03.02.2014 Views

LEC 06 Shear Stresses for Beams in Bending(pdf) - KFUPM Open ...

LEC 06 Shear Stresses for Beams in Bending(pdf) - KFUPM Open ...

LEC 06 Shear Stresses for Beams in Bending(pdf) - KFUPM Open ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Chapter 4<br />

Load and Stress Analysis<br />

<br />

Lec. 6<br />

<strong>Shear</strong> <strong>Stresses</strong> <strong>for</strong> <strong>Beams</strong> <strong>in</strong> Bend<strong>in</strong>g<br />

A. Bazoune


4.8 <strong>Shear</strong> <strong>Stresses</strong> <strong>for</strong><br />

<strong>Beams</strong> <strong>in</strong> Bend<strong>in</strong>g<br />

Most beams have both shear <strong>for</strong>ces and bend<strong>in</strong>g moment<br />

present.<br />

It is only occasionally that we encounter beams subjected<br />

to pure bend<strong>in</strong>g, that is to say hav<strong>in</strong>g zero shear <strong>for</strong>ce.<br />

to pure bend<strong>in</strong>g, that is to say hav<strong>in</strong>g zero shear <strong>for</strong>ce.<br />

The flexural <strong>for</strong>mula was developed on the assumption of<br />

pure bend<strong>in</strong>g <strong>in</strong> order to elim<strong>in</strong>ate complicat<strong>in</strong>g effects of<br />

shear <strong>for</strong>ce.<br />

For eng<strong>in</strong>eer<strong>in</strong>g purposes, the flexure <strong>for</strong>mula is valid no<br />

matter whether the shear <strong>for</strong>ce is present or not.


Fig. 4.20 shows<br />

a beam of<br />

constant cross<br />

section<br />

subjected to a<br />

shear <strong>for</strong>ce V<br />

and a bend<strong>in</strong>g<br />

moment M<br />

Figure 4-20 Beam section isolation.<br />

Note: Only <strong>for</strong>ces <strong>in</strong> x-direction are<br />

shown on the dx element.


Associate the hollow<br />

vector with your<br />

right hand.<br />

If you place the<br />

thumb of your right<br />

hand <strong>in</strong> the negative<br />

z- direction, then<br />

your f<strong>in</strong>gers, when<br />

bent, will <strong>in</strong>dicate<br />

the direction of<br />

moment M.<br />

Figure 4-20 Beam section isolation.<br />

Note: Only <strong>for</strong>ces <strong>in</strong> x-direction are<br />

shown on the dx element.


<strong>Shear</strong> <strong>for</strong>ce and<br />

bend<strong>in</strong>g moment are<br />

related by:<br />

V<br />

=<br />

dM<br />

dx<br />

(a)<br />

Figure 4-20 Beam section isolation.<br />

Note: Only <strong>for</strong>ces <strong>in</strong> x-direction are<br />

shown on the dx element.


At some po<strong>in</strong>t<br />

along the beam,<br />

we cut transverse<br />

section dx at a<br />

distance y 1 above<br />

the neutral axis.<br />

<br />

We remove this<br />

section to study<br />

the <strong>for</strong>ces that act<br />

on it.<br />

Figure 4-20 Beam section isolation.<br />

Note: Only <strong>for</strong>ces <strong>in</strong> x-direction are<br />

shown on the dx element.


Because shear<br />

<strong>for</strong>ce is present,<br />

the B.M. is<br />

chang<strong>in</strong>g as we<br />

move along the x-<br />

axis.<br />

We can designate<br />

the B.M. as M on<br />

the Near Side of<br />

the section and as<br />

(M + dM) on the<br />

Far Side.<br />

Figure 4-20 Beam section isolation.<br />

Note: Only <strong>for</strong>ces <strong>in</strong> x-direction are<br />

shown on the dx element.


The moment M<br />

produces a normal<br />

stress σ, and the<br />

moment (M + dM),<br />

a normal stress<br />

(σ + dσ).<br />

These normal<br />

stresses produce<br />

normal <strong>for</strong>ces on<br />

the vertical faces of<br />

the element.<br />

The compressive <strong>for</strong>ce on the far side be<strong>in</strong>g<br />

greater than on the near side.<br />

The Resultant of these two would cause the<br />

section to tend to slide <strong>in</strong> the negative x-<br />

direction.


This resultant must<br />

be balanced by a<br />

shear <strong>for</strong>ce act<strong>in</strong>g<br />

<strong>in</strong> the positive x-<br />

direction on the<br />

bottom of the<br />

section.<br />

This shear <strong>for</strong>ce<br />

results <strong>in</strong> a shear<br />

stress.<br />

For the near face<br />

F<br />

N<br />

=∫<br />

c<br />

y<br />

1<br />

σ dA<br />

(b)<br />

where the limits <strong>in</strong>dicate that we <strong>in</strong>tegrate from y = y 1 to y = c.


σ = M y I<br />

For ,<br />

Eq. (b) becomes<br />

F<br />

N<br />

M<br />

=<br />

I<br />

∫<br />

c<br />

I ∫ ( )<br />

y<br />

1<br />

(b)<br />

y dA<br />

(c)<br />

For the Far side<br />

c M+<br />

dM c<br />

F = ∫ σ+ dσ<br />

dA = ∫ y dA<br />

y1 I y1<br />

(d)


The <strong>for</strong>ce on the<br />

bottom face is the<br />

shear stress τ times<br />

the area of the<br />

bottom face<br />

FB<br />

=τ bdx<br />

(e)


In this equation, the <strong>in</strong>tegral<br />

is the first moment of the<br />

area of the isolated vertical<br />

face about the neutral axis.<br />

∫<br />

c<br />

y y dA<br />

1<br />

=<br />

Q


The moment is usually designated Q<br />

Q<br />

∫ y dA=<br />

= c y<br />

1<br />

y'<br />

A'<br />

(4-30)<br />

where, <strong>for</strong> the isolated area from y 1 to c, is the distance from the<br />

y-axis to the area centroid and A’ is the area.<br />

F<strong>in</strong>ally, we write<br />

V Q<br />

τ =<br />

(4-31)<br />

I b


<strong>Shear</strong> <strong>Stresses</strong> <strong>in</strong> Standard-Section Section<br />

<strong>Beams</strong><br />

<br />

The shear stress distribution <strong>in</strong> a beam depends on how Q/b<br />

varies as a function of y 1.<br />

<br />

Fig. 4-22 shows a portion of a beam with a rectangular crosssection.<br />

It is subjected to shear <strong>for</strong>ce V and a bend<strong>in</strong>g Moment M.


Figure 4-22<br />

<strong>Shear</strong> Stress <strong>in</strong> a rectangular beam


A normal stress σ is developed on a cross-section such as A-A due to M.<br />

<br />

Section A-A is <strong>in</strong> compression above the N.A. and <strong>in</strong> tension below.


Consider an element of area dA at a distance<br />

y above the N.A. such that<br />

Eq. (4-30) becomes<br />

dA = bdy<br />

2<br />

c<br />

c by b<br />

Q y dA b y dy ⎡ ⎤<br />

= ∫ = c y<br />

y ∫ =<br />

1 y<br />

⎢ = −<br />

1 2<br />

⎥<br />

⎣ ⎦ 2<br />

c<br />

y1<br />

2 2<br />

( 1 )


Substitute this value <strong>in</strong>to Eq.(4-31)<br />

From Table A-18 and <strong>for</strong> a rectangular cross-section, we have<br />

Substitute A = bh and h = 2c<br />

gives<br />

Us<strong>in</strong>g this value <strong>for</strong> I <strong>in</strong> Eq. (4-32) gives<br />

V<br />

(<br />

2 2<br />

τ = c − y )<br />

(4-32)<br />

1<br />

2I<br />

I =<br />

Ac<br />

3<br />

3V<br />

⎛<br />

τ = ⎜1−<br />

2A<br />

⎝<br />

2<br />

I =<br />

bh<br />

12<br />

(b)<br />

(4-33)<br />

The maximum shear stress exists when y=0, which is at the bend<strong>in</strong>g<br />

neutral axis. Thus<br />

3V<br />

τ<br />

max<br />

=<br />

2A<br />

y<br />

c<br />

2<br />

1<br />

2<br />

⎞<br />

⎟<br />

⎠<br />

3<br />

(4-34)


As we move away from the neutral axis, the shear stress<br />

decreases parabolically until it is zero at the outer surface<br />

where y = ± c .<br />

Notice that the shear<br />

stress is maximum at<br />

the bend<strong>in</strong>g neutral<br />

axis, where the<br />

normal stress due to<br />

bend<strong>in</strong>g is zero and<br />

that the shear stress<br />

is zero at the outer<br />

surfaces, where the<br />

bend<strong>in</strong>g stress is a<br />

maximum.


Particular Case:<br />

<strong>Shear</strong> <strong>Stresses</strong> <strong>in</strong> Standard Section <strong>Beams</strong>


Example 4-7 Textbook<br />

A beam 12 <strong>in</strong> long is to support a load of 488 lb.f act<strong>in</strong>g 3 <strong>in</strong> from the left<br />

support as shown <strong>in</strong> Fig- 4-21<br />

a. Bas<strong>in</strong>g the design only on bend<strong>in</strong>g stress, a<br />

designer has<br />

selected a 3-<strong>in</strong><br />

column<br />

channel with<br />

the cross-sectional<br />

sectional<br />

dimensions as shown. If the direct shear is neglected, the stress beam may be<br />

actually higher than the designer th<strong>in</strong>ks. DETERMINE the pr<strong>in</strong>cipal stresses<br />

consider<strong>in</strong>g bend<strong>in</strong>g and direct shear and compare then with that consider<strong>in</strong>g<br />

bend<strong>in</strong>g only.<br />

Figure 4-21.


Example 4-7 Cont’d<br />

The load<strong>in</strong>g, shear <strong>for</strong>ce and<br />

bend<strong>in</strong>g moment diagram are<br />

shown <strong>in</strong> Figure4-21(b)<br />

(b).<br />

If the direct shear <strong>for</strong>ce is<br />

<strong>in</strong>cluded <strong>in</strong> the analysis, the<br />

maximum stresses at the top<br />

and bottom of the beam will<br />

be the<br />

same<br />

as<br />

if only<br />

bend<strong>in</strong>g were<br />

considered.<br />

The maximum stresses are:<br />

Mc<br />

σ = ±<br />

I<br />

1098( 1.5)<br />

= ± = ± 992psi<br />

1.66<br />

Figure 4-21 (b).


Example 4-7 Cont’d


Example 4-7 Cont’d


y Q s t s ,s 1 2<br />

<strong>in</strong><br />

<strong>in</strong> 3<br />

psi<br />

psi<br />

psi<br />

0 0.653 0 847 847, -847<br />

0.25 0.648 165 840 762, -928<br />

0.5 0.631 331 818 670, -1000<br />

0.75 0.605 496 785 575, -1071<br />

1 0.568 661 737 477, -1138<br />

1.227 0.525 812 681 387, -1200<br />

1.5 0 992 0 0, -992

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!