05.02.2014 Views

Effect of temperature and feed rate on the body shape of ...

Effect of temperature and feed rate on the body shape of ...

Effect of temperature and feed rate on the body shape of ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Egypt. Acad. J. Biolog. Sci., 4(1): 211 -217 (2012)<br />

B. Zoology<br />

Email: egyptianacademic@yahoo.com ISSN: 2090 - 0759<br />

Received: 29 / 10 /2012<br />

www.eajbs.eg.net<br />

<str<strong>on</strong>g>Effect</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>temperature</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>feed</str<strong>on</strong>g> <str<strong>on</strong>g>rate</str<strong>on</strong>g> <strong>on</strong> <strong>the</strong> <strong>body</strong> <strong>shape</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Oreochromis shiranus, a<br />

widely-cultured tilapia species in Malawi<br />

Kassam, D.*, Ssebisubi, M. <str<strong>on</strong>g>and</str<strong>on</strong>g> Lik<strong>on</strong>gwe, J. S.<br />

Lil<strong>on</strong>gwe University <str<strong>on</strong>g>of</str<strong>on</strong>g> Agriculture <str<strong>on</strong>g>and</str<strong>on</strong>g> Natural Resources, Bunda College,<br />

Aquaculture <str<strong>on</strong>g>and</str<strong>on</strong>g> Fisheries Science Department, P.O. Box 219, Lil<strong>on</strong>gwe, Malawi<br />

*Corresp<strong>on</strong>ding author email: dadeka@yahoo.com<br />

ABSTRACT<br />

C<strong>on</strong>sidering <strong>the</strong> vitalness <str<strong>on</strong>g>of</str<strong>on</strong>g> traits such as <strong>body</strong> <strong>shape</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> size in influencing <strong>the</strong><br />

marketability <str<strong>on</strong>g>of</str<strong>on</strong>g> fish, geometric morphometrics was utilized to explore if raising fish<br />

at different <str<strong>on</strong>g>temperature</str<strong>on</strong>g>s <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>feed</str<strong>on</strong>g><str<strong>on</strong>g>rate</str<strong>on</strong>g>s would affect such important traits. MANOVA<br />

revealed significant differences in <strong>body</strong> <strong>shape</strong> am<strong>on</strong>g fish raised at different<br />

<str<strong>on</strong>g>temperature</str<strong>on</strong>g>s but not those fed at different levels <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong>ir <strong>body</strong> weight. In general, <strong>the</strong><br />

fish that were raised at 20°C, regardless <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> <str<strong>on</strong>g>feed</str<strong>on</strong>g><str<strong>on</strong>g>rate</str<strong>on</strong>g>, had shorter but deeper bodies,<br />

larger eyes <str<strong>on</strong>g>and</str<strong>on</strong>g> l<strong>on</strong>ger heads as opposed to <strong>the</strong> l<strong>on</strong>ger <str<strong>on</strong>g>and</str<strong>on</strong>g> slender bodies, smaller eyes<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> shorter heads found in those reared at 25°C <str<strong>on</strong>g>and</str<strong>on</strong>g> 30°C. On size, ANOVA revealed<br />

significant differences al<strong>on</strong>g <str<strong>on</strong>g>temperature</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>feed</str<strong>on</strong>g><str<strong>on</strong>g>rate</str<strong>on</strong>g> gradients in a way that fish<br />

reared at 20°C were <strong>the</strong> smallest, followed by those at 25°C <str<strong>on</strong>g>and</str<strong>on</strong>g> <strong>the</strong>n <strong>the</strong> largest were<br />

those at 30°C. On <str<strong>on</strong>g>feed</str<strong>on</strong>g><str<strong>on</strong>g>rate</str<strong>on</strong>g>, it was <strong>on</strong>ly at 30°C where fish fed at 6% <strong>body</strong> weight<br />

were significantly larger in size than those fed at 3% <strong>body</strong> weight. These findings are<br />

discussed in terms <str<strong>on</strong>g>of</str<strong>on</strong>g> best management practices, especially <strong>on</strong> how to combine such<br />

two abiotic factors in order to maximize growth within <strong>the</strong> shortest period possible,<br />

c<strong>on</strong>sidering <strong>the</strong> ec<strong>on</strong>omical implicati<strong>on</strong>s.<br />

Keywords: Fry, Mahalanobis Distance, Centroid Size, Can<strong>on</strong>ical Variate Analysis, Poikilo<strong>the</strong>rms<br />

INTRODUCTION<br />

Aquaculture producti<strong>on</strong> in Malawi is still very low <str<strong>on</strong>g>and</str<strong>on</strong>g> hinges <strong>on</strong> very few<br />

tilapia species (c<strong>on</strong>tributing about 93% <str<strong>on</strong>g>of</str<strong>on</strong>g> total producti<strong>on</strong>), namely: Tilapia rendalli,<br />

Oreochromis kar<strong>on</strong>gae <str<strong>on</strong>g>and</str<strong>on</strong>g> O. shiranus, <str<strong>on</strong>g>and</str<strong>on</strong>g> <strong>on</strong>e catifsh species, Clarias gariepinus.<br />

Of <strong>the</strong> abiotic factors that c<strong>on</strong>strain tilapia producti<strong>on</strong> in Malawi <str<strong>on</strong>g>and</str<strong>on</strong>g> o<strong>the</strong>r African<br />

countries, <str<strong>on</strong>g>temperature</str<strong>on</strong>g> features highly as this varies from place to place <str<strong>on</strong>g>and</str<strong>on</strong>g> seas<strong>on</strong> to<br />

seas<strong>on</strong> throughout <strong>the</strong> year. C<strong>on</strong>sidering that fish are poikilo<strong>the</strong>rms, water<br />

<str<strong>on</strong>g>temperature</str<strong>on</strong>g> is a critical factor since it influences several biological processes,<br />

including survival, <str<strong>on</strong>g>feed</str<strong>on</strong>g> utilizati<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> in turn growth. Physiological processes that<br />

c<strong>on</strong>trol growth, survival <str<strong>on</strong>g>and</str<strong>on</strong>g> reproducti<strong>on</strong> in fish bear a positive relati<strong>on</strong>ship with<br />

water <str<strong>on</strong>g>temperature</str<strong>on</strong>g> (Atwood et al., 2003). Water <str<strong>on</strong>g>temperature</str<strong>on</strong>g> interacts with o<strong>the</strong>r<br />

management practices such as stocking density <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>feed</str<strong>on</strong>g> compositi<strong>on</strong> to affect growth<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> tilapias (Musuka, 2006). Due to <strong>the</strong> high gut evacuati<strong>on</strong> <str<strong>on</strong>g>rate</str<strong>on</strong>g>, tilapias need to be fed<br />

frequently in order to achieve <strong>the</strong> best growth <str<strong>on</strong>g>rate</str<strong>on</strong>g> (Malcom & Brendan 2000). This,<br />

however, depends <strong>on</strong> both water <str<strong>on</strong>g>temperature</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> fish size. The <str<strong>on</strong>g>feed</str<strong>on</strong>g> must be digested<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> assimilated so as to ensure high ec<strong>on</strong>omic returns, <strong>the</strong>refore it is necessary to use<br />

an optimum <str<strong>on</strong>g>feed</str<strong>on</strong>g>ing level. It is <strong>the</strong>refore necessary to optimize <strong>the</strong>se rearing<br />

c<strong>on</strong>diti<strong>on</strong>s, i.e. <str<strong>on</strong>g>temperature</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>feed</str<strong>on</strong>g>ing levels, due to <strong>the</strong>ir direct bearing <strong>on</strong> <strong>the</strong><br />

growth performance <str<strong>on</strong>g>of</str<strong>on</strong>g> fish, in order to boost aquaculture producti<strong>on</strong>. Several


212<br />

Kassam, D. et al.<br />

researchers have investigated how fish form is affected by abiotic factors like<br />

<str<strong>on</strong>g>temperature</str<strong>on</strong>g>, salinity etc. (see Hubbs, 1926; Barlow, 1961).<br />

Fish form encompasses both size <str<strong>on</strong>g>and</str<strong>on</strong>g> <strong>shape</strong>. Unfortunately in aquaculture, it is<br />

<strong>on</strong>ly size that is c<strong>on</strong>sidered when <strong>on</strong>e wants to explore <strong>the</strong> effect <str<strong>on</strong>g>of</str<strong>on</strong>g> any treatment <strong>on</strong><br />

<strong>the</strong> growth <str<strong>on</strong>g>of</str<strong>on</strong>g> fish. It is comm<strong>on</strong> knowledge that growth <str<strong>on</strong>g>of</str<strong>on</strong>g> fish, or any organism, is<br />

not just unidirecti<strong>on</strong>al but ra<strong>the</strong>r multidimensi<strong>on</strong>al, hence this approach <str<strong>on</strong>g>of</str<strong>on</strong>g> exploring<br />

growth through <strong>on</strong>ly st<str<strong>on</strong>g>and</str<strong>on</strong>g>ard length in fish leaves certain vital informati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> fish<br />

form unexplored, i.e. <strong>shape</strong>. Therefore <strong>the</strong> aim <str<strong>on</strong>g>of</str<strong>on</strong>g> this study is to utilize geometric<br />

morphometrics to uncover <strong>the</strong> effect <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>temperature</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>feed</str<strong>on</strong>g> <str<strong>on</strong>g>rate</str<strong>on</strong>g> <strong>on</strong> <strong>the</strong> <strong>shape</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

size <str<strong>on</strong>g>of</str<strong>on</strong>g> widely cultured O. shiranus, <str<strong>on</strong>g>and</str<strong>on</strong>g> thus make geometric morphometrics known<br />

to Malawian aquaculturists who can add it to <strong>the</strong>ir tool kit when it comes to fish<br />

quality assessment.<br />

MATERIAL AND METHODS<br />

Source <str<strong>on</strong>g>of</str<strong>on</strong>g> fish <str<strong>on</strong>g>and</str<strong>on</strong>g> experimental set up<br />

Fingerlings <str<strong>on</strong>g>of</str<strong>on</strong>g> Oreochromis shiranus were collected from an ear<strong>the</strong>n p<strong>on</strong>d at<br />

Bunda College fish farm using seine net, graded according to weight. Thereafter, <strong>the</strong><br />

fish were transferred to a 2000 L-fibreglass tank, where <strong>the</strong>y were acclimatized for<br />

<strong>on</strong>e week at ambient <str<strong>on</strong>g>temperature</str<strong>on</strong>g> (19-21°C). The fingerlings were fed with a locally<br />

formulated experimental diet c<strong>on</strong>taining 32% CP at 3% <strong>body</strong> weight. At <strong>the</strong> end <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong><br />

acclimatizati<strong>on</strong> period, fish were starved for 24hrs <str<strong>on</strong>g>and</str<strong>on</strong>g> anaes<strong>the</strong>tized using FA 100 (4-<br />

allyl-2-methoxyphenol), reweighed <str<strong>on</strong>g>and</str<strong>on</strong>g> a total <str<strong>on</strong>g>of</str<strong>on</strong>g> 480 uniform size fish (5.12 ± 0.11,<br />

mean weight ± s.d.; 5.48 ± 0.14cm, mean st<str<strong>on</strong>g>and</str<strong>on</strong>g>ard length ± s.d.) were pooled in a<br />

sec<strong>on</strong>d 2000 L-blue fiberglass tank. In this highly ae<str<strong>on</strong>g>rate</str<strong>on</strong>g>d tank, fish spent a night<br />

before <strong>the</strong>y were stocked early <strong>the</strong> following morning. There were 18 different<br />

transclucent circular tanks (200 L each) which were stocked at a stocking <str<strong>on</strong>g>rate</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> 20<br />

fingerlings/tank, <str<strong>on</strong>g>and</str<strong>on</strong>g> initial average weights in each tank was checked <str<strong>on</strong>g>and</str<strong>on</strong>g> was not<br />

significantly different am<strong>on</strong>g tanks. The experiment was a 3 by 2 factorial in a<br />

completely r<str<strong>on</strong>g>and</str<strong>on</strong>g>omized design having three <str<strong>on</strong>g>temperature</str<strong>on</strong>g> levels (20°C, 25°C <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

30°C) <str<strong>on</strong>g>and</str<strong>on</strong>g> two <str<strong>on</strong>g>feed</str<strong>on</strong>g>ing levels (3% <str<strong>on</strong>g>and</str<strong>on</strong>g> 6% <strong>body</strong> weight), implying a triplicate<br />

experimental layout. The experimental water <str<strong>on</strong>g>temperature</str<strong>on</strong>g>s were raised gradually by<br />

2°C/day by using Tet<str<strong>on</strong>g>rate</str<strong>on</strong>g>c® HT 200 automatic aquarium heaters, following a similar<br />

procedure by Kang’ombe (2004).<br />

Rearing c<strong>on</strong>diti<strong>on</strong>s<br />

A static-water ae<str<strong>on</strong>g>rate</str<strong>on</strong>g>d system was used in this experiment whereby two-thirds <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

water was replaced every two days. In order to reduce incidences <str<strong>on</strong>g>of</str<strong>on</strong>g> stress-related<br />

mortalities, sampling <str<strong>on</strong>g>and</str<strong>on</strong>g> cleaning <str<strong>on</strong>g>of</str<strong>on</strong>g> tanks were synchr<strong>on</strong>ized every two weeks<br />

throughout <strong>the</strong> experiment. Fish were fed twice daily (at 09:00 <str<strong>on</strong>g>and</str<strong>on</strong>g> 18:00 hrs) with<br />

pellet diet at 3% or 6% <strong>body</strong>weight depending <strong>on</strong> treatment <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>feed</str<strong>on</strong>g>ing quantities<br />

were adjusted accordingly in relati<strong>on</strong> to biweekly weights. The <str<strong>on</strong>g>feed</str<strong>on</strong>g> ingredients<br />

comprised <str<strong>on</strong>g>of</str<strong>on</strong>g> fishmeal, soybean meal, maize bran, vegetable oil, vitamin <str<strong>on</strong>g>and</str<strong>on</strong>g> mineral<br />

premixes, while snowflake wheat cake flour was used as binder (for complete <str<strong>on</strong>g>feed</str<strong>on</strong>g><br />

formulati<strong>on</strong>, see Ssebisubi, 2008, unpubl. <strong>the</strong>sis). During biweekly sampling, <strong>the</strong><br />

weight <str<strong>on</strong>g>and</str<strong>on</strong>g> st<str<strong>on</strong>g>and</str<strong>on</strong>g>ard length <str<strong>on</strong>g>of</str<strong>on</strong>g> fish were measured. St<str<strong>on</strong>g>and</str<strong>on</strong>g>ard length was measured to<br />

<strong>the</strong> nearest mm by using <strong>the</strong> stainless steel topped board whose plate ensured minimal<br />

drag <str<strong>on</strong>g>and</str<strong>on</strong>g> loss <str<strong>on</strong>g>of</str<strong>on</strong>g> scales during measurement, while weight was measured to 0.01g by<br />

using an electric analytical balance (Yoshida model AND). To minimize stress during<br />

biweekly measurements, <strong>the</strong> fish were anaes<strong>the</strong>tised by FA 100 bath (1 ml/5 litres) for<br />

60 sec<strong>on</strong>ds. In all treatments, water <str<strong>on</strong>g>temperature</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> pH were measured daily at 08:00


Utilizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> geometric morphometrics in aquaculture 213<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> 16:00 hrs, <str<strong>on</strong>g>and</str<strong>on</strong>g> amm<strong>on</strong>ia levels were m<strong>on</strong>itored weekly, while dissolved oxygen<br />

was measured twice per week. Throughout <strong>the</strong> experiment, which is 14 weeks,<br />

mercury <strong>the</strong>rmometers were suspended in <strong>the</strong> experimental tanks to ensure stability <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

daily water <str<strong>on</strong>g>temperature</str<strong>on</strong>g>.<br />

Data collecti<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> statistical analysis<br />

For geometric morphometrics data, <strong>on</strong>ly fish that survived by <strong>the</strong><br />

terminati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> experiment were used. Body <strong>shape</strong> was quantified<br />

using l<str<strong>on</strong>g>and</str<strong>on</strong>g>mark-based geometric morphometric (GM) methods (Rohlf &<br />

Marcus, 1993). Image <str<strong>on</strong>g>of</str<strong>on</strong>g> each specimen was taken using a CANON digital<br />

camera, with a resoluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> 7.1 megapixels, which was fixed at 30cm<br />

above <strong>the</strong> specimen <strong>on</strong> a tripod st<str<strong>on</strong>g>and</str<strong>on</strong>g>. To facilitate accu<str<strong>on</strong>g>rate</str<strong>on</strong>g> placement <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

l<str<strong>on</strong>g>and</str<strong>on</strong>g>marks <strong>on</strong> all specimens, pins were placed <strong>on</strong> each specimen before<br />

image acquisiti<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> data collecti<strong>on</strong>. The x, y coordinates <str<strong>on</strong>g>of</str<strong>on</strong>g> thirteen<br />

homologous l<str<strong>on</strong>g>and</str<strong>on</strong>g>marks (Fig. 1) were digitized from <strong>the</strong> left side <str<strong>on</strong>g>of</str<strong>on</strong>g> each<br />

individual using TPSDIG2 (Rohlf, 2004a). The biological names <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

descripti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> each l<str<strong>on</strong>g>and</str<strong>on</strong>g>mark used can be found in <strong>the</strong> figure legend <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Figure (1) while <strong>the</strong> sample size for each treatment combinati<strong>on</strong> can be<br />

seen in Table (1). To obtain <strong>shape</strong> variables, n<strong>on</strong>-<strong>shape</strong> variati<strong>on</strong> in <strong>the</strong><br />

l<str<strong>on</strong>g>and</str<strong>on</strong>g>mark coordinates was removed by superimposing <strong>the</strong>m using a<br />

Generalized Procrustes Analysis (GPA) (Rohlf & Slice, 1990). GPA removes<br />

n<strong>on</strong>-<strong>shape</strong> variati<strong>on</strong> by scaling all specimens to unit size, translating <strong>the</strong>m<br />

to a comm<strong>on</strong> locati<strong>on</strong>, <str<strong>on</strong>g>and</str<strong>on</strong>g> rotating <strong>the</strong>m so that <strong>the</strong>ir corresp<strong>on</strong>ding<br />

l<str<strong>on</strong>g>and</str<strong>on</strong>g>marks line-up as closely as possible. The above procedures were<br />

implemented in TPSRELW (Rohlf, 2004b).<br />

2<br />

3<br />

4<br />

1 13<br />

12<br />

11<br />

5<br />

7<br />

6<br />

10<br />

9<br />

8<br />

Fig. 1: L<str<strong>on</strong>g>and</str<strong>on</strong>g>marks collected from <strong>the</strong> left side <str<strong>on</strong>g>of</str<strong>on</strong>g> each specimen, 1: tip <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> premaxilla; 2, 3: anterior<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> posterior inserti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> dorsal fin; 4, 6: upper <str<strong>on</strong>g>and</str<strong>on</strong>g> lower inserti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> caudal fin; 5:<br />

Posterior end <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> lateral line; 7, 8: posterior <str<strong>on</strong>g>and</str<strong>on</strong>g> anterior inserti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> anal fin; 9: inserti<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> pelvic fin; 10: inserti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> operculum <strong>on</strong> <strong>the</strong> <strong>body</strong> pr<str<strong>on</strong>g>of</str<strong>on</strong>g>ile; 11: posterior extremity <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<strong>the</strong> operculum; 12, 13: posterior <str<strong>on</strong>g>and</str<strong>on</strong>g> anterior end points <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> eye diameter.<br />

First, to determine if <strong>shape</strong> varied significantly am<strong>on</strong>g treatments, a<br />

two-factor multivariate analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> variance (MANOVA) was performed,<br />

with <str<strong>on</strong>g>temperature</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>feed</str<strong>on</strong>g> <str<strong>on</strong>g>rate</str<strong>on</strong>g> as main factors <str<strong>on</strong>g>and</str<strong>on</strong>g> <strong>the</strong>ir interacti<strong>on</strong>. In<br />

<strong>the</strong> case <str<strong>on</strong>g>of</str<strong>on</strong>g> significant differences being revealed by MANOVA, pairwise<br />

multiple comparis<strong>on</strong>s were performed to determine exactly which<br />

treatments significantly differed from <strong>on</strong>e ano<strong>the</strong>r, after a B<strong>on</strong>ferr<strong>on</strong>i<br />

correcti<strong>on</strong>. These were based <strong>on</strong> generalized Mahalanobis distance (D 2 )


214<br />

Kassam, D. et al.<br />

from a can<strong>on</strong>ical variates analysis (CVA). Sec<strong>on</strong>dly, to determine if size<br />

differed significantly am<strong>on</strong>g treatments, a centroid size was subjected to a<br />

two-factor analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> variance (ANOVA). MANOVA <str<strong>on</strong>g>and</str<strong>on</strong>g> CVA were<br />

computed with NTSYS-PC, versi<strong>on</strong> 2.1 (Rohlf, 2000) while ANOVA was<br />

performed in SPSS, versi<strong>on</strong> 15.<br />

RESULTS<br />

Two-factor MANOVA revealed significant <strong>body</strong> <strong>shape</strong> variati<strong>on</strong> am<strong>on</strong>g<br />

<str<strong>on</strong>g>temperature</str<strong>on</strong>g>s used (Wilk’s λ = 0.0800, P < 0.0001), but not in <str<strong>on</strong>g>feed</str<strong>on</strong>g> <str<strong>on</strong>g>rate</str<strong>on</strong>g> (Wilk’s λ =<br />

1.0000, P = 0.4678) or <strong>the</strong> interacti<strong>on</strong> between <str<strong>on</strong>g>temperature</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>feed</str<strong>on</strong>g> <str<strong>on</strong>g>rate</str<strong>on</strong>g> (Wilk’s λ =<br />

0.9800, P = 0.3654). And pairwise comparis<strong>on</strong>s revealed that it was <strong>on</strong>ly fish reared at<br />

20°C that differed significantly to both those reared at 25°C (D 2 = 4.6928, P < 0.0001)<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> 30°C (D 2 = 4.3542, P < 0.0001) while those at 25°C <str<strong>on</strong>g>and</str<strong>on</strong>g> 30°C did not statistically<br />

significantly differ in <strong>body</strong> <strong>shape</strong> (D 2 = 3.7717, P > 0.05). To visualize <strong>body</strong> <strong>shape</strong><br />

differences depicted by <strong>the</strong> above statistical results, thin-plate spline deformati<strong>on</strong><br />

grids were gene<str<strong>on</strong>g>rate</str<strong>on</strong>g>d (Fig. 2), representing c<strong>on</strong>sensus c<strong>on</strong>figurati<strong>on</strong>s for each<br />

treatment (i.e. <str<strong>on</strong>g>temperature</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>feed</str<strong>on</strong>g><str<strong>on</strong>g>rate</str<strong>on</strong>g> combinati<strong>on</strong>s). For those fish reared at 20°C,<br />

<strong>the</strong>y tend to have shorter but deeper bodies, c<strong>on</strong>sidering <strong>the</strong> inward displacement <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

l<str<strong>on</strong>g>and</str<strong>on</strong>g>marks 1 <str<strong>on</strong>g>and</str<strong>on</strong>g> 5 for <strong>body</strong> length <str<strong>on</strong>g>and</str<strong>on</strong>g> outward displacement <str<strong>on</strong>g>of</str<strong>on</strong>g> l<str<strong>on</strong>g>and</str<strong>on</strong>g>marks 2 <str<strong>on</strong>g>and</str<strong>on</strong>g> 9 for<br />

<strong>body</strong> depth, as opposed to <strong>the</strong> l<strong>on</strong>ger <str<strong>on</strong>g>and</str<strong>on</strong>g> slender bodies found in those reared at 25°C<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> 30°C. Ano<strong>the</strong>r major difference also occurs when l<str<strong>on</strong>g>and</str<strong>on</strong>g>marks 12 <str<strong>on</strong>g>and</str<strong>on</strong>g> 13 are<br />

c<strong>on</strong>sidered, whereby fish reared at 20°C have larger eye diameter than those at 25°C<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> 30°C. And finally, those reared at 20°C have l<strong>on</strong>ger heads, c<strong>on</strong>sidering <strong>the</strong><br />

posterior displacement <str<strong>on</strong>g>of</str<strong>on</strong>g> l<str<strong>on</strong>g>and</str<strong>on</strong>g>mark 11, than those reared at 25°C <str<strong>on</strong>g>and</str<strong>on</strong>g> 30°C.<br />

Fig. 2: Thin-plate spline deformati<strong>on</strong> grids representing c<strong>on</strong>sensus c<strong>on</strong>figurati<strong>on</strong>s for each treatment<br />

combinati<strong>on</strong> used to describe <strong>shape</strong> variati<strong>on</strong> am<strong>on</strong>g culturing envir<strong>on</strong>ments. BW represents<br />

<strong>body</strong> weight.


Utilizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> geometric morphometrics in aquaculture 215<br />

Two-factor ANOVA revealed significant differences in <strong>body</strong> size am<strong>on</strong>g<br />

<str<strong>on</strong>g>temperature</str<strong>on</strong>g>s (F = 117.74, df = 2, P < 0.0001), <str<strong>on</strong>g>feed</str<strong>on</strong>g><str<strong>on</strong>g>rate</str<strong>on</strong>g> (F = 4.52, df = 1, P = 0.0345)<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> also <strong>the</strong>ir interacti<strong>on</strong> (F = 10.43, df = 2, P < 0.0001). In terms <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>temperature</str<strong>on</strong>g>, <strong>the</strong><br />

general trend is that those fish reared at 20°C are <strong>the</strong> smallest in terms <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>body</strong> size<br />

(mean ± SE = 673.4 ± 8.3) followed by those reared at 25°C (mean ± SE = 732.4 ±<br />

8.2) <str<strong>on</strong>g>and</str<strong>on</strong>g> <strong>the</strong> largest being those at 30°C (mean ± SE = 848.5 ± 7.6). As for <str<strong>on</strong>g>feed</str<strong>on</strong>g><str<strong>on</strong>g>rate</str<strong>on</strong>g>,<br />

those fish fed at 3% <strong>body</strong> weight had smaller <strong>body</strong> size (mean ± SE = 739.3 ± 6.9)<br />

than those fed at 6% <strong>body</strong> weight (mean ± SE = 773.3 ± 6.3). The posthoc pairwise<br />

comparis<strong>on</strong>s reveals how <str<strong>on</strong>g>temperature</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>feed</str<strong>on</strong>g><str<strong>on</strong>g>rate</str<strong>on</strong>g> interacted in affecting <strong>the</strong> <strong>body</strong><br />

size <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> fish (Table 1). From this table, it can be seen that fish raised at 20°C <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

25°C, <strong>the</strong>y tend to have similar <strong>body</strong> sizes regardless <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> <str<strong>on</strong>g>feed</str<strong>on</strong>g><str<strong>on</strong>g>rate</str<strong>on</strong>g>, thus <str<strong>on</strong>g>feed</str<strong>on</strong>g>ing fish<br />

at 6% <strong>body</strong> weight did not have any advantage over <strong>the</strong> 3% <strong>body</strong> weight <str<strong>on</strong>g>feed</str<strong>on</strong>g><str<strong>on</strong>g>rate</str<strong>on</strong>g>.<br />

Although <strong>the</strong> general trend has been that those fish fed at 3% <strong>body</strong> weight had smaller<br />

<strong>body</strong> sizes than <strong>the</strong>ir 6% <strong>body</strong> weight counterparts, it has been seen that those fish<br />

raised at 25°C showed a departure from this norm, in a way that those fish fed at 3%<br />

<strong>body</strong> weight had slightly larger <strong>body</strong> size (753.9±12.7) than those fed at 6% <strong>body</strong><br />

weight (717.1±10.8). At 30°C, fish fed at 3% <strong>body</strong> weight were significantly smaller<br />

than those fed at 6% <strong>body</strong> weight.<br />

Table 1: Pairwise comparis<strong>on</strong>s <strong>on</strong> centroid size am<strong>on</strong>g treatments. Numbers in paren<strong>the</strong>ses, in <strong>the</strong><br />

columns, represent mean ± SE <str<strong>on</strong>g>and</str<strong>on</strong>g> in <strong>the</strong> rows, represent sample size, n.<br />

Treatment 20&3<br />

(658.3±11.4)<br />

20 & 6<br />

(689.8±11.9)<br />

25 & 3<br />

(753.9±12.7)<br />

25 & 6<br />

(717.1±10.8)<br />

30 & 3<br />

(810.4±11.6)<br />

30 & 6<br />

(875.4±9.8)<br />

20 & 3 0<br />

(37)<br />

20 & 6 -31.4 0<br />

(34)<br />

25 & 3 -95.7** -64.2** 0<br />

(30)<br />

25 & 6 -58.7** -27.3 36.9 0<br />

(42)<br />

30 & 3 -152.2** -120.7** -56.5** -93.4** 0<br />

(36)<br />

30 & 6 -217.1** -185.6** -121.4** -158.3** -64.9** 0<br />

(51)<br />

** indicates highly significant difference am<strong>on</strong>g <strong>the</strong> means, P


216<br />

Kassam, D. et al.<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> slender bodies, smaller eyes <str<strong>on</strong>g>and</str<strong>on</strong>g> shorter heads found in those reared at 25°C <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

30°C. In terms <str<strong>on</strong>g>of</str<strong>on</strong>g> size, fish reared at 20°C were <strong>the</strong> smallest, followed by those at<br />

25°C <str<strong>on</strong>g>and</str<strong>on</strong>g> <strong>the</strong>n <strong>the</strong> largest were those at 30°C.<br />

Oreochromis shiranus has been reported to grow best when raised between<br />

22°C <str<strong>on</strong>g>and</str<strong>on</strong>g> 31°C (Kiyoshi et al., 2004), a finding which is c<strong>on</strong>cordant with <strong>the</strong> results<br />

found in this study since those fish reared at both 25°C <str<strong>on</strong>g>and</str<strong>on</strong>g> 30°C were larger <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

showed no significant difference between <strong>the</strong>m in terms <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>shape</strong>. The fact that raising<br />

fish at ei<strong>the</strong>r 25°C or 30°C does not affect <strong>body</strong> <strong>shape</strong> is a very important revelati<strong>on</strong><br />

c<strong>on</strong>sidering <strong>the</strong> wide range <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>temperature</str<strong>on</strong>g>s in areas where this fish is cultured<br />

throughout Malawi. Poikilo<strong>the</strong>rms need heat for increased activity <str<strong>on</strong>g>and</str<strong>on</strong>g> metabolism as<br />

several authors have reported <strong>the</strong> positive effect <str<strong>on</strong>g>of</str<strong>on</strong>g> water <str<strong>on</strong>g>temperature</str<strong>on</strong>g> <strong>on</strong> growth as<br />

l<strong>on</strong>g as <strong>the</strong> increase is within <strong>the</strong> optimal range for biological activity (Gilbert, 1994;<br />

Jobling, 1995; Van Ham et al., 2003). Voluntary <str<strong>on</strong>g>feed</str<strong>on</strong>g>ing by any individual fish is<br />

dictated by <strong>the</strong> appetite <strong>the</strong> fish has. The appetite peaks when water <str<strong>on</strong>g>temperature</str<strong>on</strong>g>s<br />

approach <strong>the</strong> upper <strong>the</strong>rmal tolerance limit <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> fish species <str<strong>on</strong>g>and</str<strong>on</strong>g> it falls dramatically<br />

above <str<strong>on</strong>g>and</str<strong>on</strong>g> below <strong>the</strong> optimum. This implies that <strong>the</strong> better growth performance<br />

evidenced for those fish raised at 25°C <str<strong>on</strong>g>and</str<strong>on</strong>g> 30°C can be explained by <strong>the</strong> fact that <strong>the</strong><br />

fish had increased appetite <str<strong>on</strong>g>and</str<strong>on</strong>g> thus were able to utilize all <strong>the</strong> food provided. Growth<br />

is a result <str<strong>on</strong>g>of</str<strong>on</strong>g> tissue depositi<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> such depositi<strong>on</strong> is high when food availability is<br />

optimal (Jobling, 1995). The results revealed in this study, i.e. <str<strong>on</strong>g>feed</str<strong>on</strong>g>ing effects <strong>on</strong><br />

growth <str<strong>on</strong>g>of</str<strong>on</strong>g> O. shiranus being enhanced with an increase in <str<strong>on</strong>g>temperature</str<strong>on</strong>g>, augers well<br />

with what Van Ham et al. (2003) reported, thus metabolism is enhanced by water <str<strong>on</strong>g>temperature</str<strong>on</strong>g>.<br />

The smaller sizes <str<strong>on</strong>g>of</str<strong>on</strong>g> fish raised at 20°C has to do with <strong>the</strong> stress <strong>the</strong> fish is in<br />

due to such low <str<strong>on</strong>g>temperature</str<strong>on</strong>g>. Such finding is c<strong>on</strong>cordant with what Chaula et al.<br />

(2002) found, thus <strong>the</strong>re is minimal <str<strong>on</strong>g>feed</str<strong>on</strong>g>ing by O. shiranus when <str<strong>on</strong>g>temperature</str<strong>on</strong>g>s drop<br />

below 21°C. And our results indicate that no matter how much food you may provide<br />

to your fish, growth will not improve as l<strong>on</strong>g as <str<strong>on</strong>g>temperature</str<strong>on</strong>g>s are below 21°C.<br />

However <strong>the</strong> revelati<strong>on</strong> that <str<strong>on</strong>g>feed</str<strong>on</strong>g>ing fish at 6% <strong>body</strong> weight, raised at 25°C, could not<br />

improve growth, as indicated by smaller size <str<strong>on</strong>g>of</str<strong>on</strong>g> fish at 6% than those at 3%, is<br />

something very strange, <str<strong>on</strong>g>and</str<strong>on</strong>g> calls for fur<strong>the</strong>r investigati<strong>on</strong> since <strong>the</strong> expectati<strong>on</strong> was to<br />

get larger fish for those fed at 6% <strong>body</strong> weight. This finding is similar to what<br />

Ssebisubi (2008, unpubl. <strong>the</strong>sis) found whereby those fish raised at this <str<strong>on</strong>g>temperature</str<strong>on</strong>g><br />

did not show any significant difference in final <strong>body</strong> weight whe<strong>the</strong>r fed at 3 or 6%<br />

<strong>body</strong> weight. Those fish raised at 30°C but fed at 3% <strong>body</strong> weight were smaller than<br />

<strong>the</strong>ir counterparts at 6% <strong>body</strong> weight because metabolism at 30°C was higher but <strong>the</strong><br />

3% <str<strong>on</strong>g>feed</str<strong>on</strong>g><str<strong>on</strong>g>rate</str<strong>on</strong>g> was not sufficient enough to meet <strong>the</strong> dem<str<strong>on</strong>g>and</str<strong>on</strong>g>s <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> fish <strong>on</strong> food, unlike<br />

<strong>the</strong> 6% <str<strong>on</strong>g>feed</str<strong>on</strong>g><str<strong>on</strong>g>rate</str<strong>on</strong>g>. This means that if a farmer has to realize higher returns in terms <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

size, <strong>the</strong> fish raised at 30°C must be fed at 6% <strong>body</strong> weight to meet <strong>the</strong> <strong>body</strong> dem<str<strong>on</strong>g>and</str<strong>on</strong>g>s<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> fish for proper growth.<br />

In c<strong>on</strong>clusi<strong>on</strong>, this study has revealed that raising fish at ei<strong>the</strong>r 25°C or 30°C<br />

does not affect fish <strong>shape</strong> in any way, <str<strong>on</strong>g>and</str<strong>on</strong>g> that no fish was deformed, which is good<br />

for c<strong>on</strong>sumers since visual percepti<strong>on</strong> by c<strong>on</strong>sumers <strong>on</strong> <strong>shape</strong> influences <strong>the</strong><br />

marketability <str<strong>on</strong>g>of</str<strong>on</strong>g> fish. And this also means that O. shiranus can be raised at a wide<br />

<str<strong>on</strong>g>temperature</str<strong>on</strong>g> range without compromising its <strong>shape</strong>. Of course raising fish at 30°C <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

<str<strong>on</strong>g>feed</str<strong>on</strong>g>ing <strong>the</strong>m at 6% <strong>body</strong> weight is <strong>the</strong> best combinati<strong>on</strong> to get higher returns from O.<br />

shiranus farming. And based <strong>on</strong> <strong>the</strong>se results, aquaculturists can be encouraged to<br />

utilize this geometric morphometrics technique in assessing fish quality as well as <strong>the</strong><br />

growth performance <str<strong>on</strong>g>of</str<strong>on</strong>g> fish, more especially <strong>the</strong>se days with advanced technology<br />

which allows <strong>on</strong>e to get digitized images for analysis without killing <strong>the</strong> fish itself.


Utilizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> geometric morphometrics in aquaculture 217<br />

ACKNOWLEDGEMENTS<br />

This work was partly financially supported by funds from ICEIDA.<br />

REFERENCES<br />

Atwood, H.L., Tomasso, J.R., Webb, K. & Gatlin, D.M. 2003. Low <str<strong>on</strong>g>temperature</str<strong>on</strong>g><br />

tolerance <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> Nile tilapia, Oreochromis niloticus: effects <str<strong>on</strong>g>of</str<strong>on</strong>g> envir<strong>on</strong>mental<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> dietary factors. Aquaculture Research, 34: 241-251.<br />

Barlow, G. 1961. Causes <str<strong>on</strong>g>and</str<strong>on</strong>g> significance <str<strong>on</strong>g>of</str<strong>on</strong>g> morphological variati<strong>on</strong> in fishes.<br />

stematic Zoology, 10: 105–117.<br />

Chaula, K., Jamu, D., Bowman, J.R. & Veverica, K.I. 2002. <str<strong>on</strong>g>Effect</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> stocking size<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> nutrient inputs <strong>on</strong> productivity <str<strong>on</strong>g>of</str<strong>on</strong>g> Oreochromis shiranus in p<strong>on</strong>ds. In:<br />

McElwee, K., Lewis, K., Nidiffer, M. <str<strong>on</strong>g>and</str<strong>on</strong>g> Buitrago, P. (eds.). P<strong>on</strong>d<br />

dynamics/Aquaculture CRSP. pp. 161-165. 19 th Annual Technical report,<br />

Oreg<strong>on</strong> State University, Corvallis, Oreg<strong>on</strong>.<br />

Gilbert, S.F. 1994. Developmental Biology. 4 th editi<strong>on</strong>, Sunderl<str<strong>on</strong>g>and</str<strong>on</strong>g> Massachusetts:<br />

Sinauer Associates, Inc.<br />

Hubbs, C.L. 1926. The structural c<strong>on</strong>sequence <str<strong>on</strong>g>of</str<strong>on</strong>g> modificati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> developmental<br />

<str<strong>on</strong>g>rate</str<strong>on</strong>g> in fishes, c<strong>on</strong>sidered in reference to certain problems <str<strong>on</strong>g>of</str<strong>on</strong>g> evoluti<strong>on</strong>.<br />

American Naturalist, 60: 57–81.<br />

Jobling, M. 1995. Envir<strong>on</strong>mental Biology <str<strong>on</strong>g>of</str<strong>on</strong>g> Fishes. Fish <str<strong>on</strong>g>and</str<strong>on</strong>g> Fisheries Series 16.<br />

L<strong>on</strong>d<strong>on</strong>: Kluwer Academic Publishers. Chapman <str<strong>on</strong>g>and</str<strong>on</strong>g> Hall. 455pp.<br />

Kang’ombe, J. 2004. <str<strong>on</strong>g>Effect</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>temperature</str<strong>on</strong>g> <strong>on</strong> growth, <str<strong>on</strong>g>feed</str<strong>on</strong>g> utilizati<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> survival <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Tilapia rendalli in aquaria: Development <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>feed</str<strong>on</strong>g>ing protocols for Tilapia<br />

rendalli in Malawi reared in semi-intensive culture systems. A PhD. <strong>the</strong>sis,<br />

Biology department. Memorial University <str<strong>on</strong>g>of</str<strong>on</strong>g> Newfoundl<str<strong>on</strong>g>and</str<strong>on</strong>g>, Canada. 221pp.<br />

Kiyoshi, M., Chirwa, B. & Ntenjera, G. 2004. A c<strong>on</strong>tributi<strong>on</strong> to <strong>the</strong> development <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

rearing techniques in fish farming in Malawi. N.A.C. Domasi. p. 146.<br />

Malcom, C.M.B. & Brendan, J.M. 2000. Tilapias: Biology <str<strong>on</strong>g>and</str<strong>on</strong>g> Exploitati<strong>on</strong>. Kluwer<br />

Academic Publishers, L<strong>on</strong>d<strong>on</strong>. 505pp.<br />

Musuka, C.G. 2006. <str<strong>on</strong>g>Effect</str<strong>on</strong>g>s <str<strong>on</strong>g>of</str<strong>on</strong>g> varying protein, water <str<strong>on</strong>g>temperature</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> stocking<br />

density <strong>on</strong> <strong>the</strong> performance <str<strong>on</strong>g>of</str<strong>on</strong>g> juvenile Tilapia rendalli reared in indoor<br />

tanks. MSc Thesis, University <str<strong>on</strong>g>of</str<strong>on</strong>g> Malawi.<br />

Rohlf, F.J. 2000. NTSYS-PC, Numerical Tax<strong>on</strong>omy System for <strong>the</strong> PC, Exeter<br />

S<str<strong>on</strong>g>of</str<strong>on</strong>g>tware, versi<strong>on</strong> 2.1, Setauket, USA: Applied Biostatistics Inc.<br />

Rohlf, F.J. 2004a. Tps Dig., ver. 1.40. Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Ecology <str<strong>on</strong>g>and</str<strong>on</strong>g> Evoluti<strong>on</strong>, State<br />

University <str<strong>on</strong>g>of</str<strong>on</strong>g> New York at St<strong>on</strong>y Brook, St<strong>on</strong>y Brook, NY, USA.<br />

Rohlf, F.J. 2004b. Tps Relw., ver. 1.39. Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Ecology <str<strong>on</strong>g>and</str<strong>on</strong>g> Evoluti<strong>on</strong>, State<br />

University <str<strong>on</strong>g>of</str<strong>on</strong>g> New York at St<strong>on</strong>y Brook, St<strong>on</strong>y Brook, NY, USA.<br />

Rohlf, F.J. & Marcus, L.F. 1993. A revoluti<strong>on</strong> in morphometrics. Trends in Ecology<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> Evoluti<strong>on</strong>, 8: 129–132.<br />

Rohlf, F.J. <str<strong>on</strong>g>and</str<strong>on</strong>g> Slice, D. 1990. Extensi<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> Procustes method for <strong>the</strong> optimal<br />

superimpositi<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> l<str<strong>on</strong>g>and</str<strong>on</strong>g>marks. Systematic Zoology, 39(1): 40–59.<br />

Ssebisubi, M. 2008. <str<strong>on</strong>g>Effect</str<strong>on</strong>g>s <str<strong>on</strong>g>of</str<strong>on</strong>g> water <str<strong>on</strong>g>temperature</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>feed</str<strong>on</strong>g>ing level <strong>on</strong> survival, <str<strong>on</strong>g>feed</str<strong>on</strong>g><br />

utilizati<strong>on</strong>, growth <str<strong>on</strong>g>and</str<strong>on</strong>g> whole <strong>body</strong> compositi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Oreochromis shiranus<br />

(Trewavas, 1983) at different <strong>body</strong> sizes. MSc Thesis, University <str<strong>on</strong>g>of</str<strong>on</strong>g> Malawi. 136pp.<br />

Van Ham, E.H., Berntssen, M.H.G., Imsl<str<strong>on</strong>g>and</str<strong>on</strong>g>, A.K., Parpoura, A.C., Wendelaar<br />

B<strong>on</strong>ga, S.E. & Stefanss<strong>on</strong>, S.O. 2003. The influence <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>temperature</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> rati<strong>on</strong><br />

<strong>on</strong> growth, <str<strong>on</strong>g>feed</str<strong>on</strong>g> c<strong>on</strong>versi<strong>on</strong>, <strong>body</strong> compositi<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> nutrient retenti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> juvenile<br />

turbot (Scophthalmus maximus). Aquaculture, 217: 547-558.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!