15.02.2014 Views

Illustration - IRCCyN - Ecole Centrale de Nantes

Illustration - IRCCyN - Ecole Centrale de Nantes

Illustration - IRCCyN - Ecole Centrale de Nantes

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

ECN: Filière Transport<br />

IRCCYN, <strong>Ecole</strong> <strong>Centrale</strong> <strong>de</strong> <strong>Nantes</strong><br />

Professor Philippe Martinet<br />

IRCCYN Laboratory<br />

ECN<br />

Philippe.Martinet@irccyn.ec-nantes.fr<br />

http://www.irccyn.ec-nantes.fr/~martinet<br />

Philippe Martinet<br />

1 Intelligent Transportation System - ECN, Transportation cursus, <strong>Nantes</strong><br />

Intelligent Transportation System<br />

PART V<br />

<strong>Illustration</strong>s<br />

Professor Philippe Martinet<br />

ECN – IRCCYN<br />

<strong>Nantes</strong>, France<br />

Philippe.Martinet@irccyn.ec-nantes.fr<br />

http://www.irccyn.ec-nantes.fr/~martinet<br />

Philippe Martinet<br />

2 Intelligent Transportation System - ECN, Transportation cursus, <strong>Nantes</strong>


Introduction to ITS<br />

• Definition<br />

• ITS examples<br />

• GPS and GIS<br />

• Navigation strategies<br />

Sensor Based Control<br />

Basic Concept<br />

Examples<br />

<strong>Illustration</strong>s<br />

Road, Urban, Offroad, Indoor<br />

Philippe Martinet<br />

Content<br />

Motion and Mission planning<br />

Problem <strong>de</strong>finition<br />

Definitions<br />

Motion Planning<br />

RoadMap Approaches<br />

Cell Decomposition methods<br />

Bug algorithm<br />

Autonomous navigation<br />

Introduction<br />

Locomotion<br />

Mo<strong>de</strong>ling<br />

Localization<br />

Control<br />

3 Intelligent Transportation System - ECN, Transportation cursus, <strong>Nantes</strong><br />

Introduction<br />

to ITS<br />

Motion and<br />

Mission planning<br />

Sensor Based<br />

Control<br />

Autonomous<br />

navigation<br />

<strong>Illustration</strong>s<br />

Navigation strategies<br />

Navigation scheme<br />

End user level<br />

FDIR<br />

monitoring<br />

Execution level<br />

Planning<br />

Mission, route<br />

Obstacle<br />

avoidance<br />

Localization<br />

Single, platoon mo<strong>de</strong><br />

Scheduling<br />

Reference<br />

trajectory<br />

Modified reference<br />

trajectory<br />

Control<br />

Single, platoon mo<strong>de</strong><br />

Philippe Martinet<br />

4 Intelligent Transportation System - ECN, Transportation cursus, <strong>Nantes</strong>


Introduction<br />

to ITS<br />

Motion and<br />

Mission planning<br />

Sensor Based<br />

Control<br />

Autonomous<br />

navigation<br />

<strong>Illustration</strong>s<br />

Navigation strategies<br />

Navigation scheme<br />

End user level<br />

FDIR<br />

monitoring<br />

Execution level<br />

Planning<br />

Mission, route<br />

Localization<br />

Single, platoon mo<strong>de</strong><br />

Obstacle<br />

avoidance<br />

Scheduling<br />

Reference<br />

trajectory<br />

Control<br />

Single, platoon mo<strong>de</strong><br />

Philippe Martinet<br />

5 Intelligent Transportation System - ECN, Transportation cursus, <strong>Nantes</strong><br />

Introduction<br />

to ITS<br />

Motion and<br />

Mission planning<br />

Sensor Based<br />

Control<br />

Autonomous<br />

navigation<br />

<strong>Illustration</strong>s<br />

Navigation strategies<br />

3D Map based navigation (absolute navigation)<br />

Exteroceptive<br />

sensors<br />

Proprioceptive<br />

sensors<br />

Itinerary<br />

Selection<br />

& Execution<br />

Localization<br />

GIS<br />

3D map based<br />

Reference trajectory<br />

Global<br />

Lateral <strong>de</strong>viation<br />

Angular <strong>de</strong>viation<br />

Curvature<br />

Curvilinear abscissa<br />

Online step<br />

Philippe Martinet<br />

6 Intelligent Transportation System - ECN, Transportation cursus, <strong>Nantes</strong>


Introduction<br />

to ITS<br />

Motion and<br />

Mission planning<br />

Sensor Based<br />

Control<br />

Autonomous<br />

navigation<br />

<strong>Illustration</strong>s<br />

Navigation strategies<br />

Memory based navigation (relative navigation)<br />

Exteroceptive<br />

sensors<br />

Proprioceptive<br />

sensors<br />

Itinerary<br />

Selection<br />

& Execution<br />

Topological<br />

In<strong>de</strong>xation<br />

Extraction<br />

of features<br />

GIS<br />

Augmented GIS<br />

Topological<br />

Representation<br />

sensory memory<br />

Learning step<br />

Philippe Martinet<br />

7 Intelligent Transportation System - ECN, Transportation cursus, <strong>Nantes</strong><br />

Introduction<br />

to ITS<br />

Motion and<br />

Mission planning<br />

Sensor Based<br />

Control<br />

Autonomous<br />

navigation<br />

<strong>Illustration</strong>s<br />

Navigation strategies<br />

Memory based navigation (relative navigation)<br />

Exteroceptive<br />

sensors<br />

Proprioceptive<br />

sensors<br />

Itinerary<br />

Selection<br />

& Execution<br />

Localization<br />

Augmented GIS<br />

Topological<br />

Representation<br />

Reference trajectory<br />

LOCAL<br />

Lateral <strong>de</strong>viation<br />

Angular <strong>de</strong>viation<br />

Curvature<br />

Curvilinear abscissa<br />

Online step<br />

Philippe Martinet<br />

8 Intelligent Transportation System - ECN, Transportation cursus, <strong>Nantes</strong>


Introduction<br />

to ITS<br />

Motion and<br />

Mission planning<br />

Sensor Based<br />

Control<br />

Autonomous<br />

navigation<br />

<strong>Illustration</strong>s<br />

Examples : Localization<br />

Philippe Martinet<br />

9 Intelligent Transportation System - ECN, Transportation cursus, <strong>Nantes</strong><br />

Introduction<br />

to ITS<br />

Motion and<br />

Mission planning<br />

Sensor Based<br />

Control<br />

Autonomous<br />

navigation<br />

<strong>Illustration</strong>s<br />

Examples : Localization &Tracking<br />

Philippe Martinet<br />

10 Intelligent Transportation System - ECN, Transportation cursus, <strong>Nantes</strong>


Introduction<br />

to ITS<br />

Motion and<br />

Mission planning<br />

Sensor Based<br />

Control<br />

Autonomous<br />

navigation<br />

<strong>Illustration</strong>s<br />

Examples : SLAM RADAR<br />

Philippe Martinet<br />

11 Intelligent Transportation System - ECN, Transportation cursus, <strong>Nantes</strong><br />

Introduction<br />

to ITS<br />

Motion and<br />

Mission planning<br />

Sensor Based<br />

Control<br />

Autonomous<br />

navigation<br />

<strong>Illustration</strong>s<br />

Examples : SLAM Laser<br />

Philippe Martinet<br />

12 Intelligent Transportation System - ECN, Transportation cursus, <strong>Nantes</strong>


Introduction<br />

to ITS<br />

Motion and<br />

Mission planning<br />

Sensor Based<br />

Control<br />

Autonomous<br />

navigation<br />

<strong>Illustration</strong>s<br />

Examples : SLAM VISION<br />

Philippe Martinet<br />

13 Intelligent Transportation System - ECN, Transportation cursus, <strong>Nantes</strong><br />

Introduction<br />

to ITS<br />

Motion and<br />

Mission planning<br />

Sensor Based<br />

Control<br />

Autonomous<br />

navigation<br />

<strong>Illustration</strong>s<br />

Debain [96]<br />

2D : Automatic Gui<strong>de</strong>d Vehicles<br />

Control laws for agricultural machines<br />

Combine-harvester<br />

Harvesting work<br />

Philippe Martinet<br />

14 Intelligent Transportation System - ECN, Transportation cursus, <strong>Nantes</strong>


Introduction<br />

to ITS<br />

Motion and<br />

Mission planning<br />

Sensor Based<br />

Control<br />

Autonomous<br />

navigation<br />

<strong>Illustration</strong>s<br />

Debain [96]<br />

Perception<br />

2D : Automatic Gui<strong>de</strong>d Vehicles<br />

• non supervised segmentation (Derras93)<br />

• supervised segmentation (Château99)<br />

Iterative Process<br />

Philippe Martinet<br />

15 Intelligent Transportation System - ECN, Transportation cursus, <strong>Nantes</strong><br />

Introduction<br />

to ITS<br />

Motion and<br />

Mission planning<br />

Sensor Based<br />

Control<br />

Autonomous<br />

navigation<br />

<strong>Illustration</strong>s<br />

Debain [96]<br />

Perception<br />

2D : Automatic Gui<strong>de</strong>d Vehicles<br />

• non supervised segmentation (Derras93)<br />

• supervised segmentation (Château99)<br />

Measure<br />

Reference<br />

S<br />

=<br />

( θ , ρ)<br />

Philippe Martinet<br />

16 Intelligent Transportation System - ECN, Transportation cursus, <strong>Nantes</strong>


Introduction<br />

to ITS<br />

Motion and<br />

Mission planning<br />

Sensor Based<br />

Control<br />

Autonomous<br />

navigation<br />

<strong>Illustration</strong>s<br />

Debain [96]<br />

2D : Automatic Gui<strong>de</strong>d Vehicles<br />

Flat Terrain<br />

• CRV (Debain96)<br />

• Pole assignment (Khadraoui96)<br />

• Neural networks (Rouveure96)<br />

Sloping Terrain<br />

• Adaptive CRV (Debain96)<br />

• Neural networks (Rouveure R.)<br />

Philippe Martinet<br />

17 Intelligent Transportation System - ECN, Transportation cursus, <strong>Nantes</strong><br />

Introduction<br />

to ITS<br />

Motion and<br />

Mission planning<br />

Sensor Based<br />

Control<br />

Autonomous<br />

navigation<br />

<strong>Illustration</strong>s<br />

Debain [96]<br />

2D : Automatic Gui<strong>de</strong>d Vehicles<br />

Guiding on a flat ground x & = V ψ.<br />

V<br />

ψ & = − .δ<br />

L<br />

Bicycle mo<strong>de</strong>l<br />

CRV<br />

Pole assignment<br />

Neural networks<br />

Philippe Martinet<br />

18 Intelligent Transportation System - ECN, Transportation cursus, <strong>Nantes</strong>


Introduction<br />

to ITS<br />

Motion and<br />

Mission planning<br />

Sensor Based<br />

Control<br />

Autonomous<br />

navigation<br />

<strong>Illustration</strong>s<br />

Debain [96]<br />

2D : Automatic Gui<strong>de</strong>d Vehicles<br />

Guiding on a flat ground x & = V ψ.<br />

V<br />

ψ & = − .δ<br />

L<br />

Bicycle mo<strong>de</strong>l<br />

CRV<br />

Pole assignment<br />

Neural networks<br />

( S(<br />

t)<br />

− *)<br />

T +<br />

T = −λ. L . B.<br />

S<br />

S<br />

L L<br />

δ = − . Ωy<br />

= − . ψ&<br />

V V<br />

Philippe Martinet<br />

19 Intelligent Transportation System - ECN, Transportation cursus, <strong>Nantes</strong><br />

Introduction<br />

to ITS<br />

Motion and<br />

Mission planning<br />

Sensor Based<br />

Control<br />

Autonomous<br />

navigation<br />

<strong>Illustration</strong>s<br />

Debain [96]<br />

2D : Automatic Gui<strong>de</strong>d Vehicles<br />

Guiding on a flat ground x & = V ψ.<br />

V<br />

ψ & = − .δ<br />

L<br />

Bicycle mo<strong>de</strong>l<br />

CRV<br />

Pole assignment<br />

Neural networks<br />

S & = A. S + B.δ<br />

δ = −<br />

( g g ).<br />

S<br />

1<br />

2<br />

Philippe Martinet<br />

20 Intelligent Transportation System - ECN, Transportation cursus, <strong>Nantes</strong>


Introduction<br />

to ITS<br />

Motion and<br />

Mission planning<br />

Sensor Based<br />

Control<br />

Autonomous<br />

navigation<br />

<strong>Illustration</strong>s<br />

Debain [96]<br />

2D : Automatic Gui<strong>de</strong>d Vehicles<br />

Guiding on a flat ground x & = V ψ.<br />

V<br />

ψ & = − .δ<br />

L<br />

Bicycle mo<strong>de</strong>l<br />

CRV<br />

Pole assignment<br />

Neural networks<br />

ρ<br />

θ<br />

δ<br />

Philippe Martinet<br />

21 Intelligent Transportation System - ECN, Transportation cursus, <strong>Nantes</strong><br />

Introduction<br />

to ITS<br />

Motion and<br />

Mission planning<br />

Sensor Based<br />

Control<br />

Autonomous<br />

navigation<br />

<strong>Illustration</strong>s<br />

Debain [96]<br />

Guiding on a flat ground<br />

2D : Automatic Gui<strong>de</strong>d Vehicles<br />

Philippe Martinet<br />

22 Intelligent Transportation System - ECN, Transportation cursus, <strong>Nantes</strong>


Introduction<br />

to ITS<br />

Motion and<br />

Mission planning<br />

Sensor Based<br />

Control<br />

Autonomous<br />

navigation<br />

<strong>Illustration</strong>s<br />

Debain [96]<br />

2D : Automatic Gui<strong>de</strong>d Vehicles<br />

Guiding on a sloping ground<br />

Lateral offset<br />

Driving si<strong>de</strong>ways<br />

Philippe Martinet<br />

23 Intelligent Transportation System - ECN, Transportation cursus, <strong>Nantes</strong><br />

Introduction<br />

to ITS<br />

Motion and<br />

Mission planning<br />

Sensor Based<br />

Control<br />

Autonomous<br />

navigation<br />

<strong>Illustration</strong>s<br />

Debain [96]<br />

Guiding on a sloping ground<br />

2D : Automatic Gui<strong>de</strong>d Vehicles<br />

P.I.<br />

Adaptive reference<br />

Adaptive<br />

Module<br />

( ) ρ,θ<br />

Image<br />

Processing<br />

( ρ adapt,θ<br />

)<br />

( ρ*,θ *)<br />

-<br />

+<br />

Control law PI<br />

δ<br />

Philippe Martinet<br />

24 Intelligent Transportation System - ECN, Transportation cursus, <strong>Nantes</strong>


Introduction<br />

to ITS<br />

Motion and<br />

Mission planning<br />

Sensor Based<br />

Control<br />

Autonomous<br />

navigation<br />

<strong>Illustration</strong>s<br />

Debain [96]<br />

2D : Automatic Gui<strong>de</strong>d Vehicles<br />

Guiding on a sloping ground<br />

Philippe Martinet<br />

25 Intelligent Transportation System - ECN, Transportation cursus, <strong>Nantes</strong><br />

Introduction<br />

to ITS<br />

Motion and<br />

Mission planning<br />

Sensor Based<br />

Control<br />

Autonomous<br />

navigation<br />

<strong>Illustration</strong>s<br />

Khadraoui [96]<br />

2D : Automatic Gui<strong>de</strong>d Vehicles<br />

Visual servoing applied to car-like vehicles<br />

Car-like vehicle<br />

Philippe Martinet<br />

26 Intelligent Transportation System - ECN, Transportation cursus, <strong>Nantes</strong>


Introduction<br />

to ITS<br />

Motion and<br />

Mission planning<br />

Sensor Based<br />

Control<br />

Autonomous<br />

navigation<br />

<strong>Illustration</strong>s<br />

Khadraoui [96]<br />

Bicycle mo<strong>de</strong>l<br />

2D : Automatic Gui<strong>de</strong>d Vehicles<br />

x&<br />

= −V ψ.<br />

V<br />

ψ & = .δ<br />

L<br />

Scene mo<strong>de</strong>lling<br />

Vehicle + Camera + Road<br />

2D line in image space<br />

Dynamic mo<strong>de</strong>lling<br />

S<br />

=<br />

( θ , ρ)<br />

( a b)<br />

S = ,<br />

S & = A. S + B.δ<br />

Philippe Martinet<br />

27 Intelligent Transportation System - ECN, Transportation cursus, <strong>Nantes</strong><br />

Introduction<br />

to ITS<br />

Motion and<br />

Mission planning<br />

Sensor Based<br />

Control<br />

Autonomous<br />

navigation<br />

<strong>Illustration</strong>s<br />

Khadraoui [96]<br />

Objective<br />

Positioning tasks<br />

2D : Automatic Gui<strong>de</strong>d Vehicles<br />

Robustness with regard to RTH variations<br />

Pole assignment<br />

S & = A. S + B.δ<br />

δ = −<br />

( g g ).<br />

S<br />

1<br />

2<br />

With and without<br />

integrator<br />

Philippe Martinet<br />

28 Intelligent Transportation System - ECN, Transportation cursus, <strong>Nantes</strong>


Introduction<br />

to ITS<br />

Motion and<br />

Mission planning<br />

Sensor Based<br />

Control<br />

Autonomous<br />

navigation<br />

<strong>Illustration</strong>s<br />

Khadraoui [96]<br />

Objective<br />

Positioning tasks<br />

2D : Automatic Gui<strong>de</strong>d Vehicles<br />

Robustness with regard to RTH variations<br />

Robust control<br />

Fa<br />

Fb<br />

a 1<br />

= = −<br />

δ ξ1 . L.<br />

p<br />

b p.<br />

ξ ξ<br />

δ ξ1.<br />

L.<br />

ξ 3 p<br />

( p) 2<br />

1 + 2<br />

( p) = =<br />

2<br />

Ca<br />

Cb<br />

( p)<br />

( p)<br />

ξ1.<br />

L.<br />

p<br />

= −<br />

τ.<br />

2 + τ.<br />

p<br />

ξ1.<br />

L.<br />

ξ 3 p<br />

=<br />

τ.<br />

( )<br />

( p.<br />

ξ1<br />

+ ξ 2)<br />

Philippe Martinet<br />

29 Intelligent Transportation System - ECN, Transportation cursus, <strong>Nantes</strong><br />

Introduction<br />

to ITS<br />

Motion and<br />

Mission planning<br />

Sensor Based<br />

Control<br />

Autonomous<br />

navigation<br />

<strong>Illustration</strong>s<br />

Khadraoui [96]<br />

Results<br />

Experimental Context<br />

2D : Automatic Gui<strong>de</strong>d Vehicles<br />

G<br />

Y<br />

Image<br />

Processing<br />

Camera<br />

Road<br />

Y*<br />

k<br />

+<br />

-<br />

δ<br />

Vehicle<br />

x&<br />

ψ&<br />

Cartesian<br />

Robot<br />

Philippe Martinet<br />

30 Intelligent Transportation System - ECN, Transportation cursus, <strong>Nantes</strong>


Introduction<br />

to ITS<br />

Motion and<br />

Mission planning<br />

Sensor Based<br />

Control<br />

Autonomous<br />

navigation<br />

<strong>Illustration</strong>s<br />

Khadraoui [96]<br />

Results<br />

parameter a<br />

0<br />

-0.1<br />

-0.2<br />

-0.3<br />

-0.4<br />

-0.5<br />

CROB<br />

2D : Automatic Gui<strong>de</strong>d Vehicles<br />

PPI: Pole assignment<br />

CROB: Robust control<br />

-8°< α


Introduction<br />

to ITS<br />

Clady [02]<br />

Fixed focal<br />

length camera<br />

Wi<strong>de</strong> angle<br />

Motion and<br />

Mission planning<br />

Sensor Based<br />

Control<br />

Our Vision<br />

sensor<br />

Autonomous<br />

navigation<br />

<strong>Illustration</strong>s<br />

Automatic Gui<strong>de</strong>d<br />

Vehicles :<br />

target tracking<br />

Sensor<br />

Decision Module<br />

Actuators<br />

PTZ<br />

Controlled<br />

Camera<br />

Philippe Martinet<br />

33 Intelligent Transportation System - ECN, Transportation cursus, <strong>Nantes</strong><br />

Introduction<br />

to ITS<br />

Clady [02]<br />

Motion and<br />

Mission planning<br />

The tracked feature is <strong>de</strong>fined by :<br />

- one bounding ellipsis<br />

- one pattern vector I<br />

Sensor Based<br />

Control<br />

- one parameters vector E<br />

Autonomous<br />

navigation<br />

<strong>Illustration</strong>s<br />

Automatic Gui<strong>de</strong>d<br />

Vehicles :<br />

target tracking<br />

Philippe Martinet<br />

34 Intelligent Transportation System - ECN, Transportation cursus, <strong>Nantes</strong>


Introduction<br />

to ITS<br />

Clady [02]<br />

Motion and<br />

Mission planning<br />

Sensor Based<br />

Control<br />

Autonomous<br />

navigation<br />

The principle is to link :<br />

- one displacement ∆E of one feature with<br />

- the difference ∆I in image space of this feature<br />

through an interaction matrix A :<br />

∆E t = A × ∆I<br />

<strong>Illustration</strong>s<br />

Automatic Gui<strong>de</strong>d<br />

Vehicles :<br />

target tracking<br />

+<br />

-<br />

∆E t = A × ∆I<br />

∆E<br />

Ellipsis centered<br />

on the feature<br />

object displacement<br />

∆I<br />

Referenced feature Iref<br />

Philippe Martinet<br />

35 Intelligent Transportation System - ECN, Transportation cursus, <strong>Nantes</strong><br />

Introduction<br />

to ITS<br />

Clady [02]<br />

<br />

Motion and<br />

Mission planning<br />

Demonstrator VELAC<br />

Sensor Based<br />

Control<br />

Autonomous<br />

navigation<br />

<strong>Illustration</strong>s<br />

Automatic Gui<strong>de</strong>d Vehicles : target tracking<br />

<br />

Experimental context:<br />

– Embed<strong>de</strong>d workstation: Silicon Graphics Indy.<br />

– Parameters: non optimal (gain, calibration).<br />

– Focalization and initialization by hand.<br />

– Limitations to some particular vehicle (truck, camping-car).<br />

Philippe Martinet<br />

36 Intelligent Transportation System - ECN, Transportation cursus, <strong>Nantes</strong>


Introduction<br />

to ITS<br />

Motion and<br />

Mission planning<br />

Sensor Based<br />

Control<br />

Autonomous<br />

navigation<br />

<strong>Illustration</strong>s<br />

Clady [02]<br />

Automatic<br />

Gui<strong>de</strong>d<br />

Vehicles :<br />

Target<br />

tracking<br />

Philippe Martinet<br />

37 Intelligent Transportation System - ECN, Transportation cursus, <strong>Nantes</strong><br />

Introduction<br />

to ITS<br />

Motion and<br />

Mission planning<br />

Sensor Based<br />

Control<br />

Applications and projects: MOBIVIP<br />

Autonomous<br />

navigation<br />

<strong>Illustration</strong>s<br />

AGV using RTK-GPS<br />

Mobivip : Clermont-Fd 2004<br />

Navigation using RTK-GPS<br />

Clermont-Ferrand : LASMEA-GRAVIR<br />

Philippe Martinet<br />

38 Intelligent<br />

38<br />

Transportation System - ECN, Transportation cursus, <strong>Nantes</strong>


Introduction<br />

to ITS<br />

Motion and<br />

Mission planning<br />

Sensor Based<br />

Control<br />

Autonomous<br />

navigation<br />

<strong>Illustration</strong>s<br />

Applications and projects: MOBIVIP<br />

AGV using vision only<br />

urban context<br />

[Royer04]<br />

Visual memory<br />

Reference<br />

Trajectory<br />

and<br />

Image features<br />

(3D points)<br />

Experimental data<br />

Compiegne city center<br />

(BODEGA/MOBIVIP)<br />

Philippe Martinet<br />

39 Intelligent<br />

39<br />

Transportation System - ECN, Transportation cursus, <strong>Nantes</strong><br />

Introduction<br />

to ITS<br />

Motion and<br />

Mission planning<br />

Sensor Based<br />

Control<br />

Autonomous<br />

navigation<br />

<strong>Illustration</strong>s<br />

Perception<br />

Automatic Gui<strong>de</strong>d Vehicles : urban context<br />

Localization using monocular camera<br />

[Royer04]<br />

Reference<br />

Trajectory<br />

Key images<br />

And<br />

features<br />

and<br />

localization<br />

Current<br />

images<br />

and<br />

features<br />

Philippe Martinet<br />

40 Intelligent Transportation System - ECN, Transportation cursus, <strong>Nantes</strong>


Introduction<br />

to ITS<br />

Motion and<br />

Mission planning<br />

Sensor Based<br />

Control<br />

Autonomous<br />

navigation<br />

<strong>Illustration</strong>s<br />

Applications and projects: BODEGA<br />

AGV using vision only<br />

BODEGA : Clermont-Fd 2005<br />

Navigation using vision only<br />

Clermont-Ferrand : LASMEA-GRAVIR<br />

Philippe Martinet<br />

41 Intelligent<br />

41<br />

Transportation System - ECN, Transportation cursus, <strong>Nantes</strong><br />

Introduction<br />

to ITS<br />

Motion and<br />

Mission planning<br />

Sensor Based<br />

Control<br />

Autonomous<br />

navigation<br />

<strong>Illustration</strong>s<br />

Perception<br />

And<br />

Control<br />

Automatic Gui<strong>de</strong>d Vehicles : urban context<br />

Localization using monocular camera<br />

[Royer06]<br />

Philippe Martinet<br />

42 Intelligent Transportation System - ECN, Transportation cursus, <strong>Nantes</strong>


Introduction<br />

to ITS<br />

Motion and<br />

Mission planning<br />

Sensor Based<br />

Control<br />

Autonomous<br />

navigation<br />

<strong>Illustration</strong>s<br />

Applications and projects: MOBIVIP<br />

AGV using vision only<br />

MOBIVIP : Clermont-Fd 2006<br />

Navigation using vision only<br />

Clermont-Ferrand : LASMEA-GRAVIR<br />

Philippe Martinet<br />

43 Intelligent<br />

43<br />

Transportation System - ECN, Transportation cursus, <strong>Nantes</strong><br />

Introduction<br />

to ITS<br />

Motion and<br />

Mission planning<br />

Sensor Based<br />

Control<br />

Autonomous<br />

navigation<br />

<strong>Illustration</strong>s<br />

Navigation strategies<br />

Using a topological <strong>de</strong>scription of the environment<br />

Topological representation<br />

of the environment<br />

Performing navigation<br />

as a visual route to follow<br />

Philippe Martinet<br />

44 Intelligent Transportation System - ECN, Transportation cursus, <strong>Nantes</strong>


Introduction<br />

to ITS<br />

Motion and<br />

Mission planning<br />

Sensor Based<br />

Control<br />

Blanc [04] Ait A<strong>de</strong>r[04]<br />

Automatic Gui<strong>de</strong>d Vehicles<br />

Navigation using visual memory<br />

Autonomous<br />

navigation<br />

<strong>Illustration</strong>s<br />

Philippe Martinet<br />

45 Intelligent Transportation System - ECN, Transportation cursus, <strong>Nantes</strong><br />

Introduction<br />

to ITS<br />

Motion and<br />

Mission planning<br />

Sensor Based<br />

Control<br />

Previous Work Blanc [04] Ait A<strong>de</strong>r[04]<br />

Navigation using visual memory<br />

Autonomous<br />

navigation<br />

<strong>Illustration</strong>s<br />

Philippe Martinet<br />

46 Intelligent Transportation System - ECN, Transportation cursus, <strong>Nantes</strong>


Introduction<br />

to ITS<br />

Motion and<br />

Mission planning<br />

Sensor Based<br />

Control<br />

Autonomous<br />

navigation<br />

<strong>Illustration</strong>s<br />

Previous Work H. Hadj Ab<strong>de</strong>lka<strong>de</strong>r [05]<br />

Navigation with omnidirectional visual<br />

memory : [ICRA07]<br />

Philippe Martinet<br />

47 Intelligent Transportation System - ECN, Transportation cursus, <strong>Nantes</strong><br />

Introduction<br />

to ITS<br />

Motion and<br />

Mission planning<br />

Sensor Based<br />

Control<br />

Autonomous<br />

navigation<br />

<strong>Illustration</strong>s<br />

Other application fields<br />

J. Courbon [08]<br />

Navigation with fisheye visual memory :<br />

[ICARCV08]<br />

Ic<br />

Ig<br />

Philippe Martinet<br />

48 Intelligent Transportation System - ECN, Transportation cursus, <strong>Nantes</strong>


Introduction<br />

to ITS<br />

Motion and<br />

Mission planning<br />

Sensor Based<br />

Control<br />

J. Courbon [07] Automatic Gui<strong>de</strong>d Vehicles<br />

robot control using a fisheye lens<br />

Autonomous navigation using a visual memory<br />

Autonomous<br />

navigation<br />

<strong>Illustration</strong>s<br />

Philippe Martinet<br />

49 Intelligent Transportation System - ECN, Transportation cursus, <strong>Nantes</strong><br />

Introduction<br />

to ITS<br />

Motion and<br />

Mission planning<br />

Sensor Based<br />

Control<br />

Applications and projects: CITYVIP<br />

General framework :<br />

Autonomous<br />

navigation<br />

<strong>Illustration</strong>s<br />

AGV using visual memory<br />

Vision based memory<br />

navigation strategy :<br />

3 steps :<br />

1. Visual memory building<br />

2. Localization into the visual memory<br />

3. Navigation into the visual memory<br />

Philippe Martinet<br />

50 Intelligent Transportation System - ECN, Transportation cursus, <strong>Nantes</strong>


Introduction<br />

to ITS<br />

Applications and projects: CITYVIP<br />

Graph based representation<br />

Vision based memory<br />

navigation strategy :<br />

Visual memory building<br />

a-Topological <strong>de</strong>scription<br />

b-Learning the environment<br />

c-Extraction of interesting<br />

features<br />

Can be<br />

•Harris points<br />

•Sift features<br />

•…<br />

Motion and<br />

Mission planning<br />

Sensor Based<br />

Control<br />

Autonomous<br />

navigation<br />

<strong>Illustration</strong>s<br />

AGV using visual memory<br />

Oriented graphs<br />

containing<br />

the key images<br />

Philippe Martinet<br />

51 Intelligent Transportation System - ECN, Transportation cursus, <strong>Nantes</strong><br />

Introduction<br />

to ITS<br />

Motion and<br />

Mission planning<br />

Sensor Based<br />

Control<br />

Applications and projects: CITYVIP<br />

Localization<br />

Autonomous<br />

navigation<br />

<strong>Illustration</strong>s<br />

AGV using visual memory<br />

Vision based memory<br />

navigation strategy :<br />

Localization into the visual memory<br />

Current image<br />

Desired image<br />

a- Global localization [ICRA08]<br />

b- Selection of key images<br />

c- Relative pose computation<br />

Frame F c Frame F i+1<br />

(R,t)<br />

Philippe Martinet<br />

52 Intelligent Transportation System - ECN, Transportation cursus, <strong>Nantes</strong>


Introduction<br />

to ITS<br />

Motion and<br />

Mission planning<br />

Sensor Based<br />

Control<br />

Applications and projects: CITYVIP<br />

Localization<br />

Autonomous<br />

navigation<br />

<strong>Illustration</strong>s<br />

AGV using visual memory<br />

Vision based memory<br />

navigation strategy :<br />

Localization into the visual memory<br />

a- Global localization [ICRA08]<br />

b- Selection of key images<br />

c- Relative pose computation<br />

(y, θ) evaluation<br />

Philippe Martinet<br />

53 Intelligent Transportation System - ECN, Transportation cursus, <strong>Nantes</strong><br />

Introduction<br />

to ITS<br />

Applications and projects: CITYVIP AGV using visual memory<br />

Unified mo<strong>de</strong>l Use of unified camera mo<strong>de</strong>l for fisheye camera<br />

[IROS07]<br />

[GEYER00]<br />

X m = 1 ρ<br />

⎡<br />

⎣ X Y<br />

Z<br />

Motion and<br />

Mission planning<br />

⎤<br />

⎦<br />

Sensor Based<br />

Control<br />

Autonomous<br />

navigation<br />

Image plane<br />

m p<br />

<strong>Illustration</strong>s<br />

K M<br />

ρ = X = √ X 2 + Y 2 + Z 2<br />

m n = [x T β] T = ⎢<br />

⎣<br />

m p = K M m n<br />

⎡<br />

X<br />

Z + ξρ<br />

Y<br />

Z + ξρ<br />

β<br />

⎤<br />

⎥<br />

⎦<br />

ξ<br />

F m<br />

F c<br />

m n X 3D (X, Y, Z)<br />

X m<br />

Mirror : unitary sphere<br />

Philippe Martinet<br />

54 Intelligent Transportation System - ECN, Transportation cursus, <strong>Nantes</strong>


ϕ - 2 ξ<br />

Introduction<br />

ξ<br />

to ITS<br />

Special cases :<br />

ǫ = 1 and ξ = 0<br />

ǫ = 0 and ξ = 1<br />

Motion and<br />

Mission planning<br />

Image plane<br />

F m<br />

F c<br />

mirror<br />

Sensor Based<br />

Control<br />

Applications and projects: CITYVIP<br />

Unified mo<strong>de</strong>l<br />

m p<br />

M =<br />

X m<br />

X 3D (X, Y, Z)<br />

perspective projection<br />

spherical projection<br />

Single-viewpoint systems<br />

Case of points ϕ and ξ : Mirror parameters<br />

K =<br />

f(X 3D ) =<br />

Autonomous<br />

navigation<br />

AGV using visual memory<br />

⎡<br />

⎣ ϕ − ξ 0 0<br />

0 ϕ − ξ 0<br />

0 0 1<br />

⎡<br />

⎣ f fs u 0<br />

0 fr v 0<br />

0 0 1<br />

⎡<br />

⎢<br />

⎣<br />

⎤<br />

⎦<br />

X<br />

ǫZ+ξ √ X 2 +Y 2 +Z 2<br />

Y<br />

ǫZ+ξ √ X 2 +Y 2 +Z 2<br />

1<br />

Generic Projection function<br />

m p = K<br />

<br />

M<br />

f(X 3D)<br />

K M<br />

<strong>Illustration</strong>s<br />

⎤<br />

⎥<br />

⎦<br />

⎤<br />

⎦<br />

Philippe Martinet<br />

55 Intelligent Transportation System - ECN, Transportation cursus, <strong>Nantes</strong><br />

Introduction<br />

to ITS<br />

Motion and<br />

Mission planning<br />

Applications and projects: CITYVIP<br />

Localization<br />

Scaled euclidian reconstruction<br />

Sensor Based<br />

Control<br />

m p<br />

Autonomous<br />

navigation<br />

m ∗ p<br />

X ∗ m<br />

<strong>Illustration</strong>s<br />

AGV using visual memory<br />

X m<br />

Epipolar constraint can be expressed by :<br />

For pinhole mo<strong>de</strong>l<br />

[Nister04]<br />

From five couples of points<br />

E can be estimated<br />

Outliers are rejected by<br />

using RANSAC<br />

Philippe Martinet<br />

56 Intelligent Transportation System - ECN, Transportation cursus, <strong>Nantes</strong>


Introduction<br />

to ITS<br />

Motion and<br />

Mission planning<br />

Sensor Based<br />

Control<br />

Applications and projects: CITYVIP<br />

Control<br />

Autonomous<br />

navigation<br />

<strong>Illustration</strong>s<br />

AGV using visual memory<br />

State mo<strong>de</strong>l of the mobile robot<br />

(s, y, θ)<br />

⋆ F i = (O i , X i , Y i , Z i )<br />

⋆ F i+1 = (O i+1 , X i+1 , Y i+1 , Z i+1 ) the frames attached to the robot when<br />

I i<br />

Kinematic mo<strong>de</strong>l of the mobile robot<br />

Chained<br />

System<br />

theory<br />

[IAV04]<br />

Philippe Martinet<br />

57 Intelligent Transportation System - ECN, Transportation cursus, <strong>Nantes</strong><br />

Introduction<br />

to ITS<br />

Motion and<br />

Mission planning<br />

Sensor Based<br />

Control<br />

Applications and projects: CITYVIP<br />

Control<br />

Autonomous<br />

navigation<br />

<strong>Illustration</strong>s<br />

AGV using visual memory<br />

Philippe Martinet<br />

58 Intelligent Transportation System - ECN, Transportation cursus, <strong>Nantes</strong>


Introduction<br />

to ITS<br />

Motion and<br />

Mission planning<br />

Sensor Based<br />

Control<br />

Applications and projects: CITYVIP<br />

Testbed<br />

Experimental robot is a Robucab from Robosoft<br />

Algorithms are implemented in C ++ language<br />

on a laptop using RTAI-Linux OS with a<br />

2GHz Centrino processor<br />

Autonomous<br />

navigation<br />

<strong>Illustration</strong>s<br />

AGV using visual memory<br />

Fujinon fisheye lens, mounted onto a<br />

Marlin F131B camera<br />

Field-of-view of 185 <strong>de</strong>g<br />

Image resolution in the experiments was 800 × 600 pixels<br />

Frame rate of 15fps<br />

Longitudinal velocity V has been fixed to 1 ms −1<br />

K p and K d are tuned regarding a double pole located at value 0.3<br />

Philippe Martinet<br />

59 Intelligent Transportation System - ECN, Transportation cursus, <strong>Nantes</strong><br />

Introduction<br />

to ITS<br />

Motion and<br />

Mission planning<br />

Sensor Based<br />

Control<br />

Applications and projects: CITYVIP<br />

Testbed : SOVIN Architecture<br />

Autonomous<br />

navigation<br />

<strong>Illustration</strong>s<br />

AGV using visual memory<br />

Philippe Martinet<br />

60 Intelligent Transportation System - ECN, Transportation cursus, <strong>Nantes</strong>


Introduction<br />

to ITS<br />

Motion and<br />

Mission planning<br />

Sensor Based<br />

Control<br />

Applications and projects: CITYVIP<br />

Experiment<br />

Autonomous<br />

navigation<br />

<strong>Illustration</strong>s<br />

AGV using visual memory<br />

Loop 1200 m – 35 edges<br />

Navigation 1700m (26 minutes, 1400 keys images, 54 edges)<br />

Philippe Martinet<br />

61 Intelligent Transportation System - ECN, Transportation cursus, <strong>Nantes</strong><br />

Introduction<br />

to ITS<br />

Motion and<br />

Mission planning<br />

Sensor Based<br />

Control<br />

Applications and projects: CITYVIP<br />

Experiment<br />

Autonomous<br />

navigation<br />

<strong>Illustration</strong>s<br />

AGV using visual memory<br />

Lateral error:<br />

- mean: 23 cm<br />

-standard <strong>de</strong>viation: 30 cm.<br />

Navigation stops after<br />

1700m for security reasons<br />

(small number of matched<br />

points)<br />

Philippe Martinet<br />

62 Intelligent Transportation System - ECN, Transportation cursus, <strong>Nantes</strong>


Introduction<br />

to ITS<br />

Motion and<br />

Mission planning<br />

Sensor Based<br />

Control<br />

Applications and projects: CITYVIP<br />

Experiment<br />

Autonomous<br />

navigation<br />

<strong>Illustration</strong>s<br />

AGV using visual memory<br />

Errpoints:Mean distance between an image point<br />

and its position in <strong>de</strong>sired image<br />

Philippe Martinet<br />

63 Intelligent Transportation System - ECN, Transportation cursus, <strong>Nantes</strong><br />

Introduction<br />

to ITS<br />

Motion and<br />

Mission planning<br />

Sensor Based<br />

Control<br />

Applications and projects: CITYVIP<br />

Experiment<br />

Autonomous<br />

navigation<br />

<strong>Illustration</strong>s<br />

AGV using visual memory<br />

Philippe Martinet<br />

64 Intelligent Transportation System - ECN, Transportation cursus, <strong>Nantes</strong>


Introduction<br />

to ITS<br />

Motion and<br />

Mission planning<br />

Sensor Based<br />

Control<br />

Applications and projects: CITYVIP<br />

Vi<strong>de</strong>o<br />

Autonomous<br />

navigation<br />

<strong>Illustration</strong>s<br />

AGV using visual memory<br />

Topological<br />

navigation<br />

using<br />

visual memory<br />

Cityvip<br />

Clermont-Fd 2008<br />

Using vision only<br />

Clermont-Ferrand<br />

LASMEA-GRAVIR<br />

Philippe Martinet<br />

65 Intelligent Transportation System - ECN, Transportation cursus, <strong>Nantes</strong><br />

Introduction<br />

to ITS<br />

Motion and<br />

Mission planning<br />

Sensor Based<br />

Control<br />

Autonomous<br />

navigation<br />

<strong>Illustration</strong>s<br />

Mo<strong>de</strong>lling: platoon<br />

⋆ d i : curvilinear distance<br />

Philippe Martinet<br />

66 Intelligent Transportation System - ECN, Transportation cursus, <strong>Nantes</strong>


Introduction<br />

to ITS<br />

Motion and<br />

Mission planning<br />

Sensor Based<br />

Control<br />

Autonomous<br />

navigation<br />

<strong>Illustration</strong>s<br />

Mo<strong>de</strong>lling: State mo<strong>de</strong>l The vector (s i , y i , ˜θ i ) <strong>de</strong>scribes the state of the i th<br />

vehicle<br />

Mo<strong>de</strong>lling is <strong>de</strong>rived un<strong>de</strong>r non-slipping assumptions (tricyle mo<strong>de</strong>l)<br />

[Samson95, Daviet95, Thuilot04] → relies on a kinematic mo<strong>de</strong>l<br />

→ <strong>de</strong>signed with respect to the reference path<br />

⎧<br />

⎪⎨<br />

⎪⎩<br />

ṡ i = v i<br />

cos ˜θ i<br />

1−y i c(s i )<br />

ẏ i = v i sin ˜θ i<br />

<br />

˙˜θ i = v tan δi<br />

i l<br />

Longitudinal Mo<strong>de</strong>lling<br />

− c(s i) cos ˜θ i<br />

1−y i c(s i )<br />

Syst Ia<br />

<br />

Control objectives<br />

y i+1 and ˜θ i+1 to 0<br />

δ i+1<br />

⎧<br />

⎨<br />

⎩<br />

d i = s i − s i+1<br />

d˙<br />

i = ṡ i − ṡ i+1<br />

˙ d i = v i<br />

cos ˜θ i<br />

1−y i c(s i ) − v i+1<br />

Syst Ib<br />

cos ˜θ i+1<br />

1−y i+1 c(s i+1 )<br />

(s i − s i+1 ) to d<br />

v i+1<br />

Philippe Martinet<br />

67 Intelligent Transportation System - ECN, Transportation cursus, <strong>Nantes</strong><br />

Introduction<br />

to ITS<br />

Motion and<br />

Mission planning<br />

Sensor Based<br />

Control<br />

Autonomous<br />

navigation<br />

<strong>Illustration</strong>s<br />

Control: Longitudinal control in curved path following<br />

Kinematic mo<strong>de</strong>l d i = s i − s i+1 e i = d i − d<br />

[Bom05]<br />

Syst Ib<br />

Exact linearization<br />

Syst IIb<br />

ė i = v i<br />

cos ˜θ i<br />

1 − y i c(s i ) − v cos ˜θ i+1<br />

i+1<br />

1 − y i+1 c(s i+1 )<br />

v i+1 = 1 − y i+1 c(s i+1 )<br />

cos ˜θ i+1<br />

u i+1 = ė i<br />

<br />

auxiliary control law<br />

v i cos ˜θ i<br />

1 − y i c(s i ) − u i+1<br />

<br />

Proportional control law<br />

u i+1 = −k e i v i+1 = 1 − y i+1 c(s i+1 )<br />

k > 0<br />

ė i = −k e i<br />

d i → d<br />

cos ˜θ i+1<br />

<br />

v i cos ˜θ i<br />

1 − y i c(s i ) + ke i<br />

<br />

Standard longitudinal control mo<strong>de</strong><br />

Philippe Martinet<br />

68 Intelligent Transportation System - ECN, Transportation cursus, <strong>Nantes</strong>


Introduction<br />

to ITS<br />

Motion and<br />

Mission planning<br />

Sensor Based<br />

Control<br />

Autonomous<br />

navigation<br />

<strong>Illustration</strong>s<br />

Control: Longitudinal control in curved path following<br />

[Bom05]<br />

MCS : Mixte Control Strategy<br />

LCS<br />

Lea<strong>de</strong>r<br />

LCS<br />

x i+1 = e i i+1<br />

e i i+1 =s i −s i+1 −d<br />

GCS<br />

GCS<br />

x i+1 = e 1 i+1<br />

e 1 i+1 = s 1 − s i+1 − i.d<br />

MCS<br />

Lea<strong>de</strong>r<br />

Lea<strong>de</strong>r<br />

MCS<br />

x i+1 = σ i+1 e 1 i+1 + (1 − σ i+1)e i i+1<br />

Philippe Martinet<br />

69 Intelligent Transportation System - ECN, Transportation cursus, <strong>Nantes</strong><br />

Introduction<br />

to ITS<br />

Motion and<br />

Mission planning<br />

Sensor Based<br />

Control<br />

Applications and projects : testbed<br />

Autonomous<br />

navigation<br />

<strong>Illustration</strong>s<br />

Thales Navigation 'Aquarius 5002'<br />

Position (2cm), velocity, at 10Hz<br />

Network<br />

RTK-GPS<br />

RS-232<br />

High level<br />

Computer<br />

Cycab Computer<br />

CAN<br />

IEEE-1394<br />

Cycab from Robosoft<br />

18 km.h -1<br />

WiFi<br />

UHF<br />

Wireless<br />

Communication<br />

(i th Cycab<br />

State vector)<br />

WiFi<br />

UHF<br />

IEEE-1394<br />

RTK-GPS<br />

RS-232<br />

High level<br />

Computer<br />

Cycab Computer<br />

CAN<br />

Network<br />

MPC MPC MPC MPC<br />

Actuators<br />

Cycab i<br />

Actuators<br />

Cycab i+1<br />

Philippe Martinet<br />

70<br />

70 Intelligent Transportation System - ECN, Transportation cursus, <strong>Nantes</strong>


Introduction<br />

to ITS<br />

Motion and<br />

Mission planning<br />

Sensor Based<br />

Control<br />

Applications and projects : MOBIVIP<br />

Autonomous<br />

navigation<br />

Platooning<br />

<strong>Illustration</strong>s<br />

Mobivip<br />

Clermont-Fd 2006<br />

Using RTK-GPS only<br />

Clermont-Ferrand<br />

LASMEA-GRAVIR<br />

Philippe Martinet<br />

71<br />

71 Intelligent Transportation System - ECN, Transportation cursus, <strong>Nantes</strong><br />

Introduction<br />

to ITS<br />

Motion and<br />

Mission planning<br />

Sensor Based<br />

Control<br />

Applications and projects : MOBIVIP<br />

Autonomous<br />

navigation<br />

Platooning<br />

<strong>Illustration</strong>s<br />

Mobivip : Clermont-Fd 2006<br />

Mobivip : Clermont-Fd 2006<br />

Vehicle to be inserted in platoon at<br />

(3 rd position)<br />

Reference<br />

trajectory<br />

Platoon with 5 vehicles<br />

direction<br />

At Beginning<br />

Stop<br />

Platoon with 5 vehicles<br />

Reference<br />

trajectory<br />

Direction<br />

Platoon using RTK-GPS<br />

Insertion<br />

Clermont-Ferrand : LASMEA-GRAVIR<br />

Philippe Martinet<br />

Platoon using RTK-GPS<br />

Joining<br />

Clermont-Ferrand LASMEA-GRAVIR<br />

72<br />

72 Intelligent Transportation System - ECN, Transportation cursus, <strong>Nantes</strong>


Introduction<br />

to ITS<br />

Motion and<br />

Mission planning<br />

Sensor Based<br />

Control<br />

Applications and projects : MOBIVIP<br />

Autonomous<br />

navigation<br />

Platooning<br />

<strong>Illustration</strong>s<br />

Mobivip : Clermont-Fd 2006<br />

Mobivip : Clermont-Fd 2006<br />

Platoon using RTK-GPS<br />

Insertion<br />

Clermont-Ferrand : LASMEA-GRAVIR<br />

Philippe Martinet<br />

Platoon using RTK-GPS<br />

Joining<br />

Clermont-Ferrand LASMEA-GRAVIR<br />

73<br />

73 Intelligent Transportation System - ECN, Transportation cursus, <strong>Nantes</strong><br />

Introduction<br />

to ITS<br />

Motion and<br />

Mission planning<br />

Sensor Based<br />

Control<br />

Applications and projects : CRISTAL<br />

Autonomous<br />

navigation<br />

Platooning<br />

<strong>Illustration</strong>s<br />

Cristal : Montbelliard 2008<br />

Cristal : Clermont-Fd PAVIN 2009<br />

Platoon using RTK-GPS<br />

Manually driven lea<strong>de</strong>r<br />

Clermont-Ferrand : LASMEA-GRAVIR<br />

Philippe Martinet<br />

Platoon using RTK-GPS<br />

Manually driven lea<strong>de</strong>r<br />

Clermont-Ferrand LASMEA-GRAVIR<br />

74<br />

74 Intelligent Transportation System - ECN, Transportation cursus, <strong>Nantes</strong>


Introduction<br />

to ITS<br />

Motion and<br />

Mission planning<br />

Sensor Based<br />

Control<br />

Autonomous<br />

navigation<br />

<strong>Illustration</strong>s<br />

Applications and projects : CRISTAL<br />

Platooning<br />

Cristal : Clermont-Fd 2008<br />

Platoon using vision/ranger fin<strong>de</strong>r<br />

Clermont-Ferrand LASMEA-GRAVIR<br />

Philippe Martinet<br />

75<br />

75 Intelligent Transportation System - ECN, Transportation cursus, <strong>Nantes</strong><br />

Introduction<br />

to ITS<br />

Motion and<br />

Mission planning<br />

Sensor Based<br />

Control<br />

Autonomous<br />

navigation<br />

<strong>Illustration</strong>s<br />

Flying robot<br />

Philippe Martinet<br />

76 Intelligent Transportation System - ECN, Transportation cursus, <strong>Nantes</strong>


Introduction<br />

to ITS<br />

Motion and<br />

Mission planning<br />

Sensor Based<br />

Control<br />

Autonomous<br />

navigation<br />

<strong>Illustration</strong>s<br />

[IROS09]<br />

Flying robot<br />

Automatic Gui<strong>de</strong>d Vehicles<br />

Visual<br />

Route Ψ<br />

ground<br />

Philippe Martinet<br />

77 Intelligent Transportation System - ECN, Transportation cursus, <strong>Nantes</strong><br />

Introduction<br />

to ITS<br />

Motion and<br />

Mission planning<br />

Sensor Based<br />

Control<br />

Autonomous<br />

navigation<br />

<strong>Illustration</strong>s<br />

[IROS09]<br />

Flying robot<br />

Automatic Gui<strong>de</strong>d Vehicles<br />

Topological<br />

navigation<br />

using<br />

visual memory<br />

CEA 2009<br />

Fontenay-aux-Roses<br />

Using vision only<br />

Clermont-Ferrand<br />

LASMEA-GRAVIR<br />

Philippe Martinet<br />

78 Intelligent Transportation System - ECN, Transportation cursus, <strong>Nantes</strong>


Introduction<br />

to ITS<br />

Motion and<br />

Mission planning<br />

Sensor Based<br />

Control<br />

Autonomous<br />

navigation<br />

<strong>Illustration</strong>s<br />

Visual servoing of landing<br />

[Bourquar<strong>de</strong>z07]<br />

IROS07<br />

Philippe Martinet<br />

79 Intelligent Transportation System - ECN, Transportation cursus, <strong>Nantes</strong><br />

Introduction<br />

to ITS<br />

Motion and<br />

Mission planning<br />

Sensor Based<br />

Control<br />

Autonomous<br />

navigation<br />

<strong>Illustration</strong>s<br />

Examples : Vulog<br />

Philippe Martinet<br />

80 Intelligent Transportation System - ECN, Transportation cursus, <strong>Nantes</strong>


Introduction<br />

to ITS<br />

Motion and<br />

Mission planning<br />

Sensor Based<br />

Control<br />

Autonomous<br />

navigation<br />

<strong>Illustration</strong>s<br />

GRAVIR : experimental site<br />

● Available: PAVIN urban area<br />

Urban area : 2500 m 2 – 320 m of streets / rural area : 1900 m 2 – 260 m of tracks<br />

● Future: PAVIN in natural environment<br />

Tree area<br />

Peripheral track<br />

Ground track<br />

Stabilized track<br />

length 1 km, width 10 m<br />

Sinus profil<br />

Philippe Martinet<br />

Crossing ramp<br />

Negative obstacle<br />

area<br />

Inclined<br />

profil<br />

Unstable area<br />

81 Intelligent<br />

81<br />

Transportation System - ECN, Transportation cursus, <strong>Nantes</strong>

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!