27.01.2014 Views

A complementarity experiment with an interferometer at the quantum ...

A complementarity experiment with an interferometer at the quantum ...

A complementarity experiment with an interferometer at the quantum ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

letters to n<strong>at</strong>ure<br />

strong constraints on different mixing processes (such as gravit<strong>at</strong>ional<br />

settling or meridional circul<strong>at</strong>ion).<br />

Cosmic-ray nucleosyn<strong>the</strong>sis models 24 <strong>an</strong>d observ<strong>at</strong>ions of interstellar<br />

clouds 25 indic<strong>at</strong>e th<strong>at</strong> <strong>the</strong> primordial r<strong>at</strong>io, f( 6 Li), in <strong>the</strong><br />

protopl<strong>an</strong>etary m<strong>at</strong>ter could have been as high as 0.3±0.5, which in<br />

turn would allow ei<strong>the</strong>r <strong>the</strong> possibility of some 6 Li depletion in <strong>the</strong><br />

star or <strong>the</strong> ingestion of pl<strong>an</strong>ets <strong>with</strong> even smaller mass. In this<br />

scenario we have assumed th<strong>at</strong> <strong>the</strong> pl<strong>an</strong>et(s) was (were) ingested<br />

after <strong>the</strong> stellar convective envelope had shrunk, 10±30 Myr after<br />

stellar birth 19,5 , <strong>an</strong>d had reached its current mass <strong>an</strong>d depth. The<br />

timescale is comparable to <strong>the</strong> lifetime of protopl<strong>an</strong>etary disks 26<br />

(10±20 Myr) <strong>an</strong>d pl<strong>an</strong>etary migr<strong>at</strong>ion. Our results favour a scenario<br />

in which a pl<strong>an</strong>et was engulfed owing to <strong>the</strong> multi-body interactions<br />

in <strong>the</strong> system th<strong>at</strong> c<strong>an</strong> take place over a timescale of 100 Myr 27 . This<br />

is strongly supported by <strong>the</strong> highly eccentric orbit of <strong>the</strong> pl<strong>an</strong>etary<br />

comp<strong>an</strong>ion of HD82943 (about 0.6). However, we hesit<strong>at</strong>e to<br />

generalize it to explain <strong>the</strong> metal-rich n<strong>at</strong>ure 28,7 of o<strong>the</strong>r stars<br />

hosting pl<strong>an</strong>ets. Fur<strong>the</strong>r Li isotopic r<strong>at</strong>io studies of a large sample<br />

of pl<strong>an</strong>et-bearing stars c<strong>an</strong> help to put additional constraints on this<br />

scenario.<br />

Note added in proof: A second pl<strong>an</strong>et <strong>with</strong> a minimum mass of<br />

0.88M J has been discovered orbiting HD82943, <strong>with</strong> a period of<br />

220 days (M. Mayor, personal communic<strong>at</strong>ion). This detection has<br />

been done <strong>with</strong> <strong>the</strong> CORALIE spectrograph <strong>at</strong> <strong>the</strong> ESO La Silla<br />

Observ<strong>at</strong>ory.<br />

M<br />

Received 3 November 2000; accepted 21 March 2001.<br />

1. Weidenschilling, S. J. & Marzari, F. Gravit<strong>at</strong>ional sc<strong>at</strong>tering as a possible origin for gi<strong>an</strong>t pl<strong>an</strong>ets <strong>at</strong><br />

small dist<strong>an</strong>ces. N<strong>at</strong>ure 384, 619±621 (1996).<br />

2. Lin, D. N., Bodenheimer, P. & Richardson, D. C. Orbital migr<strong>at</strong>ion of <strong>the</strong> pl<strong>an</strong>etary comp<strong>an</strong>ion of 51<br />

Pegasi to its present loc<strong>at</strong>ion. N<strong>at</strong>ure 380, 606±607 (1996).<br />

3. Forestini, M. Low mass stars: Pre-main sequence evolution <strong>an</strong>d nucleosyn<strong>the</strong>sis. Astron. Astrophys.<br />

285, 473±488 (1994).<br />

4. Andersen, J., Gustafsson, B. & Lambert, D. L. The lithium isotope r<strong>at</strong>io in F <strong>an</strong>d G stars. Astron.<br />

Astrophys. 136, 65±73 (1984).<br />

5. Rebolo, R., Crivellari, L., Castelli, F., Foing, B. & Beckm<strong>an</strong>, J. E. Lithium abund<strong>an</strong>ces <strong>an</strong>d 7 Li/ 6 Li r<strong>at</strong>ios<br />

in l<strong>at</strong>e-type popul<strong>at</strong>ion I ®eld dwarfs. Astron. Astrophys. 166, 195±203 (1986).<br />

6. Naef, D. et al. The CORALIE survey for sou<strong>the</strong>rn extrasolar pl<strong>an</strong>ets V. 4 new extrasolar pl<strong>an</strong>ets. Astron.<br />

Astrophys. (in <strong>the</strong> press).<br />

7. S<strong>an</strong>tos, N. C., Israeli<strong>an</strong>, G. & Mayor, M. Chemical <strong>an</strong>alysis of 8 recently discovered extra-solar pl<strong>an</strong>et<br />

host stars. Astron. Astrophys. 363, 228±238 (2000).<br />

8. Smith, V. V., Lambert, D. & Nissen, P. E. Isotopic lithium abund<strong>an</strong>ces in nine halo stars. Astrophys. J.<br />

506, 405±423 (1998).<br />

9. Hobbs, L. M., Thorburn, J. A. & Rebull, L. M. Lithium isotope r<strong>at</strong>ios in halo stars. III. Astrophys. J. 523,<br />

797±804 (1999).<br />

10. Nissen, P. E., Lambert, D., Primas, F. & Smith, V. V. Isotopic lithium abund<strong>an</strong>ces in ®ve metal-poor<br />

disk stars. Astron. Astrophys. 348, 211±221 (1999).<br />

11. Kurucz, R. L., Furenlid, I., Brault, J. & Testerm<strong>an</strong>, L. Solar ¯ux <strong>at</strong>las from 296 to 1300 nm. NOAO Atlas<br />

1 (Harvard Univ. Press, Cambridge, Massachusetts, 1984).<br />

12. Anders, E. & Grevesse, N. Abund<strong>an</strong>ces of <strong>the</strong> elements±meteoritic <strong>an</strong>d solar. Geochim. Cosmochim.<br />

Acta 53, 197±214 (1989).<br />

13. Lambert, D., Smith, V. V. & He<strong>at</strong>h, J. Lithium in <strong>the</strong> barium stars. Publ. Astron. Soc. Pacif. 105, 568±<br />

573 (1989).<br />

14. Perrym<strong>an</strong>, M. A. C. et al. The Hipparcos c<strong>at</strong>alogue. Astron. Astrophys. Lett. 323, 49±52 (1997).<br />

15. Ram<strong>at</strong>y, R., T<strong>at</strong>ischeff, V., Thibaud, J. P., Kozlovsky, B. & M<strong>an</strong>dzhavidize, N. 6 Li from solar ¯ares.<br />

Astrophys. J. Lett. 534, 207±210 (2000).<br />

16. Chaussidon, M. & Robert, F. Lithium nucleosyn<strong>the</strong>sis in <strong>the</strong> sun inferred from <strong>the</strong> solar-wind 7 Li/ 6 Li<br />

r<strong>at</strong>io. N<strong>at</strong>ure 402, 270±273 (1999).<br />

17. MuÈller, E. A., Peytrem<strong>an</strong>n, E. & De La Reza, R. The solar lithium abund<strong>an</strong>ce. II. Solar Phys. 41, 53±65<br />

(1975).<br />

18. Schaerer, D., Charbonnel, C., Meynet, G., Maeder, A. & Schaller, G. Grids of stellar modelsÐPart<br />

fourÐfrom 0.8M( to 120M( <strong>at</strong> Z = 0.040. Astron. Astrophys. Suppl. 102, 339±342 (1993).<br />

19. D'Antona, F. & Mazzitelli, I. New pre-main sequence tracks for M # 2.5M( as tests of opacities <strong>an</strong>d<br />

convection models. Astrophys. J. Suppl. 90, 467±500 (1994).<br />

20. Alex<strong>an</strong>der, J. B. A possible source of lithium in <strong>the</strong> <strong>at</strong>mospheres of some red gi<strong>an</strong>ts. Observ<strong>at</strong>ory 87,<br />

238±240 (1967).<br />

21. Ry<strong>an</strong>, S. G. The host stars of extrasolar pl<strong>an</strong>ets have normal lithium abund<strong>an</strong>ces. Mon. Not. R. Astron.<br />

Soc. 316, L35±L39 (2000).<br />

22. Balach<strong>an</strong>dr<strong>an</strong>, S. Lithium depletion <strong>an</strong>d rot<strong>at</strong>ion in main-sequence stars. Astrophys. J. 354, 310±332<br />

(1990).<br />

23. Glass, B. P. Introduction To Pl<strong>an</strong>etary Geology (Cambridge Univ. Press, Cambridge, 1982).<br />

24. Fields, B. D. & Olive, K. A. The evolution of 6 Li in st<strong>an</strong>dard cosmic ray nucleosyn<strong>the</strong>sis. New Astron. 4,<br />

255±263 (1999).<br />

25. Knauth, D. C., Federm<strong>an</strong>, S. R., Lambert, D. L. & Cr<strong>an</strong>e, P. Newly syn<strong>the</strong>sized lithium in <strong>the</strong><br />

interstellar medium. N<strong>at</strong>ure 405, 656±658 (2000).<br />

26. Thi, W. F. et al. Subst<strong>an</strong>tial reservoirs of molecular hydrogen in <strong>the</strong> debris disks around young stars.<br />

N<strong>at</strong>ure 409, 60±63 (2001).<br />

27. Levison, H. F., Lissauer, J. J. & Dunc<strong>an</strong>, M. J. Modeling <strong>the</strong> diversity of outer pl<strong>an</strong>etary systems. Astron.<br />

J. 373, 1998±2014 (1998).<br />

28. Gonzalez, G., Laws, C., Tyagi, S. & Reddy, B. E. Parent stars of extrasolar pl<strong>an</strong>ets VI: Abund<strong>an</strong>ce<br />

<strong>an</strong>alyses of 20 new systems. Astron. J. 121, 432±452 (2001).<br />

29. Boesgaard, A. M. & Tripicco, M. Lithium in early F dwarfs. Astrophys. J. 303, 724±739 (1986).<br />

30. Jones, B. F., Fisher, D. & Soderblom, D. R. The evolution of <strong>the</strong> lithium abund<strong>an</strong>ces of solar-type stars.<br />

VIII. M67 (NGC 2682). Astron. J. 117, 330±338 (1999).<br />

Acknowledgements<br />

These observ<strong>at</strong>ions were made possible through <strong>the</strong> DDT time gr<strong>an</strong>ted on <strong>the</strong> VLT Kueyen<br />

by ESO. We th<strong>an</strong>k <strong>the</strong> Swiss N<strong>at</strong>ional Science Found<strong>at</strong>ion <strong>an</strong>d <strong>the</strong> Sp<strong>an</strong>ish Ministry of<br />

Science <strong>an</strong>d Technology for continuous support for this project. Support from <strong>the</strong> Fundac<br />

ËaÄo para a CieÃnca e Tecnologia, Portugal, <strong>an</strong>d to N.C.S. in <strong>the</strong> form of a scholarship is<br />

acknowledged.<br />

Correspondence <strong>an</strong>d requests for m<strong>at</strong>erials should be addressed to G.I.<br />

(e-mail: gil@ll.iac.es).<br />

.................................................................<br />

A <strong>complementarity</strong> <strong>experiment</strong> <strong>with</strong><br />

<strong>an</strong> <strong>interferometer</strong> <strong>at</strong> <strong>the</strong> qu<strong>an</strong>tum±<br />

classical boundary<br />

P. Bertet, S. Osnaghi, A. Rauschenbeutel, G. Nogues, A. Auffeves,<br />

M. Brune, J. M. Raimond & S. Haroche<br />

Labor<strong>at</strong>oire Kastler Brossel, DeÂpartement de Physique, Ecole Normale SupeÂrieure,<br />

24 rue Lhomond, F-75231, Paris Cedex 05, Fr<strong>an</strong>ce<br />

..............................................................................................................................................<br />

To illustr<strong>at</strong>e <strong>the</strong> qu<strong>an</strong>tum mech<strong>an</strong>ical principle of <strong>complementarity</strong>,<br />

Bohr 1 described <strong>an</strong> <strong>interferometer</strong> <strong>with</strong> a microscopic slit<br />

th<strong>at</strong> records <strong>the</strong> particle's p<strong>at</strong>h. Recoil of <strong>the</strong> qu<strong>an</strong>tum slit causes<br />

it to become ent<strong>an</strong>gled <strong>with</strong> <strong>the</strong> particle, resulting in a kind of<br />

Einstein±Podolsky±Rosen pair 2 . As <strong>the</strong> motion of <strong>the</strong> slit c<strong>an</strong> be<br />

observed, <strong>the</strong> ambiguity of <strong>the</strong> particle's trajectory is lifted,<br />

suppressing interference effects. In contrast, <strong>the</strong> st<strong>at</strong>e of a suf®ciently<br />

massive slit does not depend on <strong>the</strong> particle's p<strong>at</strong>h; hence,<br />

interference fringes are visible. Although m<strong>an</strong>y <strong>experiment</strong>s<br />

illustr<strong>at</strong>ing various aspects of <strong>complementarity</strong> have been proposed<br />

3±9 <strong>an</strong>d realized 10±18 , none has addressed <strong>the</strong> qu<strong>an</strong>tum±<br />

classical limit in <strong>the</strong> design of <strong>the</strong> <strong>interferometer</strong>. Here we<br />

report <strong>an</strong> <strong>experiment</strong>al investig<strong>at</strong>ion of <strong>complementarity</strong> using<br />

<strong>an</strong> <strong>interferometer</strong> in which <strong>the</strong> properties of one of <strong>the</strong> beamsplitting<br />

elements c<strong>an</strong> be tuned continuously from being effectively<br />

microscopic to macroscopic. Following a recent proposal 19 ,<br />

we use <strong>an</strong> <strong>at</strong>omic double-pulse Ramsey <strong>interferometer</strong> 20 , in which<br />

microwave pulses act as beam-splitters for <strong>the</strong> qu<strong>an</strong>tum st<strong>at</strong>es of<br />

<strong>the</strong> <strong>at</strong>oms. One of <strong>the</strong> pulses is a coherent ®eld stored in a cavity,<br />

comprising a small, adjustable me<strong>an</strong> photon number. The visibility<br />

of <strong>the</strong> interference fringes in <strong>the</strong> ®nal <strong>at</strong>omic st<strong>at</strong>e probability<br />

increases <strong>with</strong> this photon number, illustr<strong>at</strong>ing <strong>the</strong> qu<strong>an</strong>tum to<br />

classical tr<strong>an</strong>sition.<br />

Interferences in ordinary space are easier to underst<strong>an</strong>d th<strong>an</strong><br />

those of <strong>the</strong> abstract space of qu<strong>an</strong>tum st<strong>at</strong>es, so it is illumin<strong>at</strong>ing to<br />

make <strong>the</strong> <strong>an</strong>alogy between <strong>the</strong> Ramsey design 20 <strong>an</strong>d a st<strong>an</strong>dard<br />

optical <strong>interferometer</strong>. Instead of Bohr's original design 1 (Fig. 1), we<br />

describe here a Mach±Zehnder <strong>interferometer</strong> 3 which provides a<br />

closer <strong>an</strong>alogy <strong>with</strong> our Ramsey <strong>experiment</strong> (Fig. 2a). A photon<br />

beam is split into two p<strong>at</strong>hs a <strong>an</strong>d b <strong>an</strong>d recombined by two beam<br />

splitters B 1 <strong>an</strong>d B 2 . The qu<strong>an</strong>tum amplitudes associ<strong>at</strong>ed <strong>with</strong> <strong>the</strong>se<br />

p<strong>at</strong>hs present a phase difference f, swept by a retarding element. If<br />

B 1 <strong>an</strong>d B 2 are macroscopic, <strong>the</strong> probability for detecting <strong>the</strong> particle<br />

in detector D exhibits a sinusoidal modul<strong>at</strong>ion as a function of f.<br />

Suppose now th<strong>at</strong> B 2 is a massive classical object, <strong>an</strong>d B 1 is a light<br />

pl<strong>at</strong>e rot<strong>at</strong>ing around <strong>an</strong> axis perpendicular to <strong>the</strong> <strong>interferometer</strong><br />

166 © 2001 Macmill<strong>an</strong> Magazines Ltd<br />

NATURE | VOL 411 | 10 MAY 2001 | www.n<strong>at</strong>ure.com


letters to n<strong>at</strong>ure<br />

pl<strong>an</strong>e. When <strong>the</strong> particle interacts <strong>with</strong> B 1 , it is, <strong>with</strong> a 50%<br />

probability, ei<strong>the</strong>r tr<strong>an</strong>smitted along p<strong>at</strong>h a (<strong>the</strong> pl<strong>at</strong>e does not<br />

move) or re¯ected into p<strong>at</strong>h b (<strong>the</strong> pl<strong>at</strong>e receives a momentum kick,<br />

resulting in a coherent st<strong>at</strong>e of motion). The particle + B 1 system<br />

evolves into <strong>the</strong> combined st<strong>at</strong>e:<br />

p<br />

<br />

jª . ˆ 1= 2 …jª a . jª B1<br />

…a† . ‡jª b . jª B1<br />

…b†.† …1†<br />

where jª a . <strong>an</strong>d jª b . represent <strong>the</strong> particle's wave packets in p<strong>at</strong>hs<br />

a <strong>an</strong>d b <strong>an</strong>d jª B1 …a†. <strong>an</strong>d jª B1 …b†. <strong>the</strong> corresponding ®nal st<strong>at</strong>es of<br />

B 1 .IfB 1 is light enough, it stores unambiguous inform<strong>at</strong>ion about<br />

<strong>the</strong> particle's p<strong>at</strong>h: , ª B1 …b†jª B1 …a†. ˆ 0, <strong>an</strong>d jª . is maximally<br />

ent<strong>an</strong>gled. If B 1 is a heavy macroscopic object insensitive to <strong>the</strong><br />

particle's momentum kick, jª B1<br />

…a†. ˆjª B1<br />

…b†. <strong>an</strong>d jª. is <strong>an</strong><br />

unent<strong>an</strong>gled product st<strong>at</strong>e. The probability for detecting <strong>the</strong> particle<br />

in D is:<br />

P…f† ˆ1…1<br />

‡ Re… , ª 2 B 1<br />

…b†jª B1<br />

…a† . exp…if†† …2†<br />

The fringe contrast is <strong>the</strong> modulus of <strong>the</strong> scalar product of <strong>the</strong> two<br />

beam-splitter ®nal st<strong>at</strong>es <strong>an</strong>d directly measures <strong>the</strong> degree of<br />

ent<strong>an</strong>glement between <strong>the</strong> particle <strong>an</strong>d B 1 .<br />

Our Ramsey <strong>interferometer</strong>, sketched in Fig. 2b, presents <strong>an</strong><br />

<strong>an</strong>alogy <strong>with</strong> <strong>the</strong> Mach±Zehnder device. We describe here only<br />

<strong>the</strong> main fe<strong>at</strong>ures of <strong>the</strong> set-up; more <strong>experiment</strong>al details c<strong>an</strong> be<br />

found elsewhere 21,22 . Rubidium <strong>at</strong>oms prepared in <strong>the</strong> circular<br />

Rydberg st<strong>at</strong>e of principal qu<strong>an</strong>tum number 51 (level e) are sent<br />

one by one through <strong>the</strong> <strong>interferometer</strong> <strong>with</strong> a velocity of 500 m s -1 .<br />

Their position is known <strong>with</strong>in 1 mm <strong>at</strong> all times during <strong>the</strong>ir tr<strong>an</strong>sit<br />

across <strong>the</strong> appar<strong>at</strong>us. The <strong>at</strong>oms undergo a tr<strong>an</strong>sition between e <strong>an</strong>d<br />

<strong>the</strong> lower-energy circular Rydberg level g (principal qu<strong>an</strong>tum<br />

number 50), <strong>at</strong> frequency v eg ˆ 51:1 GHz. This tr<strong>an</strong>sition is induced<br />

by two coherent pulses R 1 <strong>an</strong>d R 2 mixing <strong>with</strong> equal weights e <strong>an</strong>d g<br />

(p/2 pulses), <strong>at</strong> two different times separ<strong>at</strong>ed by a delay T ˆ 24 ms.<br />

The ®nal <strong>at</strong>omic energy st<strong>at</strong>e is detected in D. The tr<strong>an</strong>sition<br />

probability P g is reconstructed by averaging a large number of<br />

single-<strong>at</strong>om events.<br />

The pulse R 1 is produced by a small coherent ®eld of complex<br />

amplitude a stored in a superconducting Fabry±Perot reson<strong>at</strong>or C<br />

(photon damping time T cavity ˆ 1 ms). This ®eld is cre<strong>at</strong>ed, before<br />

<strong>the</strong> <strong>at</strong>om enters <strong>the</strong> <strong>interferometer</strong>, by a pulsed coherent microwave<br />

source S. The ®eld mode, <strong>with</strong> a gaussi<strong>an</strong> pro®le (6 mm waist), is<br />

crossed by <strong>the</strong> <strong>at</strong>om along a direction perpendicular to <strong>the</strong> cavity<br />

axis. The coherent ®eld st<strong>at</strong>e, ja . ˆ S n C n jn., is a superposition of<br />

photon numbers <strong>with</strong> a Poisson distribution. The probability p <br />

amplitude for having n photons is C n ˆ exp… 2 jaj 2 =2†a n = n !.<br />

pThe me<strong>an</strong> photon number is N ˆjaj 2 , <strong>with</strong> a vari<strong>an</strong>ce DN ˆ<br />

N ˆjaj <strong>an</strong>d a phase ¯uctu<strong>at</strong>ion3 D© ˆ 1=jaj, <strong>the</strong> minimum<br />

value allowed by <strong>the</strong> Heisenberg uncertainty rel<strong>at</strong>ion DND© $ 1.<br />

We determine N by <strong>the</strong> measurement of <strong>the</strong> light shift experienced<br />

by <strong>an</strong> auxiliary <strong>at</strong>om which is crossing <strong>the</strong> cavity while being<br />

non-reson<strong>an</strong>t <strong>with</strong> its mode 23 . By varying <strong>the</strong> source amplitude, we<br />

tune N from 0 to large values. The p/2 pulse condition is s<strong>at</strong>is®ed by<br />

adjusting <strong>the</strong> dur<strong>at</strong>ion of <strong>the</strong> <strong>at</strong>om±®eld interaction for each N<br />

value. A small electric ®eld is applied between <strong>the</strong> mirrors of <strong>the</strong><br />

cavity while <strong>the</strong> <strong>at</strong>om is crossing it. In this way, we tune by Stark<br />

effect <strong>the</strong> e±g tr<strong>an</strong>sition ei<strong>the</strong>r in or out of reson<strong>an</strong>ce <strong>with</strong> <strong>the</strong><br />

cavity mode. The <strong>at</strong>om enters <strong>the</strong> cavity out of reson<strong>an</strong>ce. No<br />

evolution occurs until <strong>the</strong> reson<strong>an</strong>ce condition is realised by Stark<br />

tuning, <strong>at</strong> a time such th<strong>at</strong> <strong>the</strong> p/2 pulse is achieved when <strong>the</strong><br />

<strong>at</strong>om leaves <strong>the</strong> cavity. The dur<strong>at</strong>ion of this pulse is a decreasing<br />

function of N. The large value of <strong>the</strong> vacuum Rabi frequency <strong>at</strong><br />

<strong>the</strong> cavity centre 24 , ­=2p ˆ 49 kHz, ensures th<strong>at</strong> <strong>the</strong> p/2 pulse c<strong>an</strong><br />

be achieved even when N ˆ 0. The possibility of inducing a p/2<br />

pulse <strong>with</strong> <strong>the</strong> vacuum ®eld, in a time much shorter th<strong>an</strong> T cavity ,is<br />

<strong>an</strong> essential fe<strong>at</strong>ure of cavity <strong>experiment</strong>s <strong>with</strong> circular Rydberg<br />

<strong>at</strong>oms 25 .<br />

After R 1 , <strong>the</strong> combined <strong>at</strong>om + beam splitter st<strong>at</strong>e c<strong>an</strong> be written,<br />

in a form similar to equ<strong>at</strong>ion (1), as:<br />

p<br />

<br />

jª . ˆ 1= 2 …je . ja e . ‡jg . ja g .† …3†<br />

<strong>with</strong><br />

p<br />

ja e . ˆ<br />

p<br />

2 Sn C n cos ­ <br />

n ‡ 1<br />

t a<br />

<br />

jn.<br />

p<br />

ja g . ˆ<br />

p<br />

2 Sn C n sin ­ …4†<br />

n ‡ 1 jn ‡ 1.<br />

where t a is <strong>an</strong> effective <strong>at</strong>om±cavity interaction time de®ned by:<br />

p<br />

S n jC n j 2 cos 2 ­ <br />

n ‡ 1 ˆ 1=2<br />

…5†<br />

t a<br />

t a<br />

B<br />

Figure 1 Sketch of <strong>an</strong> <strong>interferometer</strong> <strong>with</strong> a recoiling slit, adapted from Bohr 1 . Particles<br />

collim<strong>at</strong>ed by <strong>the</strong> ®xed slit <strong>at</strong> left cross a double slit assembly B <strong>an</strong>d are collected on a<br />

detecting pl<strong>at</strong>e <strong>at</strong> right. The bottom slit in B, ®rmly bolted on <strong>the</strong> ground pl<strong>at</strong>e, c<strong>an</strong>not<br />

move. The upper slit is suspended by springs <strong>an</strong>d assumed to be initially in <strong>the</strong> ground<br />

st<strong>at</strong>e of its oscill<strong>at</strong>or motion. When its mass is small enough, <strong>the</strong> momentum kick imparted<br />

by <strong>the</strong> de¯ected particle is larger th<strong>an</strong> <strong>the</strong> initial slit's momentum ¯uctu<strong>at</strong>ions. The st<strong>at</strong>e of<br />

<strong>the</strong> slit is ent<strong>an</strong>gled <strong>with</strong> <strong>the</strong> one of <strong>the</strong> particle. This provides which-p<strong>at</strong>h inform<strong>at</strong>ion <strong>an</strong>d<br />

suppresses <strong>the</strong> interference fringes. When <strong>the</strong> upper slit is a macroscopic heavy object, its<br />

st<strong>at</strong>e is not altered by <strong>the</strong> particle <strong>an</strong>d fringes are observed. By increasing <strong>the</strong> mass of <strong>the</strong><br />

slit while keeping <strong>the</strong> spring stiffness ®xed, one could, in principle, continuously sp<strong>an</strong> <strong>the</strong><br />

tr<strong>an</strong>sition between <strong>the</strong> two limiting cases discussed by Bohr of a recoiling or ®xed slit. The<br />

drawing is typical of <strong>the</strong> semi-serious style adopted by Bohr in his description of thought<br />

<strong>experiment</strong>s (in Bohr's original drawings, <strong>the</strong> various elements were represented<br />

separ<strong>at</strong>ely).<br />

NATURE | VOL 411 | 10 MAY 2001 | www.n<strong>at</strong>ure.com © 2001 Macmill<strong>an</strong> Magazines Ltd<br />

167


letters to n<strong>at</strong>ure<br />

Equ<strong>at</strong>ion (4) shows th<strong>at</strong> each n-photon component of <strong>the</strong> coherent<br />

st<strong>at</strong>e p induces a Rabi oscill<strong>at</strong>ion between e <strong>an</strong>d g <strong>at</strong> frequency<br />

­ <br />

24,25<br />

n ‡ 1 . The global system's evolution results from <strong>the</strong> superposition<br />

of <strong>the</strong>se Rabi oscill<strong>at</strong>ions. In <strong>the</strong> qu<strong>an</strong>tum limit (N ˆ 0),<br />

ja e . ˆj0. <strong>an</strong>d ja g . ˆj1. are orthogonal st<strong>at</strong>es. In <strong>the</strong> classical<br />

limit, N q 1, DN becomes p negligible compared to N. According to<br />

equ<strong>at</strong>ion (5), <strong>the</strong> cos…­<br />

<br />

p<br />

n ‡ 1t a † <strong>an</strong>d sin…­<br />

<br />

p <br />

n ‡ 1t a † functions<br />

are approxim<strong>at</strong>ely 1= 2 , <strong>an</strong>d from equ<strong>at</strong>ion (4), jae . < ja g .<br />

< ja.. The ®eld is thus not signi®c<strong>an</strong>tly altered by <strong>the</strong> <strong>at</strong>om. The<br />

qu<strong>an</strong>tum to classical evolution of <strong>the</strong> <strong>at</strong>om±®eld ent<strong>an</strong>glement<br />

described by equ<strong>at</strong>ion (3) thus exhibits all <strong>the</strong> qualit<strong>at</strong>ive fe<strong>at</strong>ures<br />

discussed for <strong>the</strong> Mach±Zehnder <strong>interferometer</strong>.<br />

The pulse R 2 is gener<strong>at</strong>ed by S <strong>an</strong>d fed, via <strong>an</strong> auxiliary wave<br />

guide, into a st<strong>an</strong>ding wave independent of C. This st<strong>an</strong>ding wave,<br />

determined by <strong>the</strong> structure of <strong>the</strong> appar<strong>at</strong>us metallic boundaries,<br />

presents <strong>an</strong> <strong>an</strong>tinode <strong>at</strong> a dist<strong>an</strong>ce of 18 mm from <strong>the</strong> cavity axis.<br />

When <strong>the</strong> <strong>at</strong>om crosses this <strong>an</strong>tinode, S is switched on for a short<br />

a<br />

b<br />

B 1<br />

M'<br />

e<br />

b<br />

P<br />

O<br />

φ<br />

R 1<br />

a<br />

C<br />

S<br />

Figure 2 Mach±Zehnder <strong>an</strong>d Ramsey versions of Bohr's <strong>experiment</strong>. a, In <strong>the</strong> Mach±<br />

Zehnder, <strong>the</strong> particle trajectory is separ<strong>at</strong>ed by beam splitter B 1 into p<strong>at</strong>hs a <strong>an</strong>d b, folded<br />

by mirrors M <strong>an</strong>d M9 <strong>an</strong>d recombined by beam splitter B 2 into detector D. The o<strong>the</strong>r output<br />

port (dashed arrow) is not used. A dephasing element tunes <strong>the</strong> rel<strong>at</strong>ive phase f between<br />

<strong>the</strong> p<strong>at</strong>hs. B 1 rot<strong>at</strong>es around <strong>an</strong> axis perpendicular to <strong>the</strong> <strong>interferometer</strong> pl<strong>an</strong>e, crossing it<br />

<strong>at</strong> <strong>the</strong> centre O of <strong>the</strong> B 1 MB 2 M9 square. A spring provides a restoring force. The moving<br />

assembly is initially in its ground st<strong>at</strong>e of motion. If B 1 has a large mass, fringes are visible<br />

(dotted lines in inset). If B 1 is microscopic, its recoil records <strong>the</strong> re¯ection of <strong>the</strong> particle<br />

into p<strong>at</strong>h b, washing out <strong>the</strong> fringes (solid lines). b, Ramsey set-up. A Rydberg <strong>at</strong>om's<br />

st<strong>at</strong>e is split by microwave pulse R 1 into two energy levels e <strong>an</strong>d g, <strong>the</strong>n recombined by<br />

pulse R 2 downstream, before being detected by ®eld-ioniz<strong>at</strong>ion in D. We use a mixed<br />

represent<strong>at</strong>ion combining real space <strong>with</strong> <strong>the</strong> space of <strong>the</strong> <strong>at</strong>omic energy st<strong>at</strong>es. The<br />

beam-splitting effect, a sp<strong>at</strong>ial separ<strong>at</strong>ion in <strong>the</strong> Mach±Zehnder, is now <strong>an</strong> internal<br />

mixture of st<strong>at</strong>es. Interferences are obtained in <strong>the</strong> probability for ®nding <strong>the</strong> <strong>at</strong>om in g.A<br />

®eld pulse between R 1 <strong>an</strong>d R 2 tunes <strong>the</strong> rel<strong>at</strong>ive phase f of <strong>the</strong> interfering amplitudes<br />

(Stark effect). If <strong>the</strong> R 1 ®eld, stored in a long-damping-time cavity C, is macroscopic,<br />

Ramsey fringes are visible (dotted line in <strong>the</strong> inset). If <strong>the</strong> R 1 ®eld is microscopic, its photon<br />

number records inform<strong>at</strong>ion about <strong>the</strong> <strong>at</strong>om's p<strong>at</strong>h, suppressing <strong>the</strong> interference (solid<br />

line). The gaussi<strong>an</strong> mode of <strong>the</strong> cavity ®eld is represented schem<strong>at</strong>ically; <strong>the</strong> part where<br />

<strong>the</strong> <strong>at</strong>om is reson<strong>an</strong>t is shaded. The cavity mode waist <strong>an</strong>d <strong>the</strong> R 1 ±R 2 dist<strong>an</strong>ce are<br />

exagger<strong>at</strong>ed.<br />

φ<br />

B 2<br />

M<br />

R 2<br />

g<br />

D<br />

D<br />

φ<br />

φ<br />

time (1 ms), realising <strong>the</strong> p/2 pulse condition. The damping time of<br />

this st<strong>an</strong>ding wave is very short (less th<strong>an</strong> 10 ns). The photons of <strong>the</strong><br />

R 2 pulse are regener<strong>at</strong>ed m<strong>an</strong>y times during <strong>the</strong> interaction of <strong>the</strong><br />

<strong>at</strong>om <strong>with</strong> this ®eld. Hence, <strong>the</strong> R 2 ®eld does not get ent<strong>an</strong>gled<br />

<strong>with</strong> <strong>the</strong> <strong>at</strong>omic st<strong>at</strong>e. It c<strong>an</strong> be considered as a classical beam<br />

splitterp 26 performing <strong>the</strong> single-particle p tr<strong>an</strong>sform<strong>at</strong>ions je.<br />

) …1= 2 †…je . ‡jg.† <strong>an</strong>d jg . ) …1= 2 †…jg .2je.†.<br />

Between R 1 <strong>an</strong>d R 2 , <strong>the</strong> probability amplitudes for ®nding <strong>the</strong><br />

<strong>at</strong>om in e or g accumul<strong>at</strong>e a qu<strong>an</strong>tum phase difference f. In order to<br />

tune it, we subject <strong>the</strong> <strong>at</strong>om to a 2-ms pulse of electric ®eld applied<br />

across <strong>the</strong> cavity mirrors, which shifts <strong>the</strong> <strong>at</strong>omic tr<strong>an</strong>sition frequency<br />

<strong>an</strong>d thus f by a variable amount (0 , f , 3p). Taking into<br />

account <strong>the</strong> action of <strong>the</strong> beam splitters <strong>an</strong>d this phase accumul<strong>at</strong>ion,<br />

<strong>the</strong> tr<strong>an</strong>sition probability between levels e <strong>an</strong>d g may be written<br />

as:<br />

P g …f† ˆ1…1<br />

‡ Re… , a 2 eja g . exp…if†† …6†<br />

In Fig. 3a we plot <strong>the</strong> fringe signals obtained for different<br />

amplitudes of <strong>the</strong> R 1 ®eld, varying from <strong>the</strong> vacuum (N ˆ 0) to<br />

N ˆ 12:8 (jaj ˆ3:5). In <strong>the</strong> vacuum case, <strong>the</strong> fringes are completely<br />

washed out: <strong>the</strong> cavity mode, which undergoes <strong>the</strong> 0 ) 1<br />

photon tr<strong>an</strong>sition when <strong>the</strong> <strong>at</strong>om ¯ips from e to g, stores `which<br />

p<strong>at</strong>h' inform<strong>at</strong>ion. When N increases, <strong>the</strong> fringes appear, <strong>the</strong>ir<br />

contrast reaching 72% for N ˆ 12:8. This re¯ects <strong>the</strong> progressive<br />

loss of which-p<strong>at</strong>h inform<strong>at</strong>ion, as <strong>the</strong> beam splitter becomes more<br />

<strong>an</strong>d more classical. The maximum fringe contrast is smaller th<strong>an</strong> <strong>the</strong><br />

ideal 100% given by equ<strong>at</strong>ion (6), by a factor h due to various<br />

<strong>experiment</strong>al imperfections 21,22 . Figure 3b shows <strong>the</strong> vari<strong>at</strong>ions of<br />

<strong>the</strong> fringe contrast as a function of N. The points are <strong>experiment</strong>al<br />

<strong>an</strong>d <strong>the</strong> curve represents <strong>the</strong> <strong>the</strong>oretical vari<strong>at</strong>ions of hj , a e ja g . j<br />

where h ˆ 0:75 is determined by adjusting <strong>the</strong> <strong>the</strong>oretical curve on<br />

1.0<br />

a<br />

0.8<br />

0.6<br />

0.4<br />

0.2<br />

N = 0<br />

N = 2<br />

0<br />

1.0<br />

0.8<br />

0.6<br />

0.4<br />

0.2<br />

N = 0.31<br />

N = 12.8<br />

0<br />

–1 0 1 2 –1 0 1 2<br />

φ/π<br />

b 0.8<br />

P g<br />

Fringes contrast<br />

0.7<br />

0.6<br />

0.5<br />

0.4<br />

0.3<br />

0.2<br />

0.1<br />

0<br />

0 2 4 6 8 10 12 14 16<br />

N<br />

Figure 3 From qu<strong>an</strong>tum to classical <strong>interferometer</strong>. a, Ramsey interference signal<br />

recorded for various me<strong>an</strong> photon numbers N in <strong>the</strong> R 1 pulse. The progressive evolution<br />

from <strong>the</strong> qu<strong>an</strong>tum to <strong>the</strong> classical beam-splitter case is clearly observed. b, Fringe<br />

contrast as a function of <strong>the</strong> me<strong>an</strong> photon number N in R 1 . The points are <strong>experiment</strong>al.<br />

The line represents <strong>the</strong> <strong>the</strong>oretical vari<strong>at</strong>ion of <strong>the</strong> modulus of <strong>the</strong> beam-splitter ®nalst<strong>at</strong>es<br />

scalar product, multiplied by a ®xed factor h th<strong>at</strong> accounts for <strong>interferometer</strong><br />

imperfections.<br />

168 © 2001 Macmill<strong>an</strong> Magazines Ltd<br />

NATURE | VOL 411 | 10 MAY 2001 | www.n<strong>at</strong>ure.com


letters to n<strong>at</strong>ure<br />

<strong>the</strong> <strong>experiment</strong>al point <strong>at</strong> N ˆ 12:8. There is excellent agreement<br />

between <strong>experiment</strong> <strong>an</strong>d <strong>the</strong>ory.<br />

Here, as already proposed 4,19 , <strong>the</strong> which-p<strong>at</strong>h inform<strong>at</strong>ion is<br />

stored in <strong>the</strong> photon number. It could also be coded in <strong>the</strong> phase<br />

of a coherent ®eld, as suggested 5,27 <strong>an</strong>d demonstr<strong>at</strong>ed 28 . In ref. 28,<br />

<strong>the</strong> ®eld interacted in a non-reson<strong>an</strong>t way <strong>with</strong> Rydberg <strong>at</strong>oms,<br />

between two classical pulses. The <strong>at</strong>omic index of refraction, which<br />

is different for e <strong>an</strong>d g, left <strong>the</strong> which-p<strong>at</strong>h inform<strong>at</strong>ion encoded, not<br />

in <strong>the</strong> photon number, but in <strong>the</strong> ®eld phase. Contrary to wh<strong>at</strong> we<br />

observe now (see above), fringes <strong>the</strong>n disappeared for large ®eld<br />

amplitudes. The ®eld was <strong>the</strong>n a measuring appar<strong>at</strong>us, distinct from<br />

<strong>the</strong> <strong>interferometer</strong>, recording inform<strong>at</strong>ion about <strong>the</strong> particle's p<strong>at</strong>h<br />

(th<strong>at</strong> is, its energy) only when it was a classical macroscopic object.<br />

Here, <strong>the</strong> cavity ®eld is part of <strong>the</strong> <strong>interferometer</strong>, <strong>an</strong> appar<strong>at</strong>us<br />

aimed <strong>at</strong> measuring <strong>at</strong>omic coherences. The ®eld is a `well behaved'<br />

beam splitter, producing highly contrasted fringes when it contains<br />

m<strong>an</strong>y photons. Both <strong>experiment</strong>s are in agreement <strong>with</strong> Bohr's<br />

de®nition of a genuine measuring device, whose parts must be<br />

classical.<br />

We c<strong>an</strong> also <strong>an</strong>alyse our <strong>experiment</strong> in terms of a phase±photon<br />

number uncertainty rel<strong>at</strong>ion. The fringe contrast measures <strong>the</strong><br />

phase correl<strong>at</strong>ion between <strong>the</strong> two beam splitters, as R 1 imprints<br />

its phase on <strong>an</strong> <strong>at</strong>omic st<strong>at</strong>e superposition, read out l<strong>at</strong>er by R 2 . The<br />

R 2 ®eld has a well de®ned phase, whereas R 1 presents qu<strong>an</strong>tum phase<br />

¯uctu<strong>at</strong>ions D©, of <strong>the</strong> order of 1/DN. In order to get which-p<strong>at</strong>h<br />

inform<strong>at</strong>ion, we need DN , 1, making a one-photon ch<strong>an</strong>ge in R 1<br />

detectable. This entails D© . 1, resulting in <strong>the</strong> washing-out of<br />

phase correl<strong>at</strong>ions between R 1 <strong>an</strong>d R 2 . The argument is only<br />

qualit<strong>at</strong>ive here, as <strong>the</strong> phase is not a real qu<strong>an</strong>tum mech<strong>an</strong>ical<br />

oper<strong>at</strong>or 3 (similar Heisenberg uncertainty arguments, based on <strong>the</strong><br />

DxDp . 1 rel<strong>at</strong>ion, c<strong>an</strong> be invoked to <strong>an</strong>alyse <strong>the</strong> Mach±Zehnder<br />

thought <strong>experiment</strong>). In this way, we c<strong>an</strong> easily explain <strong>the</strong> fringe<br />

contrast for N ˆ 0 <strong>an</strong>d N large. For intermedi<strong>at</strong>e N values, <strong>the</strong><br />

fundamental <strong>at</strong>om±R 1 ent<strong>an</strong>glement approach is more precise.<br />

Interpreted in a super®cial way, <strong>the</strong> Heisenberg uncertainty expl<strong>an</strong><strong>at</strong>ion<br />

seems to describe <strong>the</strong> R 1 ±<strong>at</strong>om interaction as <strong>an</strong> irreversible<br />

noisy perturb<strong>at</strong>ion blurring away qu<strong>an</strong>tum interferences. This<br />

simplistic view is deceptive, however, <strong>an</strong>d <strong>the</strong> coding of whichp<strong>at</strong>h<br />

inform<strong>at</strong>ion c<strong>an</strong> be, as we now show, a fully reversible process.<br />

We performed <strong>an</strong> <strong>experiment</strong> involving two successive interactions<br />

<strong>with</strong> <strong>the</strong> same qu<strong>an</strong>tum beam splitter, in a con®gur<strong>at</strong>ion such<br />

th<strong>at</strong> <strong>the</strong> which-p<strong>at</strong>h inform<strong>at</strong>ion stored during <strong>the</strong> ®rst interaction<br />

was erased during <strong>the</strong> second, leading to <strong>an</strong> unconditional restor<strong>at</strong>ion<br />

of <strong>the</strong> fringes. The Mach±Zehnder <strong>an</strong>alogue of this <strong>experiment</strong><br />

is sketched in Fig. 4a <strong>an</strong>d <strong>the</strong> actual set-up in Fig. 4b. We now<br />

assume th<strong>at</strong> <strong>the</strong> two beam splitters are microscopic qu<strong>an</strong>tum pl<strong>at</strong>es<br />

rigidly coupled toge<strong>the</strong>r by a rot<strong>at</strong>ing assembly moving around O.<br />

The B 1 <strong>an</strong>d B 2 pl<strong>at</strong>es are kicked when <strong>the</strong> particle follows <strong>the</strong> p<strong>at</strong>hs b<br />

<strong>an</strong>d a, respectively, resulting in both cases in <strong>the</strong> same ®nal rot<strong>at</strong>ion<br />

of <strong>the</strong> assembly (arrows in Fig. 4a). The which-p<strong>at</strong>h inform<strong>at</strong>ion<br />

acquired by B 1 is `erased' when <strong>the</strong> particle reaches B 2 , a situ<strong>at</strong>ion<br />

reminiscent of <strong>the</strong> `qu<strong>an</strong>tum eraser' 3,17,19,29,30 . The fringes should<br />

<strong>the</strong>n be visible. In usual qu<strong>an</strong>tum-eraser procedures, however, <strong>the</strong><br />

which-p<strong>at</strong>h recording system is actively m<strong>an</strong>ipul<strong>at</strong>ed, <strong>the</strong>n measured.<br />

Conditional interferences appear, whose phase depends upon<br />

<strong>the</strong> outcome of <strong>the</strong> which-p<strong>at</strong>h detector measurement. If this<br />

measurement is not performed, fringes do not show up. Here, on<br />

<strong>the</strong> contrary, <strong>the</strong> inform<strong>at</strong>ion is unconditionally erased by <strong>the</strong><br />

second interaction <strong>with</strong> <strong>the</strong> beam splitter.<br />

The Ramsey version of this <strong>experiment</strong> (Fig. 4b) involves two<br />

successive pulses induced by <strong>the</strong> qu<strong>an</strong>tum ®eld in C. The cavity is<br />

initially in vacuum st<strong>at</strong>e. The ®rst pulse occurs when <strong>the</strong> <strong>at</strong>om<br />

enters <strong>the</strong> mode waist <strong>an</strong>d <strong>the</strong> second just before it leaves <strong>the</strong> waist, a<br />

time T ˆ 16 ms l<strong>at</strong>er. The interaction <strong>with</strong> <strong>the</strong> qu<strong>an</strong>tum ®eld is<br />

interrupted in between by Stark switching. An additional 2-ms pulse<br />

of electric ®eld is used, as in <strong>the</strong> previous <strong>experiment</strong>, to sweep <strong>the</strong><br />

phase difference f between <strong>the</strong> two p<strong>at</strong>hs. The ®rst Ramsey pulse<br />

tr<strong>an</strong>sforms <strong>the</strong> <strong>at</strong>om + ®eld st<strong>at</strong>e into <strong>the</strong> ent<strong>an</strong>gled superposition<br />

described by equ<strong>at</strong>ion (3) <strong>with</strong> ja e . ˆj0. <strong>an</strong>d ja g . ˆj1.. The<br />

<strong>interferometer</strong> <strong>the</strong>n stores which-p<strong>at</strong>h inform<strong>at</strong>ion. Just before <strong>the</strong><br />

second pulse, <strong>the</strong> <strong>at</strong>om + ®eld system is in <strong>the</strong> combined st<strong>at</strong>e:<br />

p<br />

jª9. ˆ 1= 2 …exp…if†je . j0 . ‡jg . j1.† …7†<br />

The second qu<strong>an</strong>tum pulse mixes again coherently je; 0. <strong>an</strong>d<br />

jg; 1. tr<strong>an</strong>sforming this superposition into:<br />

jª0. ˆ 1 ‰jg . j1 . …1 ‡ exp…if†† 2 je . j0 . …1 2 exp…if††Š …8†<br />

2<br />

The system's st<strong>at</strong>e contains two terms corresponding to <strong>the</strong> <strong>at</strong>om<br />

ending up in g, <strong>with</strong> a phase difference f between <strong>the</strong>m. In both<br />

terms, <strong>the</strong> ®eld is in <strong>the</strong> same one-photon st<strong>at</strong>e. The likeness to <strong>the</strong><br />

Mach±Zehnder case is noticeable: <strong>the</strong> photon in <strong>the</strong> cavity replaces<br />

<strong>the</strong> momentum kick stored in <strong>the</strong> beam-splitter assembly. The ®nal<br />

a<br />

b<br />

c<br />

Pg<br />

B 1<br />

O<br />

b<br />

B 2<br />

M'<br />

e<br />

1.0<br />

0.8<br />

0.6<br />

0.4<br />

0.2<br />

0.0<br />

R 1<br />

φ<br />

a<br />

φ<br />

C<br />

R 2<br />

0 1 2 3 4<br />

φ/π<br />

Figure 4 The unconditional qu<strong>an</strong>tum-eraser <strong>experiment</strong>. a, Mach±Zehnder's version: B 1<br />

<strong>an</strong>d B 2 are rigidly coupled to <strong>the</strong> same assembly rot<strong>at</strong>ing around O. Both p<strong>at</strong>hs result in <strong>the</strong><br />

same <strong>an</strong>gular momentum kick of <strong>the</strong> B 1 ±B 2 system. Fringes should appear. b, Actual<br />

Ramsey <strong>experiment</strong>. R 1 <strong>an</strong>d R 2 are produced by <strong>the</strong> same qu<strong>an</strong>tum mode in C, initially<br />

empty. The coupling of <strong>the</strong> <strong>at</strong>om is interrupted between R 1 <strong>an</strong>d R 2 by Stark switching. In<br />

both p<strong>at</strong>hs ending in level g, <strong>the</strong> <strong>at</strong>om ®nally releases one photon in C: <strong>the</strong> which-p<strong>at</strong>h<br />

inform<strong>at</strong>ion, produced by <strong>the</strong> ®rst pulse, is `erased' by <strong>the</strong> second. c, Interference signal<br />

obtained under <strong>the</strong>se conditions exhibiting a large fringe contrast.<br />

M<br />

g<br />

D<br />

φ<br />

φ<br />

NATURE | VOL 411 | 10 MAY 2001 | www.n<strong>at</strong>ure.com © 2001 Macmill<strong>an</strong> Magazines Ltd<br />

169


letters to n<strong>at</strong>ure<br />

inform<strong>at</strong>ion contained in <strong>the</strong> ®eld does not distinguish <strong>the</strong> two<br />

p<strong>at</strong>hs leading to g. The two corresponding amplitudes interfere.<br />

This results in large contrast fringes on P g , as shown in Fig. 4c. We<br />

note th<strong>at</strong> <strong>the</strong>se fringes are visible despite <strong>the</strong> overall r<strong>an</strong>dom phase<br />

of <strong>the</strong> pulses. The fringe contrast is sensitive to <strong>the</strong> phase correl<strong>at</strong>ion<br />

of <strong>the</strong> Ramsey ®elds between <strong>the</strong> times 0 <strong>an</strong>d T, which is nonv<strong>an</strong>ishing<br />

as long as T , T cavity .<br />

We have shown th<strong>at</strong> a coherent ®eld stored in a low-loss cavity<br />

realises a vers<strong>at</strong>ile beam splitter for <strong>at</strong>omic interferometry <strong>experiment</strong>s.<br />

It c<strong>an</strong> evolve continuously from a microscopic device, able to<br />

store which-p<strong>at</strong>h inform<strong>at</strong>ion, into a macroscopic system <strong>with</strong> a<br />

large number of qu<strong>an</strong>ta, insensitive to <strong>the</strong> interaction <strong>with</strong> <strong>the</strong><br />

interfering particle. When <strong>the</strong> beam splitter is qu<strong>an</strong>tum, its coupling<br />

<strong>with</strong> <strong>the</strong> particle results in maximum ent<strong>an</strong>glement between <strong>the</strong> two<br />

systems. When <strong>the</strong> same qu<strong>an</strong>tum beam-splitter is used twice in <strong>the</strong><br />

<strong>interferometer</strong>, <strong>the</strong> qu<strong>an</strong>tum inform<strong>at</strong>ion is erased <strong>an</strong>d <strong>the</strong> fringes<br />

restored. By allowing us to explore <strong>the</strong> tr<strong>an</strong>sition from microscopic<br />

to macroscopic measuring devices, <strong>the</strong>se <strong>experiment</strong>s shed light on<br />

<strong>the</strong> qu<strong>an</strong>tum-classical boundary.<br />

M<br />

Received 22 December 2000; accepted 7 March 2001.<br />

1. Bohr, N. in Albert Einstein: Philosopher Scientist (ed. Schilpp, P. A.) 200±241 (Library of Living<br />

Philosophers, Ev<strong>an</strong>ston, 1949); reprinted in Qu<strong>an</strong>tum Theory <strong>an</strong>d Measurement (eds Wheeler, J. A. &<br />

Zurek, W. H.) 9±49 (Princeton Univ. Press, Princeton, 1983).<br />

2. Einstein, A., Podolsky, B. & Rosen, N. C<strong>an</strong> qu<strong>an</strong>tum mech<strong>an</strong>ical description of physical reality be<br />

considered complete? Phys. Rev. 47, 777±780 (1935).<br />

3. Scully, M. O. & Zubairy, M. S. Qu<strong>an</strong>tum Optics (Cambridge Univ. Press, Cambridge, UK, 1997).<br />

4. Scully, M. O., Englert, B. G. & Wal<strong>the</strong>r, H. Qu<strong>an</strong>tum optical tests of <strong>complementarity</strong>. N<strong>at</strong>ure 351,<br />

111±116 (1991).<br />

5. Haroche, S., Brune, M. & Raimond, J. M. M<strong>an</strong>ipul<strong>at</strong>ions of optical ®elds by <strong>at</strong>omic interferometry:<br />

qu<strong>an</strong>tum vari<strong>at</strong>ions on a <strong>the</strong>me by Young. Appl. Phys. B 54, 355±365 (1992).<br />

6. Englert, B. G. Fringe visibility <strong>an</strong>d which-way inform<strong>at</strong>ion: <strong>an</strong> inequality. Phys. Rev. Lett. 77, 2154±<br />

2157 (1996).<br />

7. Englert, B. G., Scully, M. O. & Wal<strong>the</strong>r, H. Complementarity <strong>an</strong>d uncertainty. N<strong>at</strong>ure 375, 367<br />

(1995).<br />

8. Storey, P., T<strong>an</strong>, S., Collet, M. & Walls, D. Complementarity <strong>an</strong>d uncertainty. N<strong>at</strong>ure 375, 368<br />

(1995).<br />

9. Wisem<strong>an</strong>, H. et al. Non local momentum tr<strong>an</strong>sfer in welcher Weg measurements. Phys. Rev. A 56, 55±<br />

75 (1997).<br />

10. Badurek, G., Rausch, H. & Tuppinger, D. Neutron interferometric double reson<strong>an</strong>ce <strong>experiment</strong>s.<br />

Phys. Rev. A 34, 2600±2608 (1985).<br />

11. Gr<strong>an</strong>gier, P., Roger, G. & Aspect, A. Experimental evidence for photon <strong>an</strong>ticorrel<strong>at</strong>ion effect on a beam<br />

splitter: a new light on single-photon interference. Europhys. Lett. 1, 173±179 (1986).<br />

12. Pfau, T. et al. Loss of sp<strong>at</strong>ial coherence by a single spont<strong>an</strong>eous emission. Phys. Rev. Lett. 73, 1223±<br />

1227 (1994).<br />

13. Chapm<strong>an</strong>, M. S. et al. Photon sc<strong>at</strong>tering from <strong>at</strong>oms in <strong>an</strong> <strong>at</strong>om <strong>interferometer</strong>: coherence lost <strong>an</strong>d<br />

regained. Phys. Rev. Lett. 75, 3783±3787 (1995).<br />

14. Eichm<strong>an</strong>, U. et al. Young's interference <strong>experiment</strong> <strong>with</strong> light sc<strong>at</strong>tered from two <strong>at</strong>oms. Phys. Rev.<br />

Lett. 70, 2359±2362 (1993).<br />

15. DuÈrr, S., Nonn, T. & Rempe, G. Origin of qu<strong>an</strong>tum-mech<strong>an</strong>ical <strong>complementarity</strong> probed by a ``which<br />

way'' <strong>experiment</strong> in <strong>an</strong> <strong>at</strong>om <strong>interferometer</strong>. N<strong>at</strong>ure 395, 33±37 (1998).<br />

16. DuÈrr, S., Nonn, T. & Rempe, G. Fringe visibility <strong>an</strong>d which-way inform<strong>at</strong>ion in <strong>an</strong> <strong>at</strong>om <strong>interferometer</strong>.<br />

Phys. Rev. Lett. 81, 5705±5709 (1998).<br />

17. Herzog, T. J., Kwi<strong>at</strong>, P. G., Weinfurter, H. & Zeilinger, A. Complementarity <strong>an</strong>d <strong>the</strong> qu<strong>an</strong>tum eraser.<br />

Phys. Rev. Lett. 75, 3034±3037 (1995).<br />

18. Bucks, E., Schuster, R., Heiblum, M., Mahalu, D. & Um<strong>an</strong>sky, V. Dephasing in electron interference by<br />

a ``which-p<strong>at</strong>h'' detector. N<strong>at</strong>ure 391, 871±874 (1998).<br />

19. Zheng, S. B. A simpli®ed scheme for testing <strong>complementarity</strong> <strong>an</strong>d realising qu<strong>an</strong>tum eraser. Opt.<br />

Comm. 173, 265±267 (2000).<br />

20. Ramsey, N. Molecular Beams (Oxford Univ. Press, Oxford, UK, 1985).<br />

21. Nogues, G. et al. Seeing a single photon <strong>with</strong>out destroying it. N<strong>at</strong>ure 400, 239±242 (1999).<br />

22. Rauschenbeutel, A. et al. Coherent oper<strong>at</strong>ion of a tunable qu<strong>an</strong>tum phase g<strong>at</strong>e. Phys. Rev. Lett. 83,<br />

5166±5169 (1999).<br />

23. Brune, M. et al. From Lamb shift to light shifts: vacuum <strong>an</strong>d sub-photon cavity ®elds measured by<br />

<strong>at</strong>omic interferometry. Phys. Rev. Lett. 72, 3339±3342 (1994).<br />

24. Brune, M. et al. Qu<strong>an</strong>tum Rabi oscill<strong>at</strong>ion: a direct test of ®eld qu<strong>an</strong>tiz<strong>at</strong>ion in a cavity. Phys. Rev. Lett.<br />

76, 1800±1803 (1996).<br />

25. Haroche, S. & Raimond, J. M. in Cavity Qu<strong>an</strong>tum Electrodynamics (ed. Berm<strong>an</strong>, P.) 123±170<br />

(Academic, New York, 1992).<br />

26. Kim, J. I. et al. Classical behaviours <strong>with</strong> small qu<strong>an</strong>tum numbers: <strong>the</strong> physics of Ramsey<br />

interferometry of Rydberg <strong>at</strong>oms. Phys. Rev. Lett. 82, 4737±4740 (1999).<br />

27. Gerry, C. C. Complementarity <strong>an</strong>d qu<strong>an</strong>tum erasure <strong>with</strong> dispersive <strong>at</strong>om-®eld interaction. Phys. Rev.<br />

A 53, 1179±1182 (1996).<br />

28. Brune, M. et al. Observing <strong>the</strong> progressive decoherence of <strong>the</strong> meter in a qu<strong>an</strong>tum measurement. Phys.<br />

Rev. Lett. 77, 4887±4890 (1996).<br />

29. Scully, M. O. & SruÈhl, K. Qu<strong>an</strong>tum eraser: a proposed photon correl<strong>at</strong>ion <strong>experiment</strong> concerning<br />

observ<strong>at</strong>ion <strong>an</strong>d ``delayed choice'' in qu<strong>an</strong>tum mech<strong>an</strong>ics. Phys. Rev. A 25, 2208±2213 (1982).<br />

30. Kwi<strong>at</strong>, P. G., Steinberg, A. M. & Chiao, R. Y. Observ<strong>at</strong>ion of a ``qu<strong>an</strong>tum eraser'': a revival of coherence<br />

in a 2-photon interference <strong>experiment</strong>. Phys. Rev. A 45, 7729±7739 (1992).<br />

Acknowledgements<br />

Labor<strong>at</strong>oire Kastler Brossel is Unite Mixte de Recherches of Ecole Normale SupeÂrieure,<br />

Universite P. et M. Curie <strong>an</strong>d Centre N<strong>at</strong>ional de la Recherche Scienti®que. This work was<br />

supported by <strong>the</strong> Commission of <strong>the</strong> Europe<strong>an</strong> Community <strong>an</strong>d by <strong>the</strong> Jap<strong>an</strong> Science <strong>an</strong>d<br />

Technology Corpor<strong>at</strong>ion (Intern<strong>at</strong>ional Cooper<strong>at</strong>ive Research Project, Qu<strong>an</strong>tum<br />

Ent<strong>an</strong>glement Project).<br />

Correspondence <strong>an</strong>d requests for m<strong>at</strong>erials should be addressed to S.H.<br />

(e-mail: haroche@lkb.ens.fr).<br />

.................................................................<br />

Semiconducting non-molecular<br />

nitrogen up to 240 GPa <strong>an</strong>d its<br />

low-pressure stability<br />

Mikhail I. Eremets, Russell J. Hemley, Ho-kw<strong>an</strong>g Mao<br />

& Eugene Gregory<strong>an</strong>z<br />

Geophysical Labor<strong>at</strong>ory <strong>an</strong>d Center for High Pressure Research,<br />

Carnegie Institution of Washington, 5251 Broad Br<strong>an</strong>ch Road NW,<br />

Washington DC 20015, USA<br />

..............................................................................................................................................<br />

The triple bond of di<strong>at</strong>omic nitrogen has among <strong>the</strong> gre<strong>at</strong>est<br />

binding energies of <strong>an</strong>y molecule. At low temper<strong>at</strong>ures <strong>an</strong>d<br />

pressures, nitrogen forms a molecular crystal in which <strong>the</strong>se<br />

strong bonds co-exist <strong>with</strong> weak v<strong>an</strong> der Waals interactions<br />

between molecules, producing <strong>an</strong> insul<strong>at</strong>or <strong>with</strong> a large b<strong>an</strong>d<br />

gap 1 . As <strong>the</strong> pressure is raised on molecular crystals, intermolecular<br />

interactions increase <strong>an</strong>d <strong>the</strong> molecules eventually dissoci<strong>at</strong>e<br />

to form mono<strong>at</strong>omic metallic solids, as was ®rst predicted<br />

for hydrogen 2 . Theory predicts th<strong>at</strong>, in a pressure r<strong>an</strong>ge between<br />

50 <strong>an</strong>d 94 GPa, di<strong>at</strong>omic nitrogen c<strong>an</strong> be tr<strong>an</strong>sformed into a nonmolecular<br />

framework or polymeric structure <strong>with</strong> potential use as<br />

a high-energy-density m<strong>at</strong>erial 3±5 . Here we show th<strong>at</strong> <strong>the</strong> nonmolecular<br />

phase of nitrogen is semiconducting up to <strong>at</strong> least<br />

240 GPa, <strong>at</strong> which pressure <strong>the</strong> energy gap has decreased to 0.4 eV.<br />

At 300 K, this tr<strong>an</strong>sition from insul<strong>at</strong>ing to semiconducting<br />

behaviour starts <strong>at</strong> a pressure of approxim<strong>at</strong>ely 140 GPa, but<br />

shifts to much higher pressure <strong>with</strong> decreasing temper<strong>at</strong>ure.<br />

The tr<strong>an</strong>sition also exhibits remarkably large hysteresis <strong>with</strong> <strong>an</strong><br />

equilibrium tr<strong>an</strong>sition estim<strong>at</strong>ed to be near 100 GPa. Moreover,<br />

we have succeeded in recovering <strong>the</strong> non-molecular phase of<br />

nitrogen <strong>at</strong> ambient pressure (<strong>at</strong> temper<strong>at</strong>ures below 100 K),<br />

which could be of import<strong>an</strong>ce for practical use.<br />

McMah<strong>an</strong> <strong>an</strong>d LeSar 3 ®rst predicted th<strong>at</strong> nitrogen would tr<strong>an</strong>sform<br />

from <strong>the</strong> molecular st<strong>at</strong>e, in which each <strong>at</strong>om is triple-bonded<br />

<strong>with</strong> one near neighbour, to a mono<strong>at</strong>omic structure in which each<br />

<strong>at</strong>om is bonded to three nearest neighbours by single covalent<br />

bonds. This unusual tr<strong>an</strong>sition is also interesting from <strong>the</strong> point of<br />

view of <strong>the</strong> chemistry of nitrogen <strong>an</strong>d its applic<strong>at</strong>ions. Only small<br />

molecules <strong>with</strong> two or three nitrogen <strong>at</strong>oms in a row are known (<strong>the</strong><br />

only exception being perhaps N + 5AsF - 6; ref. 6). These may form highenergy-density<br />

m<strong>at</strong>erials because <strong>the</strong> tr<strong>an</strong>sform<strong>at</strong>ion from polymerized<br />

nitrogen to di<strong>at</strong>omic molecular nitrogen is accomp<strong>an</strong>ied<br />

by a very large energy release 6 (<strong>the</strong> average bond strength of <strong>the</strong><br />

N±N single bond is 160 kJ mol -1 <strong>an</strong>d th<strong>at</strong> of <strong>the</strong> triple bond is<br />

954 kJ mol -1 ). The calcul<strong>at</strong>ions 3±5 predicted this tr<strong>an</strong>sform<strong>at</strong>ion to<br />

occur <strong>at</strong> pressures of 50±94 GPa <strong>with</strong> a large volume ch<strong>an</strong>ge of<br />

approxim<strong>at</strong>ely 35%; this prediction has been examined in additional<br />

detail in numerous subsequent <strong>the</strong>oretical studies 7±10 . The<br />

electronic properties of non-molecular nitrogen strongly depend<br />

on <strong>the</strong> particular crystalline structure. M<strong>an</strong>y structures have been<br />

considered 3±5 ; <strong>the</strong> lowest-energy modi®c<strong>at</strong>ions reported seems to<br />

170 © 2001 Macmill<strong>an</strong> Magazines Ltd<br />

NATURE | VOL 411 | 10 MAY 2001 | www.n<strong>at</strong>ure.com

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!