10.02.2014 Views

Ing. Hans-Josef Endres - Tagungen in Dresden

Ing. Hans-Josef Endres - Tagungen in Dresden

Ing. Hans-Josef Endres - Tagungen in Dresden

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Biokunststoffe -Werkstoffübersicht,<br />

Markt, Eigenschaften und Anwendungen<br />

IfBB – Institut für Biokunststoffe und Bioverbundwerkstoffe<br />

Hochschule Hannover<br />

Heisterbergallee 12, 30453 Hannover<br />

www.Ifbb-hannover.de<br />

<strong>Hans</strong>-<strong>Josef</strong> <strong>Endres</strong><br />

Ann-Sophie Kitzler, Andreas Schettler, Christian Schulz, Hannah Behnsen<br />

Fachtagung „Biokunststoffe <strong>in</strong> Verwertung und Recycl<strong>in</strong>g“,<br />

<strong>Dresden</strong>, 03. - 04. Dezember 2012<br />

<strong>Hans</strong>-<strong>Josef</strong> <strong>Endres</strong> 1


Outl<strong>in</strong>e<br />

• Current bioplastic market trends – from niche to ma<strong>in</strong>stream<br />

• Recycl<strong>in</strong>g of bioplastics<br />

<strong>Hans</strong>-<strong>Josef</strong> <strong>Endres</strong> 2


Plastics are fantastic materials<br />

Golf 1 Golf 6<br />

costs<br />

weight<br />

Source: VW, Peter Helmke, modified<br />

<strong>Hans</strong>-<strong>Josef</strong> <strong>Endres</strong> 3


The future of plastics?<br />

Consumption of crude oil 5.000.000 x higher<br />

than its rate of regeneration<br />

future problem only to convert energy, but<br />

to meet the <strong>in</strong>creased quantity requirements<br />

for plastics will become a feedstock problem!<br />

Growth of population<br />

(Expectation: plastic consumption per head<br />

<strong>in</strong> India and Ch<strong>in</strong>a as high as <strong>in</strong> Europe)<br />

Worldwide production of plastics has to<br />

be doubled!<br />

Issue for environment:<br />

critical exploitation of oil with <strong>in</strong>creas<strong>in</strong>g<br />

ecological impacts and litter<strong>in</strong>g of plastics<br />

(globally considered)<br />

<strong>Hans</strong>-<strong>Josef</strong> <strong>Endres</strong> 4


Current Stage of Development and Production<br />

Scale of Thermoplastic Bioplastics (2012)<br />

Durables<br />

Degradables<br />

Source: H.-J. <strong>Endres</strong>, A. Siebert-Raths; Eng<strong>in</strong>eer<strong>in</strong>g Bioplymers, Carl <strong>Hans</strong>er-Verlag, 2011, modifiziert<br />

<strong>Hans</strong>-<strong>Josef</strong> <strong>Endres</strong> 5


Current Stage of Development and Production<br />

Scale of Thermoplastic Bioplastics (2012)<br />

Chemically novel biopolymer types<br />

Source: H.-J. <strong>Endres</strong>, A. Siebert-Raths; Eng<strong>in</strong>eer<strong>in</strong>g Bioplymers, Carl <strong>Hans</strong>er-Verlag, 2011, modifiziert<br />

<strong>Hans</strong>-<strong>Josef</strong> <strong>Endres</strong> 6


Global production capacity of bioplastics<br />

2011 (by type)<br />

<strong>Hans</strong>-<strong>Josef</strong> <strong>Endres</strong> 7


Global production capacity of bioplastics<br />

2016 (by type)<br />

<strong>Hans</strong>-<strong>Josef</strong> <strong>Endres</strong> 8


Global production capacity of bioplastics<br />

<strong>Hans</strong>-<strong>Josef</strong> <strong>Endres</strong> 9


Application of bioplastics 2011<br />

Degredables<br />

<strong>Hans</strong>-<strong>Josef</strong> <strong>Endres</strong> 10


Application of bioplastics 2011<br />

Drop-Ins<br />

<strong>Hans</strong>-<strong>Josef</strong> <strong>Endres</strong> 11


Application of bioplastics 2011<br />

Degredables<br />

Drop-<br />

Ins<br />

<strong>Hans</strong>-<strong>Josef</strong> <strong>Endres</strong> 12


Acreage competition<br />

<strong>Hans</strong>-<strong>Josef</strong> <strong>Endres</strong> 13


Starch content:<br />

30 wt % 70 wt % <br />

Potato<br />

Potato<br />

2100 t/km²<br />

2100 t/km²<br />

H 2 O<br />

H 2 O<br />

Potato-Starch<br />

370 t/km²<br />

Potato-Starch<br />

370 t/km²<br />

Plasticizer 1<br />

123 t<br />

Destruction<br />

(Extrusion)<br />

Plasticizer 1<br />

123 t<br />

Destruction<br />

(Extrusion)<br />

Thermoplastic<br />

Starch 493 t/km²<br />

Thermoplastic<br />

Starch 493 t/km²<br />

Polymers 2<br />

1150 t<br />

Extrusion<br />

Polymers 2<br />

211 t<br />

Extrusion<br />

Starch Blends<br />

1643 t/km²<br />

Starch Blends<br />

704 t/km²<br />

1<br />

e.g. Glycer<strong>in</strong>e, Sorbitol, Lactic Acid, Urea<br />

2<br />

e.g. PLA, Polyesters, Polyesteramides, Polyurethanes, Polyv<strong>in</strong>yl Alcohols<br />

<strong>Hans</strong>-<strong>Josef</strong> <strong>Endres</strong> 14


T<br />

Sugar Cane<br />

7000 t/km²<br />

NH3<br />

4 t<br />

H 2 O: 8 t<br />

H+/Ni<br />

1 t<br />

2 yields p.a<br />

NaOH<br />

18 t<br />

23 t<br />

Nitrile<br />

Synthesis<br />

Deca-D<strong>in</strong>itrile<br />

Deoxidation<br />

Castor Oil<br />

80 t/km²<br />

Hydrolysis<br />

Ric<strong>in</strong>oleic<br />

Acid 68 t/km²<br />

Alkal<strong>in</strong>e<br />

Crack<strong>in</strong>g<br />

Sebacic Acid<br />

46 t/km²<br />

23 t<br />

2-Octanol: 30 t<br />

Sodium: 10 t<br />

H 2 O<br />

Yeast<br />

Sugar Cane<br />

7000 t/km²<br />

Sucrose<br />

1260 t/km²<br />

Fermentation<br />

Rectification<br />

Bio-Ethanol*<br />

605 t/km²<br />

Dehydration<br />

Ethene<br />

CO 2<br />

242 t/km²<br />

H 2 O<br />

Laitance<br />

* Conversion Rate:<br />

Sucrose – Ethanol 48%<br />

H 2 O<br />

H2O<br />

Yeast<br />

O2<br />

210 t<br />

CO2<br />

492 t<br />

Sucrose<br />

1260 t/km²<br />

Fermentation<br />

Filtration<br />

CO2<br />

H2O<br />

Laitance<br />

* Conversion Rate:<br />

Ethanol* Sucrose – Ethanol 48%<br />

605 t/km²<br />

Dehydration<br />

Ethene<br />

368 t/km²<br />

Catalytic<br />

Oxidation<br />

H2O<br />

237 t<br />

Etheneoxide<br />

492 t/km²<br />

Reaction<br />

CO2: 62 t<br />

H2O: 25 t<br />

Ethene- 984 t/km²<br />

Carbonate<br />

DMDA<br />

20 t/km²<br />

Sebacic Acid<br />

23 t/km²<br />

Condensation<br />

H 2 O: 4 t<br />

Catalsyt<br />

Polymerisation<br />

Bio-PE<br />

242 t/km²<br />

H2O<br />

Reaction CO2<br />

201 t 492 t<br />

PTA<br />

1855 t<br />

MEG<br />

693 t/km²<br />

Polycondensation<br />

H2O<br />

402 t<br />

Bio-PA 10.10<br />

39 t/km²<br />

Bio-PET 30<br />

2146 t/km²<br />

<strong>Hans</strong>-<strong>Josef</strong> <strong>Endres</strong> 15


[t Biopolymer/(ha*a)]<br />

Theoretical m<strong>in</strong>imum and maximum<br />

yields per acreage of biopolymers<br />

35<br />

30<br />

25<br />

20<br />

15<br />

10<br />

5<br />

0<br />

Source: H.-J. <strong>Endres</strong>, A. Siebert-Raths,<br />

Eng<strong>in</strong>eer<strong>in</strong>g Biopolymers, <strong>Hans</strong>er Verlag 2011, modified<br />

<strong>Hans</strong>-<strong>Josef</strong> <strong>Endres</strong> 16


Land use of bioplastics (2016)<br />

Annual<br />

plastics<br />

production<br />

[10 6 t]<br />

Annual<br />

bioplastic<br />

production<br />

<strong>in</strong> 2016<br />

[10 6 t]<br />

Land use for bioplastic<br />

production <strong>in</strong> 2016<br />

(assumption 0,5 kt BP/km 2 )<br />

[km 2 ]<br />

Arable<br />

land<br />

[km 2 ]<br />

World 265 5.8 11.500 14 million<br />

EU 60 0.3 1.000 1.1 million<br />

Germany 20 0.15 500 0.12 million<br />

Lake<br />

Constance<br />

540<br />

Land use for the<br />

annual bioplastic<br />

production <strong>in</strong><br />

2016:<br />

< 0,1 % of the<br />

global arable land.<br />

Full replacement of<br />

petro-based plastics<br />

of the automotive<br />

<strong>in</strong>dustry with<br />

bioplastics requires<br />

< 0,3 % of the global<br />

arable land.<br />

Full replacement of<br />

petro-based plastics<br />

of the packag<strong>in</strong>g<br />

<strong>in</strong>dustry with<br />

bioplastics requires<br />

< 2% of the global<br />

arable land.<br />

Full replacement of<br />

total petro-based<br />

plastics with<br />

bioplastics<br />

requires<br />

< 5 % of the global<br />

arable land.<br />

<strong>Hans</strong>-<strong>Josef</strong> <strong>Endres</strong> 17


Global production capacity of bioplastics<br />

2011 (by type)<br />

Europe‘s share of the global bioplastics production capacity is shr<strong>in</strong>k<strong>in</strong>g!<br />

<strong>Hans</strong>-<strong>Josef</strong> <strong>Endres</strong> 18


A closer and comprehensive look at the<br />

bioplastic market will be published by the IfBB<br />

partly <strong>in</strong> cooperation with EuBP end of 2012<br />

Contents:<br />

• Production capacities (worldwide and by regions)<br />

• List of all producers of bioplastics worldwide<br />

• Material types<br />

• Market segments and applications<br />

• Ma<strong>in</strong> applications for selected bioplastics<br />

• Share of bioplastics relat<strong>in</strong>g to the total plastic markets<br />

• Feedstock<br />

• Land use<br />

• Future trends<br />

• Etc.<br />

<strong>Hans</strong>-<strong>Josef</strong> <strong>Endres</strong> 19


Outl<strong>in</strong>e<br />

• Current bioplastic market trends – from niche to ma<strong>in</strong>stream<br />

• Recycl<strong>in</strong>g of bioplastics<br />

<strong>Hans</strong>-<strong>Josef</strong> <strong>Endres</strong> 20


End-of-Life / New-Life Options of Bioplastics<br />

Metabolism<br />

<strong>in</strong> organism<br />

Neutral<br />

Inc<strong>in</strong>eration<br />

Landfill<br />

Anaerobic<br />

digestion<br />

(Bio-methane)<br />

Litter<br />

Biopolymer<br />

product<br />

Decomposition<br />

<strong>in</strong> soil<br />

Dissolv<strong>in</strong>g <strong>in</strong><br />

(salt) water<br />

Chemical<br />

Recycl<strong>in</strong>g<br />

Mechanical<br />

Recyl<strong>in</strong>g<br />

Industrial<br />

Compost<strong>in</strong>g<br />

Domestic<br />

compost<strong>in</strong>g<br />

Source: H.-J. <strong>Endres</strong>, A. Siebert, A.-S. Kitzler<br />

Biopolymers – a discussion on end of life options<br />

Bioplastics Magaz<strong>in</strong>e 01/08<br />

<strong>Hans</strong>-<strong>Josef</strong> <strong>Endres</strong> 21


Pre- and Post-consumer Recycl<strong>in</strong>g<br />

Recycl<strong>in</strong>g<br />

Pre-consumer<br />

Post-consumer<br />

Production<br />

waste<br />

Waste of<br />

events<br />

Household<br />

garbage<br />

unalloyed<br />

alloys<br />

lam<strong>in</strong>ates<br />

almost<br />

unalloyed,<br />

contam<strong>in</strong>ated<br />

with food<br />

Material mixture,<br />

composites, alloys<br />

polluted<br />

<strong>Hans</strong>-<strong>Josef</strong> <strong>Endres</strong> 22


Influence of repeated thermo-mechanical<br />

stress on result<strong>in</strong>g mechanical properties<br />

<strong>Hans</strong>-<strong>Josef</strong> <strong>Endres</strong> 23


Viskosität [Pa*s]<br />

Influence of repeated thermo-mechanical<br />

stress on process<strong>in</strong>g behaviour<br />

1.000,00<br />

313,33<br />

250,48<br />

196,13<br />

157,39<br />

100,00<br />

170,48<br />

138,94<br />

81,77<br />

78,62<br />

43,87<br />

43,30<br />

34,84<br />

34,95<br />

22,87<br />

22,96<br />

18,65<br />

10,00<br />

100,00 1.000,00 10.000,00 100.000,00<br />

Schergeschw<strong>in</strong>digkeit [1/s]<br />

PLA unextrudiert PLA 3-fachextrudiert<br />

<strong>Hans</strong>-<strong>Josef</strong> <strong>Endres</strong> 24


Pre-consumer Recycl<strong>in</strong>g of Bioplastics<br />

• First successful experiences with the pre-consumer<br />

recycl<strong>in</strong>g of thermoplastic bioplastics<br />

• Some biopolymers show less thermo-mechanical and<br />

chemical stability, i.e. stronger down cycl<strong>in</strong>g effects<br />

stabilization necessary<br />

• Desire for mono-fractional waste streams like conventional<br />

recyclates (PET,…)<br />

<strong>Hans</strong>-<strong>Josef</strong> <strong>Endres</strong> 25


Identification of Biopolymers<br />

by Near Infrared Spectroscopy (NIR)<br />

<strong>Hans</strong>-<strong>Josef</strong> <strong>Endres</strong> 26


Post-consumer Recycl<strong>in</strong>g<br />

Post-consumer recycl<strong>in</strong>g<br />

Conventional<br />

Plastics<br />

PET<br />

PS<br />

PE HD<br />

PE-LD<br />

Bioplastics<br />

Blend amount:<br />

0,5; 1; 3; 5 und 10 wt-%<br />

PTT<br />

PLA<br />

PBAT Blends<br />

Starch Blends<br />

PLA Blends<br />

<strong>Hans</strong>-<strong>Josef</strong> <strong>Endres</strong> 27


Influence of Ecovio on mechanical<br />

properties of LDPE<br />

<strong>Hans</strong>-<strong>Josef</strong> <strong>Endres</strong> 28


Influence of Ecovio on process<strong>in</strong>g<br />

properties of LDPE<br />

<strong>Hans</strong>-<strong>Josef</strong> <strong>Endres</strong> 29


Post-consumer Recycl<strong>in</strong>g of mixed Waste<br />

• Differentiation between “drop-<strong>in</strong>s” and chemical new biopolymers<br />

• Consideration of exist<strong>in</strong>g waste logistic<br />

‣ What about PLA <strong>in</strong> (Bio-)PET- or PS-recycl<strong>in</strong>g stream?<br />

‣ Interaction of Ecovio and/or MaterBi with (Bio-)PE<br />

‣ What about (Bio-)PET, PS etc. <strong>in</strong> PLA or (Bio-)PE, MaterBi etc. <strong>in</strong><br />

Ecovio?<br />

‣ Mix<strong>in</strong>g of different grades of one biopolymere (e.g. PLAs)<br />

‣ Quality of recycled bioplastics<br />

‣ Possibilities to improve the recycl<strong>in</strong>g behavior of Bioplastics<br />

‣ Influence of bioplastic additives or contam<strong>in</strong>ation with residuals<br />

These and further recycl<strong>in</strong>g questions will be answered <strong>in</strong><br />

runn<strong>in</strong>g <strong>in</strong>vestigations together with different research and<br />

<strong>in</strong>dustrial partners like BASF, DuPont or Rhe<strong>in</strong>Chemie<br />

<strong>Hans</strong>-<strong>Josef</strong> <strong>Endres</strong> 30


Conclusion<br />

• Bioplastics are also “only” plastics<br />

• Recycl<strong>in</strong>g of bioplastics is subject to the same requirements as it is for recycl<strong>in</strong>g<br />

of conventional plastics (sort<strong>in</strong>g accuracy, stabilization, additives…)<br />

• Successful preconsumer recycl<strong>in</strong>g of bioplastics<br />

• “Drop-Ins” are no problem for recycl<strong>in</strong>g<br />

• Separation and recycl<strong>in</strong>g of chemical new “non drop-<strong>in</strong> bioplastics” (PLA, Starch<br />

Blends, PHAs, PBS,…) is because of their small amounts still not economic.<br />

• Chemical new bioplastics are therefore as a m<strong>in</strong>ority <strong>in</strong> the waste disposal<br />

process a potential risk for contam<strong>in</strong>ation for established recyceled plastics.<br />

• Also mixed bioplastics of different types (e.g. Ecovio + MaterBi + LDPE) as well<br />

as of same types (for example different PLA grades) should be considered.<br />

• Further, “vice versa” contam<strong>in</strong>ation scenarios have to be exam<strong>in</strong>ed (for example<br />

PET, PS <strong>in</strong> PLA or LDPE <strong>in</strong> MaterBi or Ecovio).<br />

Instead of emotional discussions, more facts are needed related to the<br />

recycl<strong>in</strong>g of bioplastics<br />

<strong>Hans</strong>-<strong>Josef</strong> <strong>Endres</strong> 31


Thanks for the attention<br />

http://www.hanser.de/buch.asp?isbn=978-3-446-42403-6&area=Technik<br />

For more<br />

<strong>in</strong>formation<br />

please see:<br />

http://www.hanser.de/buch.asp?isbn=3-446-41683-8&area=Technik<br />

and www.materialdatacenter.com<br />

<strong>Hans</strong>-<strong>Josef</strong> <strong>Endres</strong> 32


Contact<br />

Prof. Dr.-<strong>Ing</strong>. <strong>Hans</strong>-<strong>Josef</strong> <strong>Endres</strong><br />

IfBB - Institut für Biokunststoffe und Bioverbundwerkstoffe<br />

Hochschule Hannover<br />

Fakultät Masch<strong>in</strong>enbau und Bioverfahrenstechnik<br />

Heisterbergallee 12<br />

D-30453 Hannover<br />

Tel.: 0049 (0)511-9296-2212<br />

Fax: 0049 (0)511-9296-2210<br />

Email: hans-josef.endres@hs-hannover.de<br />

Internet: www.ifbb-hannover.de<br />

<strong>Hans</strong>-<strong>Josef</strong> <strong>Endres</strong> 33

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!