in</strong>clude: feed <strong>in</strong>take, hormone<br />

level, immune function, ho<strong>of</strong> care, etc.<br />

• Potential resource populations <strong>in</strong>clude:<br />

experimental herds, calf ranches, heifer<br />

growers, commercial herds with specific<br />

milk<strong>in</strong>g/feed<strong>in</strong>g/management equipment,<br />

veter<strong>in</strong>ary databases (without sire ID)


Novel Traits <strong>and</strong> <strong>Genomic</strong>s<br />

additive or<br />

non-additive<br />

<strong>in</strong>heritance<br />

no selection<br />

bias<br />

update estimates<br />

<strong>of</strong> <strong>SNP</strong> effects<br />

Recorded<br />

Population<br />

(10,000-25,000 animals<br />

per trait or trait group)<br />

full<br />

genotyp<strong>in</strong>g<br />

selective<br />

genotyp<strong>in</strong>g<br />

ref<strong>in</strong>e estimates<br />

<strong>of</strong> location <strong>and</strong><br />

effect, add <strong>SNP</strong>s<br />

$200/genotype<br />

$100/trait<br />

5 traits/group<br />

select high/low 10%<br />

Whole<br />

Genome<br />

Selection<br />

cost ~ $7.0-17.5 mln<br />

per trait group<br />

GWAS to<br />

detect QTL,<br />

then MAS<br />

cost ~ $1.2-3.0 mln<br />

per trait


Synergy with Herd Management<br />

• “Personalized medic<strong>in</strong>e” is a key<br />

objective <strong>of</strong> biomedical research<br />

• Examples <strong>in</strong>clude genotype-guided<br />

Warfar<strong>in</strong> dos<strong>in</strong>g us<strong>in</strong>g two major genes<br />

• Cost-effective applications <strong>in</strong> livestock<br />

will <strong>in</strong>volve a series <strong>of</strong> small returns from<br />

enhanced vacc<strong>in</strong>ation programs, ration<br />

formulation, mate selection, veter<strong>in</strong>ary<br />

care, <strong>and</strong> animal group<strong>in</strong>g decisions<br />

• Integration with herd management<br />

s<strong>of</strong>tware will be the key to success


http://www.wisc.edu/dysci<br />

UW-Madison Dairy Science…Committed to<br />

Excellence <strong>in</strong> Research, Extension <strong>and</strong> Instruction<br />

Any<br />

Questions?

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!