09.02.2014 Views

Line emission in shocks and PDR - Observatoire de Paris

Line emission in shocks and PDR - Observatoire de Paris

Line emission in shocks and PDR - Observatoire de Paris

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>L<strong>in</strong>e</strong> <strong>emission</strong> from <strong>shocks</strong><br />

Sylvie Cabrit (<strong>Observatoire</strong> <strong>de</strong> <strong>Paris</strong>)<br />

G. P<strong>in</strong>eau <strong>de</strong>s Forêts, D. Flower, J. Le Bourlot (shock<br />

mo<strong>de</strong>ls), C. Ceccarelli (CO <strong>and</strong> H 2<br />

O predictions)<br />

•Shocks <strong>in</strong> outflows: evi<strong>de</strong>nce for C-precursors (ISO)<br />

•Water <strong>emission</strong> from <strong>shocks</strong>: need for Herschel<br />

•Chemistry <strong>and</strong> <strong>in</strong>ternal structure: need for ALMA<br />

<strong>and</strong> <strong>PDR</strong>s<br />

M. Gér<strong>in</strong> <strong>and</strong> J. Le Bourlot<br />

(<strong>Observatoire</strong> <strong>de</strong> <strong>Paris</strong>)<br />

Dusty04 - <strong>Paris</strong>, October 2004


Magnetic molecular <strong>shocks</strong><br />

Low ionisation, magnetized<br />

medium ion/neutral<br />

<strong>de</strong>coupl<strong>in</strong>g Cont<strong>in</strong>uous<br />

(C-type) « shock »<br />

Magnetic precursor<br />

Viscous J-type front<br />

Long time-scales to reach<br />

full C steady-state<br />

t ~ 10 4 yrs x (10 4 cm-3/nH)<br />

Young <strong>shocks</strong> comb<strong>in</strong>e C-<br />

precursor + viscous J-front<br />

(Chieze et al. 1998; Lesaffre et al.<br />

2004)<br />

« Age typical 1000 » yrs stationary : C+J structure C-shock nH<br />

nH = 10 4 cm-3, Vs = 25 km/s B = 100µ G.<br />

Dusty04 - <strong>Paris</strong>, October 2004


Evi<strong>de</strong>nce for C-precursors: H2 pure<br />

rotational l<strong>in</strong>es <strong>in</strong> molecular flows<br />

H2 v=0-0 S(5) l<strong>in</strong>e flux (6’’ to 20’’ beams)<br />

H2 v=0 excitation temperature<br />

HH2 with ISOCAM (Lefloch et al. 2003)<br />

Cabrit et al. 2003 (with SWS data from Wright et<br />

al., Rosenthal et al.)<br />

Dusty04 - <strong>Paris</strong>, October 2004


CO <strong>and</strong> H2O: The ISO-LWS view<br />

LVG (Giann<strong>in</strong>i et al. 2001):<br />

Warm gas (200-2000 K)<br />

Dense (3x10 4 -10 7 cm-3)<br />

Compact (ff ~ 1% : typical<br />

size 10’’)<br />

L(CO + H2O) ~ outflow Lk<strong>in</strong><br />

Shocked gas ?<br />

X(H2O)/X(CO)<br />

3<br />

1<br />

0.3<br />

0.1<br />

C-shock mo<strong>de</strong>ls (Tgas<br />

= Tmax)<br />

X(H2O)/X(CO) <strong>in</strong>creases with<br />

temperature: mantle<br />

<strong>de</strong>sorption <strong>and</strong> O to H 2<br />

O<br />

conversion.<br />

Dusty04 - <strong>Paris</strong>, October 2004


Shocks sampled by ISO-LWS:<br />

of NGC 1333-IRS4<br />

The example<br />

(CO fluxes from Giann<strong>in</strong>i et al. 2001)<br />

High-J CO l<strong>in</strong>es not very<br />

discrim<strong>in</strong>ant; can be<br />

fitted by various shock<br />

mo<strong>de</strong>ls of age 1000 yrs:<br />

Dense C<br />

CJ<br />

C<br />

ff=0.017<br />

ff=0.2<br />

J<br />

ff=1<br />

Dusty04 - <strong>Paris</strong>, October 2004


Shocks sampled by ISO-LWS:<br />

of NGC 1333-IRS4<br />

The example<br />

H2O l<strong>in</strong>es very discrim<strong>in</strong>ant:<br />

only <strong>de</strong>nse C-<strong>shocks</strong> of low ff<br />

can fit both 179µ m <strong>and</strong> 80µ m<br />

(H2O fluxes from Giann<strong>in</strong>i et al. 2001)<br />

nH = 10 4 cm-3:<br />

Pure J: Vs = 15 km/s, b=0.1 (ff = 1)<br />

C+J: Vs = 25 km/s, b=1 (ff = 1)<br />

Pure C: Vs = 50 km/s, b=1 (ff =<br />

0.2)<br />

nH = 10 5 cm-3:<br />

Pure C: Vs = 25 km/s, b=1 (ff =<br />

0.017)<br />

Dusty04 - <strong>Paris</strong>, October 2004


The 557GHz ortho-H2O l<strong>in</strong>e<br />

SWAS observations of molecular outflows: broad<br />

w<strong>in</strong>gs shocked gas, but 2-3 times stronger than<br />

expected from ISO-LWS (Bene<strong>de</strong>tt<strong>in</strong>i et al. 2003)<br />

Exten<strong>de</strong>d component, too cold for ISO<br />

Estimated H 2<br />

O abundance ~ 10 -6 if dom<strong>in</strong>ated by<br />

cold swept-up CO (Neufeld et al. 2000)<br />

lower than expected for <strong>shocks</strong> of V > 5 km/s…<br />

ODIN observations of IRAS 16293 (Ristorcelli et al.<br />

2004) : similar lobe size to ISO-LWS (120’’ vs 80’’).<br />

Dusty04 - <strong>Paris</strong>, October 2004


Comparison of H2O(557GHz) <strong>and</strong> CO(3-2) <strong>in</strong><br />

the ODIN beam<br />

CO(3-2)/1.5 (Lis<br />

et al.)<br />

CO(3-2)/H 2<br />

O(557GHz)<br />

H 2<br />

O 557GHz<br />

X(H 2<br />

O)/X(CO)<br />

-20 0 20 km/s<br />

CO(3-2)/H 2<br />

O ~ 1.5 <strong>in</strong> red w<strong>in</strong>g, ~ 2.5 <strong>in</strong> blue w<strong>in</strong>g<br />

C-Shocks with Vs ~ 12-15 km/s (ff ~ 0.2 <strong>in</strong> 120’’ beam)<br />

X(H 2<br />

O) ~ 0.05-0.2 X(CO) ~ 1-3 10 -5 of H 2<br />

Dusty04 - <strong>Paris</strong>, October 2004


Comparison with other CO l<strong>in</strong>es (CSO<br />

observations <strong>and</strong> ISO-LWS)<br />

CO(6-5) <strong>and</strong> CO(4-3) also<br />

compatible with C-<strong>shocks</strong><br />

of Vs ~ 10-15 km/s (ff~0.7<br />

<strong>in</strong> CSO beam).<br />

CO high-J (ISOLWS) trace<br />

hotter component:<br />

protostellar envelope or<br />

faster/<strong>de</strong>nser <strong>shocks</strong> <strong>in</strong> jet<br />

bullets ?<br />

data from Lis et al. 2002 (CSO) <strong>and</strong> Ceccarelli et<br />

al. 1998 (LWS)<br />

CSO (ff=0.7)<br />

LWS (ff=1)<br />

Need for Herschel water maps <strong>and</strong> nH diagnostics!<br />

Dusty04 - <strong>Paris</strong>, October 2004


Shock Chemistry<br />

C-precursor is<br />

chemically active<br />

H2 S(5)<br />

(Flower & P<strong>in</strong>eau <strong>de</strong>s<br />

Forêts, Schilke et al., Berg<strong>in</strong><br />

et al.)<br />

Mantle <strong>de</strong>sorption<br />

(eg. CH 3<br />

OH)<br />

Gra<strong>in</strong> core sputter<strong>in</strong>g<br />

(SiO)<br />

Endothermic<br />

reactions (SO, CN…)<br />

L1157 (Bachiller et al. 2001)<br />

Dusty04 - <strong>Paris</strong>, October 2004<br />

Cabrit et al. 1998


Shock chemistry: mo<strong>de</strong>ls<br />

Complex variations (both<br />

spatially <strong>and</strong> from source<br />

to source) <strong>in</strong> abundances<br />

of enhanced species<br />

Evolutionary trends ?<br />

Vary<strong>in</strong>g shock conditions ?<br />

(nH,Vs,B)<br />

Pre-processed medium ?<br />

(Bachiller et al. 2001, Jorgensen etal.<br />

2004)<br />

Dusty04 - <strong>Paris</strong>, October 2004


Shock chemistry: mo<strong>de</strong>ls<br />

C-shock nH = 10 4 cm-3 Vs = 30 km/s B = 100µ G<br />

Complex variations (both<br />

spatially <strong>and</strong> from source<br />

to source) <strong>in</strong> abundances<br />

of enhanced species<br />

Evolutionary trends ?<br />

CS<br />

Vary<strong>in</strong>g shock SO conditions ?<br />

(nH,Vs,B)<br />

Pre-processed medium ?<br />

CH3OH<br />

H2CO<br />

HCN<br />

SiO<br />

HCO+<br />

Dusty04 - <strong>Paris</strong>, October 2004<br />

N(CO)<br />

(cm-2)


Shock chemistry <strong>and</strong> <strong>in</strong>ternal structure<br />

Herschel: CH + , H 3<br />

O + , NH, Tex(H 2<br />

S,NH 3<br />

…)<br />

ALMA: Fully resolved magnetic precursor (size ~ 10 3<br />

AU) <strong>in</strong> many tracers:<br />

Chemical stratification vs. Mo<strong>de</strong>ls<br />

Ion-neutral <strong>de</strong>coupl<strong>in</strong>g (HCO+)<br />

J-front <strong>and</strong> H2 reformation zones vs. Optical/nearIR<br />

Shock proper motions<br />

Turbulent mix<strong>in</strong>g-layers <strong>in</strong> non-planar <strong>shocks</strong><br />

Constra<strong>in</strong>ts on shock age <strong>and</strong> B-field<br />

outflow dynamics, protostellar mass-loss & collimation<br />

mechanism, evolutionary Dusty04 - scheme<br />

<strong>Paris</strong>, October 2004


Photo Dissociation Regions<br />

(<strong>PDR</strong>s)<br />

I<strong>de</strong>al laboratories for ISM physical <strong>and</strong> chemical processes<br />

important targets for ALMA <strong>and</strong> Herschel<br />

Herschel :<br />

Cool<strong>in</strong>g processes ([CII], [OI], CO, H 2<br />

O) <strong>and</strong> thermal balance<br />

Chemistry (H 2<br />

O ; C- N- <strong>and</strong> O- hydri<strong>de</strong>s <strong>in</strong>clud<strong>in</strong>g CH + )<br />

Complex molecules (C clusters, PAHs, ...)<br />

Dynamics of the hot <strong>in</strong>terface<br />

Dust properties (from SED)<br />

ALMA : Small scale structures <strong>in</strong> the <strong>in</strong>terface, turbulence, coupl<strong>in</strong>g of<br />

gas dynamics <strong>and</strong> chemistry : time <strong>de</strong>pen<strong>de</strong>nt effects<br />

<strong>L<strong>in</strong>e</strong> <strong>and</strong> cont<strong>in</strong>uum polarisation us<strong>in</strong>g radicals<br />

Dusty04 - <strong>Paris</strong>, October 2004


C x<br />

B x<br />

B" x<br />

A x<br />

A" x<br />

C" x<br />

ODIN beams <strong>in</strong> IRAS 16293 outflow on CO map of Lis et al.(2002)

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!